Patch from Iain Patterson: fix crash on Windows when GSSAPI auth is attempted
[u/mdw/putty] / windows / winhandl.c
1 /*
2 * winhandl.c: Module to give Windows front ends the general
3 * ability to deal with consoles, pipes, serial ports, or any other
4 * type of data stream accessed through a Windows API HANDLE rather
5 * than a WinSock SOCKET.
6 *
7 * We do this by spawning a subthread to continuously try to read
8 * from the handle. Every time a read successfully returns some
9 * data, the subthread sets an event object which is picked up by
10 * the main thread, and the main thread then sets an event in
11 * return to instruct the subthread to resume reading.
12 *
13 * Output works precisely the other way round, in a second
14 * subthread. The output subthread should not be attempting to
15 * write all the time, because it hasn't always got data _to_
16 * write; so the output thread waits for an event object notifying
17 * it to _attempt_ a write, and then it sets an event in return
18 * when one completes.
19 *
20 * (It's terribly annoying having to spawn a subthread for each
21 * direction of each handle. Technically it isn't necessary for
22 * serial ports, since we could use overlapped I/O within the main
23 * thread and wait directly on the event objects in the OVERLAPPED
24 * structures. However, we can't use this trick for some types of
25 * file handle at all - for some reason Windows restricts use of
26 * OVERLAPPED to files which were opened with the overlapped flag -
27 * and so we must use threads for those. This being the case, it's
28 * simplest just to use threads for everything rather than trying
29 * to keep track of multiple completely separate mechanisms.)
30 */
31
32 #include <assert.h>
33
34 #include "putty.h"
35
36 /* ----------------------------------------------------------------------
37 * Generic definitions.
38 */
39
40 /*
41 * Maximum amount of backlog we will allow to build up on an input
42 * handle before we stop reading from it.
43 */
44 #define MAX_BACKLOG 32768
45
46 struct handle_generic {
47 /*
48 * Initial fields common to both handle_input and handle_output
49 * structures.
50 *
51 * The three HANDLEs are set up at initialisation time and are
52 * thereafter read-only to both main thread and subthread.
53 * `moribund' is only used by the main thread; `done' is
54 * written by the main thread before signalling to the
55 * subthread. `defunct' and `busy' are used only by the main
56 * thread.
57 */
58 HANDLE h; /* the handle itself */
59 HANDLE ev_to_main; /* event used to signal main thread */
60 HANDLE ev_from_main; /* event used to signal back to us */
61 int moribund; /* are we going to kill this soon? */
62 int done; /* request subthread to terminate */
63 int defunct; /* has the subthread already gone? */
64 int busy; /* operation currently in progress? */
65 void *privdata; /* for client to remember who they are */
66 };
67
68 /* ----------------------------------------------------------------------
69 * Input threads.
70 */
71
72 /*
73 * Data required by an input thread.
74 */
75 struct handle_input {
76 /*
77 * Copy of the handle_generic structure.
78 */
79 HANDLE h; /* the handle itself */
80 HANDLE ev_to_main; /* event used to signal main thread */
81 HANDLE ev_from_main; /* event used to signal back to us */
82 int moribund; /* are we going to kill this soon? */
83 int done; /* request subthread to terminate */
84 int defunct; /* has the subthread already gone? */
85 int busy; /* operation currently in progress? */
86 void *privdata; /* for client to remember who they are */
87
88 /*
89 * Data set at initialisation and then read-only.
90 */
91 int flags;
92
93 /*
94 * Data set by the input thread before signalling ev_to_main,
95 * and read by the main thread after receiving that signal.
96 */
97 char buffer[4096]; /* the data read from the handle */
98 DWORD len; /* how much data that was */
99 int readerr; /* lets us know about read errors */
100
101 /*
102 * Callback function called by this module when data arrives on
103 * an input handle.
104 */
105 handle_inputfn_t gotdata;
106 };
107
108 /*
109 * The actual thread procedure for an input thread.
110 */
111 static DWORD WINAPI handle_input_threadfunc(void *param)
112 {
113 struct handle_input *ctx = (struct handle_input *) param;
114 OVERLAPPED ovl, *povl;
115 HANDLE oev;
116 int readret, readlen;
117
118 if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
119 povl = &ovl;
120 oev = CreateEvent(NULL, TRUE, FALSE, NULL);
121 } else {
122 povl = NULL;
123 }
124
125 if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
126 readlen = 1;
127 else
128 readlen = sizeof(ctx->buffer);
129
130 while (1) {
131 if (povl) {
132 memset(povl, 0, sizeof(OVERLAPPED));
133 povl->hEvent = oev;
134 }
135 readret = ReadFile(ctx->h, ctx->buffer,readlen, &ctx->len, povl);
136 if (!readret)
137 ctx->readerr = GetLastError();
138 else
139 ctx->readerr = 0;
140 if (povl && !readret && ctx->readerr == ERROR_IO_PENDING) {
141 WaitForSingleObject(povl->hEvent, INFINITE);
142 readret = GetOverlappedResult(ctx->h, povl, &ctx->len, FALSE);
143 if (!readret)
144 ctx->readerr = GetLastError();
145 else
146 ctx->readerr = 0;
147 }
148
149 if (!readret) {
150 /*
151 * Windows apparently sends ERROR_BROKEN_PIPE when a
152 * pipe we're reading from is closed normally from the
153 * writing end. This is ludicrous; if that situation
154 * isn't a natural EOF, _nothing_ is. So if we get that
155 * particular error, we pretend it's EOF.
156 */
157 if (ctx->readerr == ERROR_BROKEN_PIPE)
158 ctx->readerr = 0;
159 ctx->len = 0;
160 }
161
162 if (readret && ctx->len == 0 &&
163 (ctx->flags & HANDLE_FLAG_IGNOREEOF))
164 continue;
165
166 SetEvent(ctx->ev_to_main);
167
168 if (!ctx->len)
169 break;
170
171 WaitForSingleObject(ctx->ev_from_main, INFINITE);
172 if (ctx->done)
173 break; /* main thread told us to shut down */
174 }
175
176 if (povl)
177 CloseHandle(oev);
178
179 return 0;
180 }
181
182 /*
183 * This is called after a succcessful read, or from the
184 * `unthrottle' function. It decides whether or not to begin a new
185 * read operation.
186 */
187 static void handle_throttle(struct handle_input *ctx, int backlog)
188 {
189 if (ctx->defunct)
190 return;
191
192 /*
193 * If there's a read operation already in progress, do nothing:
194 * when that completes, we'll come back here and be in a
195 * position to make a better decision.
196 */
197 if (ctx->busy)
198 return;
199
200 /*
201 * Otherwise, we must decide whether to start a new read based
202 * on the size of the backlog.
203 */
204 if (backlog < MAX_BACKLOG) {
205 SetEvent(ctx->ev_from_main);
206 ctx->busy = TRUE;
207 }
208 }
209
210 /* ----------------------------------------------------------------------
211 * Output threads.
212 */
213
214 /*
215 * Data required by an output thread.
216 */
217 struct handle_output {
218 /*
219 * Copy of the handle_generic structure.
220 */
221 HANDLE h; /* the handle itself */
222 HANDLE ev_to_main; /* event used to signal main thread */
223 HANDLE ev_from_main; /* event used to signal back to us */
224 int moribund; /* are we going to kill this soon? */
225 int done; /* request subthread to terminate */
226 int defunct; /* has the subthread already gone? */
227 int busy; /* operation currently in progress? */
228 void *privdata; /* for client to remember who they are */
229
230 /*
231 * Data set at initialisation and then read-only.
232 */
233 int flags;
234
235 /*
236 * Data set by the main thread before signalling ev_from_main,
237 * and read by the input thread after receiving that signal.
238 */
239 char *buffer; /* the data to write */
240 DWORD len; /* how much data there is */
241
242 /*
243 * Data set by the input thread before signalling ev_to_main,
244 * and read by the main thread after receiving that signal.
245 */
246 DWORD lenwritten; /* how much data we actually wrote */
247 int writeerr; /* return value from WriteFile */
248
249 /*
250 * Data only ever read or written by the main thread.
251 */
252 bufchain queued_data; /* data still waiting to be written */
253
254 /*
255 * Callback function called when the backlog in the bufchain
256 * drops.
257 */
258 handle_outputfn_t sentdata;
259 };
260
261 static DWORD WINAPI handle_output_threadfunc(void *param)
262 {
263 struct handle_output *ctx = (struct handle_output *) param;
264 OVERLAPPED ovl, *povl;
265 int writeret;
266
267 if (ctx->flags & HANDLE_FLAG_OVERLAPPED)
268 povl = &ovl;
269 else
270 povl = NULL;
271
272 while (1) {
273 WaitForSingleObject(ctx->ev_from_main, INFINITE);
274 if (ctx->done) {
275 SetEvent(ctx->ev_to_main);
276 break;
277 }
278 if (povl)
279 memset(povl, 0, sizeof(OVERLAPPED));
280 writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
281 &ctx->lenwritten, povl);
282 if (!writeret)
283 ctx->writeerr = GetLastError();
284 else
285 ctx->writeerr = 0;
286 if (povl && !writeret && GetLastError() == ERROR_IO_PENDING) {
287 writeret = GetOverlappedResult(ctx->h, povl,
288 &ctx->lenwritten, TRUE);
289 if (!writeret)
290 ctx->writeerr = GetLastError();
291 else
292 ctx->writeerr = 0;
293 }
294
295 SetEvent(ctx->ev_to_main);
296 if (!writeret)
297 break;
298 }
299
300 return 0;
301 }
302
303 static void handle_try_output(struct handle_output *ctx)
304 {
305 void *senddata;
306 int sendlen;
307
308 if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
309 bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
310 ctx->buffer = senddata;
311 ctx->len = sendlen;
312 SetEvent(ctx->ev_from_main);
313 ctx->busy = TRUE;
314 }
315 }
316
317 /* ----------------------------------------------------------------------
318 * Unified code handling both input and output threads.
319 */
320
321 struct handle {
322 int output;
323 union {
324 struct handle_generic g;
325 struct handle_input i;
326 struct handle_output o;
327 } u;
328 };
329
330 static tree234 *handles_by_evtomain;
331
332 static int handle_cmp_evtomain(void *av, void *bv)
333 {
334 struct handle *a = (struct handle *)av;
335 struct handle *b = (struct handle *)bv;
336
337 if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
338 return -1;
339 else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
340 return +1;
341 else
342 return 0;
343 }
344
345 static int handle_find_evtomain(void *av, void *bv)
346 {
347 HANDLE *a = (HANDLE *)av;
348 struct handle *b = (struct handle *)bv;
349
350 if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
351 return -1;
352 else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
353 return +1;
354 else
355 return 0;
356 }
357
358 struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
359 void *privdata, int flags)
360 {
361 struct handle *h = snew(struct handle);
362 DWORD in_threadid; /* required for Win9x */
363
364 h->output = FALSE;
365 h->u.i.h = handle;
366 h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
367 h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
368 h->u.i.gotdata = gotdata;
369 h->u.i.defunct = FALSE;
370 h->u.i.moribund = FALSE;
371 h->u.i.done = FALSE;
372 h->u.i.privdata = privdata;
373 h->u.i.flags = flags;
374
375 if (!handles_by_evtomain)
376 handles_by_evtomain = newtree234(handle_cmp_evtomain);
377 add234(handles_by_evtomain, h);
378
379 CreateThread(NULL, 0, handle_input_threadfunc,
380 &h->u.i, 0, &in_threadid);
381 h->u.i.busy = TRUE;
382
383 return h;
384 }
385
386 struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
387 void *privdata, int flags)
388 {
389 struct handle *h = snew(struct handle);
390 DWORD out_threadid; /* required for Win9x */
391
392 h->output = TRUE;
393 h->u.o.h = handle;
394 h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
395 h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
396 h->u.o.busy = FALSE;
397 h->u.o.defunct = FALSE;
398 h->u.o.moribund = FALSE;
399 h->u.o.done = FALSE;
400 h->u.o.privdata = privdata;
401 bufchain_init(&h->u.o.queued_data);
402 h->u.o.sentdata = sentdata;
403 h->u.o.flags = flags;
404
405 if (!handles_by_evtomain)
406 handles_by_evtomain = newtree234(handle_cmp_evtomain);
407 add234(handles_by_evtomain, h);
408
409 CreateThread(NULL, 0, handle_output_threadfunc,
410 &h->u.i, 0, &out_threadid);
411
412 return h;
413 }
414
415 int handle_write(struct handle *h, const void *data, int len)
416 {
417 assert(h->output);
418 bufchain_add(&h->u.o.queued_data, data, len);
419 handle_try_output(&h->u.o);
420 return bufchain_size(&h->u.o.queued_data);
421 }
422
423 HANDLE *handle_get_events(int *nevents)
424 {
425 HANDLE *ret;
426 struct handle *h;
427 int i, n, size;
428
429 /*
430 * Go through our tree counting the handle objects currently
431 * engaged in useful activity.
432 */
433 ret = NULL;
434 n = size = 0;
435 if (handles_by_evtomain) {
436 for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
437 if (h->u.g.busy) {
438 if (n >= size) {
439 size += 32;
440 ret = sresize(ret, size, HANDLE);
441 }
442 ret[n++] = h->u.g.ev_to_main;
443 }
444 }
445 }
446
447 *nevents = n;
448 return ret;
449 }
450
451 static void handle_destroy(struct handle *h)
452 {
453 if (h->output)
454 bufchain_clear(&h->u.o.queued_data);
455 CloseHandle(h->u.g.ev_from_main);
456 CloseHandle(h->u.g.ev_to_main);
457 del234(handles_by_evtomain, h);
458 sfree(h);
459 }
460
461 void handle_free(struct handle *h)
462 {
463 /*
464 * If the handle is currently busy, we cannot immediately free
465 * it. Instead we must wait until it's finished its current
466 * operation, because otherwise the subthread will write to
467 * invalid memory after we free its context from under it.
468 */
469 assert(h && !h->u.g.moribund);
470 if (h->u.g.busy) {
471 /*
472 * Just set the moribund flag, which will be noticed next
473 * time an operation completes.
474 */
475 h->u.g.moribund = TRUE;
476 } else if (h->u.g.defunct) {
477 /*
478 * There isn't even a subthread; we can go straight to
479 * handle_destroy.
480 */
481 handle_destroy(h);
482 } else {
483 /*
484 * The subthread is alive but not busy, so we now signal it
485 * to die. Set the moribund flag to indicate that it will
486 * want destroying after that.
487 */
488 h->u.g.moribund = TRUE;
489 h->u.g.done = TRUE;
490 h->u.g.busy = TRUE;
491 SetEvent(h->u.g.ev_from_main);
492 }
493 }
494
495 void handle_got_event(HANDLE event)
496 {
497 struct handle *h;
498
499 assert(handles_by_evtomain);
500 h = find234(handles_by_evtomain, &event, handle_find_evtomain);
501 if (!h) {
502 /*
503 * This isn't an error condition. If two or more event
504 * objects were signalled during the same select operation,
505 * and processing of the first caused the second handle to
506 * be closed, then it will sometimes happen that we receive
507 * an event notification here for a handle which is already
508 * deceased. In that situation we simply do nothing.
509 */
510 return;
511 }
512
513 if (h->u.g.moribund) {
514 /*
515 * A moribund handle is already treated as dead from the
516 * external user's point of view, so do nothing with the
517 * actual event. Just signal the thread to die if
518 * necessary, or destroy the handle if not.
519 */
520 if (h->u.g.done) {
521 handle_destroy(h);
522 } else {
523 h->u.g.done = TRUE;
524 h->u.g.busy = TRUE;
525 SetEvent(h->u.g.ev_from_main);
526 }
527 return;
528 }
529
530 if (!h->output) {
531 int backlog;
532
533 h->u.i.busy = FALSE;
534
535 /*
536 * A signal on an input handle means data has arrived.
537 */
538 if (h->u.i.len == 0) {
539 /*
540 * EOF, or (nearly equivalently) read error.
541 */
542 h->u.i.gotdata(h, NULL, -h->u.i.readerr);
543 h->u.i.defunct = TRUE;
544 } else {
545 backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
546 handle_throttle(&h->u.i, backlog);
547 }
548 } else {
549 h->u.o.busy = FALSE;
550
551 /*
552 * A signal on an output handle means we have completed a
553 * write. Call the callback to indicate that the output
554 * buffer size has decreased, or to indicate an error.
555 */
556 if (h->u.o.writeerr) {
557 /*
558 * Write error. Send a negative value to the callback,
559 * and mark the thread as defunct (because the output
560 * thread is terminating by now).
561 */
562 h->u.o.sentdata(h, -h->u.o.writeerr);
563 h->u.o.defunct = TRUE;
564 } else {
565 bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
566 h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
567 handle_try_output(&h->u.o);
568 }
569 }
570 }
571
572 void handle_unthrottle(struct handle *h, int backlog)
573 {
574 assert(!h->output);
575 handle_throttle(&h->u.i, backlog);
576 }
577
578 int handle_backlog(struct handle *h)
579 {
580 assert(h->output);
581 return bufchain_size(&h->u.o.queued_data);
582 }
583
584 void *handle_get_privdata(struct handle *h)
585 {
586 return h->u.g.privdata;
587 }