Avoid trying to take the modular inverse of zero in response to a
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 smemclr(b, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180 }
181
182 /*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187 static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189 {
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198 }
199
200 /*
201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 *
205 * 'scratch' must point to an array of BignumInt of size at least
206 * mul_compute_scratch(len). (This covers the needs of internal_mul
207 * and all its recursive calls to itself.)
208 */
209 #define KARATSUBA_THRESHOLD 50
210 static int mul_compute_scratch(int len)
211 {
212 int ret = 0;
213 while (len > KARATSUBA_THRESHOLD) {
214 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
215 int midlen = botlen + 1;
216 ret += 4*midlen;
217 len = midlen;
218 }
219 return ret;
220 }
221 static void internal_mul(const BignumInt *a, const BignumInt *b,
222 BignumInt *c, int len, BignumInt *scratch)
223 {
224 if (len > KARATSUBA_THRESHOLD) {
225 int i;
226
227 /*
228 * Karatsuba divide-and-conquer algorithm. Cut each input in
229 * half, so that it's expressed as two big 'digits' in a giant
230 * base D:
231 *
232 * a = a_1 D + a_0
233 * b = b_1 D + b_0
234 *
235 * Then the product is of course
236 *
237 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
238 *
239 * and we compute the three coefficients by recursively
240 * calling ourself to do half-length multiplications.
241 *
242 * The clever bit that makes this worth doing is that we only
243 * need _one_ half-length multiplication for the central
244 * coefficient rather than the two that it obviouly looks
245 * like, because we can use a single multiplication to compute
246 *
247 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
248 *
249 * and then we subtract the other two coefficients (a_1 b_1
250 * and a_0 b_0) which we were computing anyway.
251 *
252 * Hence we get to multiply two numbers of length N in about
253 * three times as much work as it takes to multiply numbers of
254 * length N/2, which is obviously better than the four times
255 * as much work it would take if we just did a long
256 * conventional multiply.
257 */
258
259 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
260 int midlen = botlen + 1;
261 BignumDblInt carry;
262 #ifdef KARA_DEBUG
263 int i;
264 #endif
265
266 /*
267 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
268 * in the output array, so we can compute them immediately in
269 * place.
270 */
271
272 #ifdef KARA_DEBUG
273 printf("a1,a0 = 0x");
274 for (i = 0; i < len; i++) {
275 if (i == toplen) printf(", 0x");
276 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
277 }
278 printf("\n");
279 printf("b1,b0 = 0x");
280 for (i = 0; i < len; i++) {
281 if (i == toplen) printf(", 0x");
282 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
283 }
284 printf("\n");
285 #endif
286
287 /* a_1 b_1 */
288 internal_mul(a, b, c, toplen, scratch);
289 #ifdef KARA_DEBUG
290 printf("a1b1 = 0x");
291 for (i = 0; i < 2*toplen; i++) {
292 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
293 }
294 printf("\n");
295 #endif
296
297 /* a_0 b_0 */
298 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
299 #ifdef KARA_DEBUG
300 printf("a0b0 = 0x");
301 for (i = 0; i < 2*botlen; i++) {
302 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
303 }
304 printf("\n");
305 #endif
306
307 /* Zero padding. midlen exceeds toplen by at most 2, so just
308 * zero the first two words of each input and the rest will be
309 * copied over. */
310 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
311
312 for (i = 0; i < toplen; i++) {
313 scratch[midlen - toplen + i] = a[i]; /* a_1 */
314 scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
315 }
316
317 /* compute a_1 + a_0 */
318 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
319 #ifdef KARA_DEBUG
320 printf("a1plusa0 = 0x");
321 for (i = 0; i < midlen; i++) {
322 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
323 }
324 printf("\n");
325 #endif
326 /* compute b_1 + b_0 */
327 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
328 scratch+midlen+1, botlen);
329 #ifdef KARA_DEBUG
330 printf("b1plusb0 = 0x");
331 for (i = 0; i < midlen; i++) {
332 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
333 }
334 printf("\n");
335 #endif
336
337 /*
338 * Now we can do the third multiplication.
339 */
340 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
341 scratch + 4*midlen);
342 #ifdef KARA_DEBUG
343 printf("a1plusa0timesb1plusb0 = 0x");
344 for (i = 0; i < 2*midlen; i++) {
345 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
346 }
347 printf("\n");
348 #endif
349
350 /*
351 * Now we can reuse the first half of 'scratch' to compute the
352 * sum of the outer two coefficients, to subtract from that
353 * product to obtain the middle one.
354 */
355 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
356 for (i = 0; i < 2*toplen; i++)
357 scratch[2*midlen - 2*toplen + i] = c[i];
358 scratch[1] = internal_add(scratch+2, c + 2*toplen,
359 scratch+2, 2*botlen);
360 #ifdef KARA_DEBUG
361 printf("a1b1plusa0b0 = 0x");
362 for (i = 0; i < 2*midlen; i++) {
363 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
364 }
365 printf("\n");
366 #endif
367
368 internal_sub(scratch + 2*midlen, scratch,
369 scratch + 2*midlen, 2*midlen);
370 #ifdef KARA_DEBUG
371 printf("a1b0plusa0b1 = 0x");
372 for (i = 0; i < 2*midlen; i++) {
373 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
374 }
375 printf("\n");
376 #endif
377
378 /*
379 * And now all we need to do is to add that middle coefficient
380 * back into the output. We may have to propagate a carry
381 * further up the output, but we can be sure it won't
382 * propagate right the way off the top.
383 */
384 carry = internal_add(c + 2*len - botlen - 2*midlen,
385 scratch + 2*midlen,
386 c + 2*len - botlen - 2*midlen, 2*midlen);
387 i = 2*len - botlen - 2*midlen - 1;
388 while (carry) {
389 assert(i >= 0);
390 carry += c[i];
391 c[i] = (BignumInt)carry;
392 carry >>= BIGNUM_INT_BITS;
393 i--;
394 }
395 #ifdef KARA_DEBUG
396 printf("ab = 0x");
397 for (i = 0; i < 2*len; i++) {
398 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
399 }
400 printf("\n");
401 #endif
402
403 } else {
404 int i;
405 BignumInt carry;
406 BignumDblInt t;
407 const BignumInt *ap, *bp;
408 BignumInt *cp, *cps;
409
410 /*
411 * Multiply in the ordinary O(N^2) way.
412 */
413
414 for (i = 0; i < 2 * len; i++)
415 c[i] = 0;
416
417 for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
418 carry = 0;
419 for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
420 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
421 *cp = (BignumInt) t;
422 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
423 }
424 *cp = carry;
425 }
426 }
427 }
428
429 /*
430 * Variant form of internal_mul used for the initial step of
431 * Montgomery reduction. Only bothers outputting 'len' words
432 * (everything above that is thrown away).
433 */
434 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
435 BignumInt *c, int len, BignumInt *scratch)
436 {
437 if (len > KARATSUBA_THRESHOLD) {
438 int i;
439
440 /*
441 * Karatsuba-aware version of internal_mul_low. As before, we
442 * express each input value as a shifted combination of two
443 * halves:
444 *
445 * a = a_1 D + a_0
446 * b = b_1 D + b_0
447 *
448 * Then the full product is, as before,
449 *
450 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
451 *
452 * Provided we choose D on the large side (so that a_0 and b_0
453 * are _at least_ as long as a_1 and b_1), we don't need the
454 * topmost term at all, and we only need half of the middle
455 * term. So there's no point in doing the proper Karatsuba
456 * optimisation which computes the middle term using the top
457 * one, because we'd take as long computing the top one as
458 * just computing the middle one directly.
459 *
460 * So instead, we do a much more obvious thing: we call the
461 * fully optimised internal_mul to compute a_0 b_0, and we
462 * recursively call ourself to compute the _bottom halves_ of
463 * a_1 b_0 and a_0 b_1, each of which we add into the result
464 * in the obvious way.
465 *
466 * In other words, there's no actual Karatsuba _optimisation_
467 * in this function; the only benefit in doing it this way is
468 * that we call internal_mul proper for a large part of the
469 * work, and _that_ can optimise its operation.
470 */
471
472 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
473
474 /*
475 * Scratch space for the various bits and pieces we're going
476 * to be adding together: we need botlen*2 words for a_0 b_0
477 * (though we may end up throwing away its topmost word), and
478 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
479 * to exactly 2*len.
480 */
481
482 /* a_0 b_0 */
483 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
484 scratch + 2*len);
485
486 /* a_1 b_0 */
487 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
488 scratch + 2*len);
489
490 /* a_0 b_1 */
491 internal_mul_low(a + len - toplen, b, scratch, toplen,
492 scratch + 2*len);
493
494 /* Copy the bottom half of the big coefficient into place */
495 for (i = 0; i < botlen; i++)
496 c[toplen + i] = scratch[2*toplen + botlen + i];
497
498 /* Add the two small coefficients, throwing away the returned carry */
499 internal_add(scratch, scratch + toplen, scratch, toplen);
500
501 /* And add that to the large coefficient, leaving the result in c. */
502 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
503 c, toplen);
504
505 } else {
506 int i;
507 BignumInt carry;
508 BignumDblInt t;
509 const BignumInt *ap, *bp;
510 BignumInt *cp, *cps;
511
512 /*
513 * Multiply in the ordinary O(N^2) way.
514 */
515
516 for (i = 0; i < len; i++)
517 c[i] = 0;
518
519 for (cps = c + len, ap = a + len; ap-- > a; cps--) {
520 carry = 0;
521 for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
522 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
523 *cp = (BignumInt) t;
524 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
525 }
526 }
527 }
528 }
529
530 /*
531 * Montgomery reduction. Expects x to be a big-endian array of 2*len
532 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
533 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
534 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
535 * x' < n.
536 *
537 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
538 * each, containing respectively n and the multiplicative inverse of
539 * -n mod r.
540 *
541 * 'tmp' is an array of BignumInt used as scratch space, of length at
542 * least 3*len + mul_compute_scratch(len).
543 */
544 static void monty_reduce(BignumInt *x, const BignumInt *n,
545 const BignumInt *mninv, BignumInt *tmp, int len)
546 {
547 int i;
548 BignumInt carry;
549
550 /*
551 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
552 * that mn is congruent to -x mod r. Hence, mn+x is an exact
553 * multiple of r, and is also (obviously) congruent to x mod n.
554 */
555 internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
556
557 /*
558 * Compute t = (mn+x)/r in ordinary, non-modular, integer
559 * arithmetic. By construction this is exact, and is congruent mod
560 * n to x * r^{-1}, i.e. the answer we want.
561 *
562 * The following multiply leaves that answer in the _most_
563 * significant half of the 'x' array, so then we must shift it
564 * down.
565 */
566 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
567 carry = internal_add(x, tmp+len, x, 2*len);
568 for (i = 0; i < len; i++)
569 x[len + i] = x[i], x[i] = 0;
570
571 /*
572 * Reduce t mod n. This doesn't require a full-on division by n,
573 * but merely a test and single optional subtraction, since we can
574 * show that 0 <= t < 2n.
575 *
576 * Proof:
577 * + we computed m mod r, so 0 <= m < r.
578 * + so 0 <= mn < rn, obviously
579 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
580 * + yielding 0 <= (mn+x)/r < 2n as required.
581 */
582 if (!carry) {
583 for (i = 0; i < len; i++)
584 if (x[len + i] != n[i])
585 break;
586 }
587 if (carry || i >= len || x[len + i] > n[i])
588 internal_sub(x+len, n, x+len, len);
589 }
590
591 static void internal_add_shifted(BignumInt *number,
592 unsigned n, int shift)
593 {
594 int word = 1 + (shift / BIGNUM_INT_BITS);
595 int bshift = shift % BIGNUM_INT_BITS;
596 BignumDblInt addend;
597
598 addend = (BignumDblInt)n << bshift;
599
600 while (addend) {
601 addend += number[word];
602 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
603 addend >>= BIGNUM_INT_BITS;
604 word++;
605 }
606 }
607
608 /*
609 * Compute a = a % m.
610 * Input in first alen words of a and first mlen words of m.
611 * Output in first alen words of a
612 * (of which first alen-mlen words will be zero).
613 * The MSW of m MUST have its high bit set.
614 * Quotient is accumulated in the `quotient' array, which is a Bignum
615 * rather than the internal bigendian format. Quotient parts are shifted
616 * left by `qshift' before adding into quot.
617 */
618 static void internal_mod(BignumInt *a, int alen,
619 BignumInt *m, int mlen,
620 BignumInt *quot, int qshift)
621 {
622 BignumInt m0, m1;
623 unsigned int h;
624 int i, k;
625
626 m0 = m[0];
627 assert(m0 >> (BIGNUM_INT_BITS-1) == 1);
628 if (mlen > 1)
629 m1 = m[1];
630 else
631 m1 = 0;
632
633 for (i = 0; i <= alen - mlen; i++) {
634 BignumDblInt t;
635 unsigned int q, r, c, ai1;
636
637 if (i == 0) {
638 h = 0;
639 } else {
640 h = a[i - 1];
641 a[i - 1] = 0;
642 }
643
644 if (i == alen - 1)
645 ai1 = 0;
646 else
647 ai1 = a[i + 1];
648
649 /* Find q = h:a[i] / m0 */
650 if (h >= m0) {
651 /*
652 * Special case.
653 *
654 * To illustrate it, suppose a BignumInt is 8 bits, and
655 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
656 * our initial division will be 0xA123 / 0xA1, which
657 * will give a quotient of 0x100 and a divide overflow.
658 * However, the invariants in this division algorithm
659 * are not violated, since the full number A1:23:... is
660 * _less_ than the quotient prefix A1:B2:... and so the
661 * following correction loop would have sorted it out.
662 *
663 * In this situation we set q to be the largest
664 * quotient we _can_ stomach (0xFF, of course).
665 */
666 q = BIGNUM_INT_MASK;
667 } else {
668 /* Macro doesn't want an array subscript expression passed
669 * into it (see definition), so use a temporary. */
670 BignumInt tmplo = a[i];
671 DIVMOD_WORD(q, r, h, tmplo, m0);
672
673 /* Refine our estimate of q by looking at
674 h:a[i]:a[i+1] / m0:m1 */
675 t = MUL_WORD(m1, q);
676 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
677 q--;
678 t -= m1;
679 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
680 if (r >= (BignumDblInt) m0 &&
681 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
682 }
683 }
684
685 /* Subtract q * m from a[i...] */
686 c = 0;
687 for (k = mlen - 1; k >= 0; k--) {
688 t = MUL_WORD(q, m[k]);
689 t += c;
690 c = (unsigned)(t >> BIGNUM_INT_BITS);
691 if ((BignumInt) t > a[i + k])
692 c++;
693 a[i + k] -= (BignumInt) t;
694 }
695
696 /* Add back m in case of borrow */
697 if (c != h) {
698 t = 0;
699 for (k = mlen - 1; k >= 0; k--) {
700 t += m[k];
701 t += a[i + k];
702 a[i + k] = (BignumInt) t;
703 t = t >> BIGNUM_INT_BITS;
704 }
705 q--;
706 }
707 if (quot)
708 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
709 }
710 }
711
712 /*
713 * Compute (base ^ exp) % mod, the pedestrian way.
714 */
715 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
716 {
717 BignumInt *a, *b, *n, *m, *scratch;
718 int mshift;
719 int mlen, scratchlen, i, j;
720 Bignum base, result;
721
722 /*
723 * The most significant word of mod needs to be non-zero. It
724 * should already be, but let's make sure.
725 */
726 assert(mod[mod[0]] != 0);
727
728 /*
729 * Make sure the base is smaller than the modulus, by reducing
730 * it modulo the modulus if not.
731 */
732 base = bigmod(base_in, mod);
733
734 /* Allocate m of size mlen, copy mod to m */
735 /* We use big endian internally */
736 mlen = mod[0];
737 m = snewn(mlen, BignumInt);
738 for (j = 0; j < mlen; j++)
739 m[j] = mod[mod[0] - j];
740
741 /* Shift m left to make msb bit set */
742 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
743 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
744 break;
745 if (mshift) {
746 for (i = 0; i < mlen - 1; i++)
747 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
748 m[mlen - 1] = m[mlen - 1] << mshift;
749 }
750
751 /* Allocate n of size mlen, copy base to n */
752 n = snewn(mlen, BignumInt);
753 i = mlen - base[0];
754 for (j = 0; j < i; j++)
755 n[j] = 0;
756 for (j = 0; j < (int)base[0]; j++)
757 n[i + j] = base[base[0] - j];
758
759 /* Allocate a and b of size 2*mlen. Set a = 1 */
760 a = snewn(2 * mlen, BignumInt);
761 b = snewn(2 * mlen, BignumInt);
762 for (i = 0; i < 2 * mlen; i++)
763 a[i] = 0;
764 a[2 * mlen - 1] = 1;
765
766 /* Scratch space for multiplies */
767 scratchlen = mul_compute_scratch(mlen);
768 scratch = snewn(scratchlen, BignumInt);
769
770 /* Skip leading zero bits of exp. */
771 i = 0;
772 j = BIGNUM_INT_BITS-1;
773 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
774 j--;
775 if (j < 0) {
776 i++;
777 j = BIGNUM_INT_BITS-1;
778 }
779 }
780
781 /* Main computation */
782 while (i < (int)exp[0]) {
783 while (j >= 0) {
784 internal_mul(a + mlen, a + mlen, b, mlen, scratch);
785 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
786 if ((exp[exp[0] - i] & (1 << j)) != 0) {
787 internal_mul(b + mlen, n, a, mlen, scratch);
788 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
789 } else {
790 BignumInt *t;
791 t = a;
792 a = b;
793 b = t;
794 }
795 j--;
796 }
797 i++;
798 j = BIGNUM_INT_BITS-1;
799 }
800
801 /* Fixup result in case the modulus was shifted */
802 if (mshift) {
803 for (i = mlen - 1; i < 2 * mlen - 1; i++)
804 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
805 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
806 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
807 for (i = 2 * mlen - 1; i >= mlen; i--)
808 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
809 }
810
811 /* Copy result to buffer */
812 result = newbn(mod[0]);
813 for (i = 0; i < mlen; i++)
814 result[result[0] - i] = a[i + mlen];
815 while (result[0] > 1 && result[result[0]] == 0)
816 result[0]--;
817
818 /* Free temporary arrays */
819 smemclr(a, 2 * mlen * sizeof(*a));
820 sfree(a);
821 smemclr(scratch, scratchlen * sizeof(*scratch));
822 sfree(scratch);
823 smemclr(b, 2 * mlen * sizeof(*b));
824 sfree(b);
825 smemclr(m, mlen * sizeof(*m));
826 sfree(m);
827 smemclr(n, mlen * sizeof(*n));
828 sfree(n);
829
830 freebn(base);
831
832 return result;
833 }
834
835 /*
836 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
837 * technique where possible, falling back to modpow_simple otherwise.
838 */
839 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
840 {
841 BignumInt *a, *b, *x, *n, *mninv, *scratch;
842 int len, scratchlen, i, j;
843 Bignum base, base2, r, rn, inv, result;
844
845 /*
846 * The most significant word of mod needs to be non-zero. It
847 * should already be, but let's make sure.
848 */
849 assert(mod[mod[0]] != 0);
850
851 /*
852 * mod had better be odd, or we can't do Montgomery multiplication
853 * using a power of two at all.
854 */
855 if (!(mod[1] & 1))
856 return modpow_simple(base_in, exp, mod);
857
858 /*
859 * Make sure the base is smaller than the modulus, by reducing
860 * it modulo the modulus if not.
861 */
862 base = bigmod(base_in, mod);
863
864 /*
865 * Compute the inverse of n mod r, for monty_reduce. (In fact we
866 * want the inverse of _minus_ n mod r, but we'll sort that out
867 * below.)
868 */
869 len = mod[0];
870 r = bn_power_2(BIGNUM_INT_BITS * len);
871 inv = modinv(mod, r);
872
873 /*
874 * Multiply the base by r mod n, to get it into Montgomery
875 * representation.
876 */
877 base2 = modmul(base, r, mod);
878 freebn(base);
879 base = base2;
880
881 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
882
883 freebn(r); /* won't need this any more */
884
885 /*
886 * Set up internal arrays of the right lengths, in big-endian
887 * format, containing the base, the modulus, and the modulus's
888 * inverse.
889 */
890 n = snewn(len, BignumInt);
891 for (j = 0; j < len; j++)
892 n[len - 1 - j] = mod[j + 1];
893
894 mninv = snewn(len, BignumInt);
895 for (j = 0; j < len; j++)
896 mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
897 freebn(inv); /* we don't need this copy of it any more */
898 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
899 x = snewn(len, BignumInt);
900 for (j = 0; j < len; j++)
901 x[j] = 0;
902 internal_sub(x, mninv, mninv, len);
903
904 /* x = snewn(len, BignumInt); */ /* already done above */
905 for (j = 0; j < len; j++)
906 x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
907 freebn(base); /* we don't need this copy of it any more */
908
909 a = snewn(2*len, BignumInt);
910 b = snewn(2*len, BignumInt);
911 for (j = 0; j < len; j++)
912 a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
913 freebn(rn);
914
915 /* Scratch space for multiplies */
916 scratchlen = 3*len + mul_compute_scratch(len);
917 scratch = snewn(scratchlen, BignumInt);
918
919 /* Skip leading zero bits of exp. */
920 i = 0;
921 j = BIGNUM_INT_BITS-1;
922 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
923 j--;
924 if (j < 0) {
925 i++;
926 j = BIGNUM_INT_BITS-1;
927 }
928 }
929
930 /* Main computation */
931 while (i < (int)exp[0]) {
932 while (j >= 0) {
933 internal_mul(a + len, a + len, b, len, scratch);
934 monty_reduce(b, n, mninv, scratch, len);
935 if ((exp[exp[0] - i] & (1 << j)) != 0) {
936 internal_mul(b + len, x, a, len, scratch);
937 monty_reduce(a, n, mninv, scratch, len);
938 } else {
939 BignumInt *t;
940 t = a;
941 a = b;
942 b = t;
943 }
944 j--;
945 }
946 i++;
947 j = BIGNUM_INT_BITS-1;
948 }
949
950 /*
951 * Final monty_reduce to get back from the adjusted Montgomery
952 * representation.
953 */
954 monty_reduce(a, n, mninv, scratch, len);
955
956 /* Copy result to buffer */
957 result = newbn(mod[0]);
958 for (i = 0; i < len; i++)
959 result[result[0] - i] = a[i + len];
960 while (result[0] > 1 && result[result[0]] == 0)
961 result[0]--;
962
963 /* Free temporary arrays */
964 smemclr(scratch, scratchlen * sizeof(*scratch));
965 sfree(scratch);
966 smemclr(a, 2 * len * sizeof(*a));
967 sfree(a);
968 smemclr(b, 2 * len * sizeof(*b));
969 sfree(b);
970 smemclr(mninv, len * sizeof(*mninv));
971 sfree(mninv);
972 smemclr(n, len * sizeof(*n));
973 sfree(n);
974 smemclr(x, len * sizeof(*x));
975 sfree(x);
976
977 return result;
978 }
979
980 /*
981 * Compute (p * q) % mod.
982 * The most significant word of mod MUST be non-zero.
983 * We assume that the result array is the same size as the mod array.
984 */
985 Bignum modmul(Bignum p, Bignum q, Bignum mod)
986 {
987 BignumInt *a, *n, *m, *o, *scratch;
988 int mshift, scratchlen;
989 int pqlen, mlen, rlen, i, j;
990 Bignum result;
991
992 /*
993 * The most significant word of mod needs to be non-zero. It
994 * should already be, but let's make sure.
995 */
996 assert(mod[mod[0]] != 0);
997
998 /* Allocate m of size mlen, copy mod to m */
999 /* We use big endian internally */
1000 mlen = mod[0];
1001 m = snewn(mlen, BignumInt);
1002 for (j = 0; j < mlen; j++)
1003 m[j] = mod[mod[0] - j];
1004
1005 /* Shift m left to make msb bit set */
1006 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1007 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1008 break;
1009 if (mshift) {
1010 for (i = 0; i < mlen - 1; i++)
1011 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1012 m[mlen - 1] = m[mlen - 1] << mshift;
1013 }
1014
1015 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1016
1017 /*
1018 * Make sure that we're allowing enough space. The shifting below
1019 * will underflow the vectors we allocate if pqlen is too small.
1020 */
1021 if (2*pqlen <= mlen)
1022 pqlen = mlen/2 + 1;
1023
1024 /* Allocate n of size pqlen, copy p to n */
1025 n = snewn(pqlen, BignumInt);
1026 i = pqlen - p[0];
1027 for (j = 0; j < i; j++)
1028 n[j] = 0;
1029 for (j = 0; j < (int)p[0]; j++)
1030 n[i + j] = p[p[0] - j];
1031
1032 /* Allocate o of size pqlen, copy q to o */
1033 o = snewn(pqlen, BignumInt);
1034 i = pqlen - q[0];
1035 for (j = 0; j < i; j++)
1036 o[j] = 0;
1037 for (j = 0; j < (int)q[0]; j++)
1038 o[i + j] = q[q[0] - j];
1039
1040 /* Allocate a of size 2*pqlen for result */
1041 a = snewn(2 * pqlen, BignumInt);
1042
1043 /* Scratch space for multiplies */
1044 scratchlen = mul_compute_scratch(pqlen);
1045 scratch = snewn(scratchlen, BignumInt);
1046
1047 /* Main computation */
1048 internal_mul(n, o, a, pqlen, scratch);
1049 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1050
1051 /* Fixup result in case the modulus was shifted */
1052 if (mshift) {
1053 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
1054 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
1055 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
1056 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1057 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
1058 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
1059 }
1060
1061 /* Copy result to buffer */
1062 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
1063 result = newbn(rlen);
1064 for (i = 0; i < rlen; i++)
1065 result[result[0] - i] = a[i + 2 * pqlen - rlen];
1066 while (result[0] > 1 && result[result[0]] == 0)
1067 result[0]--;
1068
1069 /* Free temporary arrays */
1070 smemclr(scratch, scratchlen * sizeof(*scratch));
1071 sfree(scratch);
1072 smemclr(a, 2 * pqlen * sizeof(*a));
1073 sfree(a);
1074 smemclr(m, mlen * sizeof(*m));
1075 sfree(m);
1076 smemclr(n, pqlen * sizeof(*n));
1077 sfree(n);
1078 smemclr(o, pqlen * sizeof(*o));
1079 sfree(o);
1080
1081 return result;
1082 }
1083
1084 /*
1085 * Compute p % mod.
1086 * The most significant word of mod MUST be non-zero.
1087 * We assume that the result array is the same size as the mod array.
1088 * We optionally write out a quotient if `quotient' is non-NULL.
1089 * We can avoid writing out the result if `result' is NULL.
1090 */
1091 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1092 {
1093 BignumInt *n, *m;
1094 int mshift;
1095 int plen, mlen, i, j;
1096
1097 /*
1098 * The most significant word of mod needs to be non-zero. It
1099 * should already be, but let's make sure.
1100 */
1101 assert(mod[mod[0]] != 0);
1102
1103 /* Allocate m of size mlen, copy mod to m */
1104 /* We use big endian internally */
1105 mlen = mod[0];
1106 m = snewn(mlen, BignumInt);
1107 for (j = 0; j < mlen; j++)
1108 m[j] = mod[mod[0] - j];
1109
1110 /* Shift m left to make msb bit set */
1111 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1112 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1113 break;
1114 if (mshift) {
1115 for (i = 0; i < mlen - 1; i++)
1116 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1117 m[mlen - 1] = m[mlen - 1] << mshift;
1118 }
1119
1120 plen = p[0];
1121 /* Ensure plen > mlen */
1122 if (plen <= mlen)
1123 plen = mlen + 1;
1124
1125 /* Allocate n of size plen, copy p to n */
1126 n = snewn(plen, BignumInt);
1127 for (j = 0; j < plen; j++)
1128 n[j] = 0;
1129 for (j = 1; j <= (int)p[0]; j++)
1130 n[plen - j] = p[j];
1131
1132 /* Main computation */
1133 internal_mod(n, plen, m, mlen, quotient, mshift);
1134
1135 /* Fixup result in case the modulus was shifted */
1136 if (mshift) {
1137 for (i = plen - mlen - 1; i < plen - 1; i++)
1138 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
1139 n[plen - 1] = n[plen - 1] << mshift;
1140 internal_mod(n, plen, m, mlen, quotient, 0);
1141 for (i = plen - 1; i >= plen - mlen; i--)
1142 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
1143 }
1144
1145 /* Copy result to buffer */
1146 if (result) {
1147 for (i = 1; i <= (int)result[0]; i++) {
1148 int j = plen - i;
1149 result[i] = j >= 0 ? n[j] : 0;
1150 }
1151 }
1152
1153 /* Free temporary arrays */
1154 smemclr(m, mlen * sizeof(*m));
1155 sfree(m);
1156 smemclr(n, plen * sizeof(*n));
1157 sfree(n);
1158 }
1159
1160 /*
1161 * Decrement a number.
1162 */
1163 void decbn(Bignum bn)
1164 {
1165 int i = 1;
1166 while (i < (int)bn[0] && bn[i] == 0)
1167 bn[i++] = BIGNUM_INT_MASK;
1168 bn[i]--;
1169 }
1170
1171 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1172 {
1173 Bignum result;
1174 int w, i;
1175
1176 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1177
1178 result = newbn(w);
1179 for (i = 1; i <= w; i++)
1180 result[i] = 0;
1181 for (i = nbytes; i--;) {
1182 unsigned char byte = *data++;
1183 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1184 }
1185
1186 while (result[0] > 1 && result[result[0]] == 0)
1187 result[0]--;
1188 return result;
1189 }
1190
1191 /*
1192 * Read an SSH-1-format bignum from a data buffer. Return the number
1193 * of bytes consumed, or -1 if there wasn't enough data.
1194 */
1195 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1196 {
1197 const unsigned char *p = data;
1198 int i;
1199 int w, b;
1200
1201 if (len < 2)
1202 return -1;
1203
1204 w = 0;
1205 for (i = 0; i < 2; i++)
1206 w = (w << 8) + *p++;
1207 b = (w + 7) / 8; /* bits -> bytes */
1208
1209 if (len < b+2)
1210 return -1;
1211
1212 if (!result) /* just return length */
1213 return b + 2;
1214
1215 *result = bignum_from_bytes(p, b);
1216
1217 return p + b - data;
1218 }
1219
1220 /*
1221 * Return the bit count of a bignum, for SSH-1 encoding.
1222 */
1223 int bignum_bitcount(Bignum bn)
1224 {
1225 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1226 while (bitcount >= 0
1227 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1228 return bitcount + 1;
1229 }
1230
1231 /*
1232 * Return the byte length of a bignum when SSH-1 encoded.
1233 */
1234 int ssh1_bignum_length(Bignum bn)
1235 {
1236 return 2 + (bignum_bitcount(bn) + 7) / 8;
1237 }
1238
1239 /*
1240 * Return the byte length of a bignum when SSH-2 encoded.
1241 */
1242 int ssh2_bignum_length(Bignum bn)
1243 {
1244 return 4 + (bignum_bitcount(bn) + 8) / 8;
1245 }
1246
1247 /*
1248 * Return a byte from a bignum; 0 is least significant, etc.
1249 */
1250 int bignum_byte(Bignum bn, int i)
1251 {
1252 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1253 return 0; /* beyond the end */
1254 else
1255 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1256 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1257 }
1258
1259 /*
1260 * Return a bit from a bignum; 0 is least significant, etc.
1261 */
1262 int bignum_bit(Bignum bn, int i)
1263 {
1264 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1265 return 0; /* beyond the end */
1266 else
1267 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1268 }
1269
1270 /*
1271 * Set a bit in a bignum; 0 is least significant, etc.
1272 */
1273 void bignum_set_bit(Bignum bn, int bitnum, int value)
1274 {
1275 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1276 abort(); /* beyond the end */
1277 else {
1278 int v = bitnum / BIGNUM_INT_BITS + 1;
1279 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1280 if (value)
1281 bn[v] |= mask;
1282 else
1283 bn[v] &= ~mask;
1284 }
1285 }
1286
1287 /*
1288 * Write a SSH-1-format bignum into a buffer. It is assumed the
1289 * buffer is big enough. Returns the number of bytes used.
1290 */
1291 int ssh1_write_bignum(void *data, Bignum bn)
1292 {
1293 unsigned char *p = data;
1294 int len = ssh1_bignum_length(bn);
1295 int i;
1296 int bitc = bignum_bitcount(bn);
1297
1298 *p++ = (bitc >> 8) & 0xFF;
1299 *p++ = (bitc) & 0xFF;
1300 for (i = len - 2; i--;)
1301 *p++ = bignum_byte(bn, i);
1302 return len;
1303 }
1304
1305 /*
1306 * Compare two bignums. Returns like strcmp.
1307 */
1308 int bignum_cmp(Bignum a, Bignum b)
1309 {
1310 int amax = a[0], bmax = b[0];
1311 int i = (amax > bmax ? amax : bmax);
1312 while (i) {
1313 BignumInt aval = (i > amax ? 0 : a[i]);
1314 BignumInt bval = (i > bmax ? 0 : b[i]);
1315 if (aval < bval)
1316 return -1;
1317 if (aval > bval)
1318 return +1;
1319 i--;
1320 }
1321 return 0;
1322 }
1323
1324 /*
1325 * Right-shift one bignum to form another.
1326 */
1327 Bignum bignum_rshift(Bignum a, int shift)
1328 {
1329 Bignum ret;
1330 int i, shiftw, shiftb, shiftbb, bits;
1331 BignumInt ai, ai1;
1332
1333 bits = bignum_bitcount(a) - shift;
1334 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1335
1336 if (ret) {
1337 shiftw = shift / BIGNUM_INT_BITS;
1338 shiftb = shift % BIGNUM_INT_BITS;
1339 shiftbb = BIGNUM_INT_BITS - shiftb;
1340
1341 ai1 = a[shiftw + 1];
1342 for (i = 1; i <= (int)ret[0]; i++) {
1343 ai = ai1;
1344 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1345 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1346 }
1347 }
1348
1349 return ret;
1350 }
1351
1352 /*
1353 * Non-modular multiplication and addition.
1354 */
1355 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1356 {
1357 int alen = a[0], blen = b[0];
1358 int mlen = (alen > blen ? alen : blen);
1359 int rlen, i, maxspot;
1360 int wslen;
1361 BignumInt *workspace;
1362 Bignum ret;
1363
1364 /* mlen space for a, mlen space for b, 2*mlen for result,
1365 * plus scratch space for multiplication */
1366 wslen = mlen * 4 + mul_compute_scratch(mlen);
1367 workspace = snewn(wslen, BignumInt);
1368 for (i = 0; i < mlen; i++) {
1369 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1370 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
1371 }
1372
1373 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1374 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
1375
1376 /* now just copy the result back */
1377 rlen = alen + blen + 1;
1378 if (addend && rlen <= (int)addend[0])
1379 rlen = addend[0] + 1;
1380 ret = newbn(rlen);
1381 maxspot = 0;
1382 for (i = 1; i <= (int)ret[0]; i++) {
1383 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1384 if (ret[i] != 0)
1385 maxspot = i;
1386 }
1387 ret[0] = maxspot;
1388
1389 /* now add in the addend, if any */
1390 if (addend) {
1391 BignumDblInt carry = 0;
1392 for (i = 1; i <= rlen; i++) {
1393 carry += (i <= (int)ret[0] ? ret[i] : 0);
1394 carry += (i <= (int)addend[0] ? addend[i] : 0);
1395 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1396 carry >>= BIGNUM_INT_BITS;
1397 if (ret[i] != 0 && i > maxspot)
1398 maxspot = i;
1399 }
1400 }
1401 ret[0] = maxspot;
1402
1403 smemclr(workspace, wslen * sizeof(*workspace));
1404 sfree(workspace);
1405 return ret;
1406 }
1407
1408 /*
1409 * Non-modular multiplication.
1410 */
1411 Bignum bigmul(Bignum a, Bignum b)
1412 {
1413 return bigmuladd(a, b, NULL);
1414 }
1415
1416 /*
1417 * Simple addition.
1418 */
1419 Bignum bigadd(Bignum a, Bignum b)
1420 {
1421 int alen = a[0], blen = b[0];
1422 int rlen = (alen > blen ? alen : blen) + 1;
1423 int i, maxspot;
1424 Bignum ret;
1425 BignumDblInt carry;
1426
1427 ret = newbn(rlen);
1428
1429 carry = 0;
1430 maxspot = 0;
1431 for (i = 1; i <= rlen; i++) {
1432 carry += (i <= (int)a[0] ? a[i] : 0);
1433 carry += (i <= (int)b[0] ? b[i] : 0);
1434 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1435 carry >>= BIGNUM_INT_BITS;
1436 if (ret[i] != 0 && i > maxspot)
1437 maxspot = i;
1438 }
1439 ret[0] = maxspot;
1440
1441 return ret;
1442 }
1443
1444 /*
1445 * Subtraction. Returns a-b, or NULL if the result would come out
1446 * negative (recall that this entire bignum module only handles
1447 * positive numbers).
1448 */
1449 Bignum bigsub(Bignum a, Bignum b)
1450 {
1451 int alen = a[0], blen = b[0];
1452 int rlen = (alen > blen ? alen : blen);
1453 int i, maxspot;
1454 Bignum ret;
1455 BignumDblInt carry;
1456
1457 ret = newbn(rlen);
1458
1459 carry = 1;
1460 maxspot = 0;
1461 for (i = 1; i <= rlen; i++) {
1462 carry += (i <= (int)a[0] ? a[i] : 0);
1463 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1464 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1465 carry >>= BIGNUM_INT_BITS;
1466 if (ret[i] != 0 && i > maxspot)
1467 maxspot = i;
1468 }
1469 ret[0] = maxspot;
1470
1471 if (!carry) {
1472 freebn(ret);
1473 return NULL;
1474 }
1475
1476 return ret;
1477 }
1478
1479 /*
1480 * Create a bignum which is the bitmask covering another one. That
1481 * is, the smallest integer which is >= N and is also one less than
1482 * a power of two.
1483 */
1484 Bignum bignum_bitmask(Bignum n)
1485 {
1486 Bignum ret = copybn(n);
1487 int i;
1488 BignumInt j;
1489
1490 i = ret[0];
1491 while (n[i] == 0 && i > 0)
1492 i--;
1493 if (i <= 0)
1494 return ret; /* input was zero */
1495 j = 1;
1496 while (j < n[i])
1497 j = 2 * j + 1;
1498 ret[i] = j;
1499 while (--i > 0)
1500 ret[i] = BIGNUM_INT_MASK;
1501 return ret;
1502 }
1503
1504 /*
1505 * Convert a (max 32-bit) long into a bignum.
1506 */
1507 Bignum bignum_from_long(unsigned long nn)
1508 {
1509 Bignum ret;
1510 BignumDblInt n = nn;
1511
1512 ret = newbn(3);
1513 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1514 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1515 ret[3] = 0;
1516 ret[0] = (ret[2] ? 2 : 1);
1517 return ret;
1518 }
1519
1520 /*
1521 * Add a long to a bignum.
1522 */
1523 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1524 {
1525 Bignum ret = newbn(number[0] + 1);
1526 int i, maxspot = 0;
1527 BignumDblInt carry = 0, addend = addendx;
1528
1529 for (i = 1; i <= (int)ret[0]; i++) {
1530 carry += addend & BIGNUM_INT_MASK;
1531 carry += (i <= (int)number[0] ? number[i] : 0);
1532 addend >>= BIGNUM_INT_BITS;
1533 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1534 carry >>= BIGNUM_INT_BITS;
1535 if (ret[i] != 0)
1536 maxspot = i;
1537 }
1538 ret[0] = maxspot;
1539 return ret;
1540 }
1541
1542 /*
1543 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1544 */
1545 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1546 {
1547 BignumDblInt mod, r;
1548 int i;
1549
1550 r = 0;
1551 mod = modulus;
1552 for (i = number[0]; i > 0; i--)
1553 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1554 return (unsigned short) r;
1555 }
1556
1557 #ifdef DEBUG
1558 void diagbn(char *prefix, Bignum md)
1559 {
1560 int i, nibbles, morenibbles;
1561 static const char hex[] = "0123456789ABCDEF";
1562
1563 debug(("%s0x", prefix ? prefix : ""));
1564
1565 nibbles = (3 + bignum_bitcount(md)) / 4;
1566 if (nibbles < 1)
1567 nibbles = 1;
1568 morenibbles = 4 * md[0] - nibbles;
1569 for (i = 0; i < morenibbles; i++)
1570 debug(("-"));
1571 for (i = nibbles; i--;)
1572 debug(("%c",
1573 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1574
1575 if (prefix)
1576 debug(("\n"));
1577 }
1578 #endif
1579
1580 /*
1581 * Simple division.
1582 */
1583 Bignum bigdiv(Bignum a, Bignum b)
1584 {
1585 Bignum q = newbn(a[0]);
1586 bigdivmod(a, b, NULL, q);
1587 return q;
1588 }
1589
1590 /*
1591 * Simple remainder.
1592 */
1593 Bignum bigmod(Bignum a, Bignum b)
1594 {
1595 Bignum r = newbn(b[0]);
1596 bigdivmod(a, b, r, NULL);
1597 return r;
1598 }
1599
1600 /*
1601 * Greatest common divisor.
1602 */
1603 Bignum biggcd(Bignum av, Bignum bv)
1604 {
1605 Bignum a = copybn(av);
1606 Bignum b = copybn(bv);
1607
1608 while (bignum_cmp(b, Zero) != 0) {
1609 Bignum t = newbn(b[0]);
1610 bigdivmod(a, b, t, NULL);
1611 while (t[0] > 1 && t[t[0]] == 0)
1612 t[0]--;
1613 freebn(a);
1614 a = b;
1615 b = t;
1616 }
1617
1618 freebn(b);
1619 return a;
1620 }
1621
1622 /*
1623 * Modular inverse, using Euclid's extended algorithm.
1624 */
1625 Bignum modinv(Bignum number, Bignum modulus)
1626 {
1627 Bignum a = copybn(modulus);
1628 Bignum b = copybn(number);
1629 Bignum xp = copybn(Zero);
1630 Bignum x = copybn(One);
1631 int sign = +1;
1632
1633 assert(number[number[0]] != 0);
1634 assert(modulus[modulus[0]] != 0);
1635
1636 while (bignum_cmp(b, One) != 0) {
1637 Bignum t = newbn(b[0]);
1638 Bignum q = newbn(a[0]);
1639 bigdivmod(a, b, t, q);
1640 while (t[0] > 1 && t[t[0]] == 0)
1641 t[0]--;
1642 freebn(a);
1643 a = b;
1644 b = t;
1645 t = xp;
1646 xp = x;
1647 x = bigmuladd(q, xp, t);
1648 sign = -sign;
1649 freebn(t);
1650 freebn(q);
1651 }
1652
1653 freebn(b);
1654 freebn(a);
1655 freebn(xp);
1656
1657 /* now we know that sign * x == 1, and that x < modulus */
1658 if (sign < 0) {
1659 /* set a new x to be modulus - x */
1660 Bignum newx = newbn(modulus[0]);
1661 BignumInt carry = 0;
1662 int maxspot = 1;
1663 int i;
1664
1665 for (i = 1; i <= (int)newx[0]; i++) {
1666 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1667 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1668 newx[i] = aword - bword - carry;
1669 bword = ~bword;
1670 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1671 if (newx[i] != 0)
1672 maxspot = i;
1673 }
1674 newx[0] = maxspot;
1675 freebn(x);
1676 x = newx;
1677 }
1678
1679 /* and return. */
1680 return x;
1681 }
1682
1683 /*
1684 * Render a bignum into decimal. Return a malloced string holding
1685 * the decimal representation.
1686 */
1687 char *bignum_decimal(Bignum x)
1688 {
1689 int ndigits, ndigit;
1690 int i, iszero;
1691 BignumDblInt carry;
1692 char *ret;
1693 BignumInt *workspace;
1694
1695 /*
1696 * First, estimate the number of digits. Since log(10)/log(2)
1697 * is just greater than 93/28 (the joys of continued fraction
1698 * approximations...) we know that for every 93 bits, we need
1699 * at most 28 digits. This will tell us how much to malloc.
1700 *
1701 * Formally: if x has i bits, that means x is strictly less
1702 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1703 * 10^(28i/93). We need an integer power of ten, so we must
1704 * round up (rounding down might make it less than x again).
1705 * Therefore if we multiply the bit count by 28/93, rounding
1706 * up, we will have enough digits.
1707 *
1708 * i=0 (i.e., x=0) is an irritating special case.
1709 */
1710 i = bignum_bitcount(x);
1711 if (!i)
1712 ndigits = 1; /* x = 0 */
1713 else
1714 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1715 ndigits++; /* allow for trailing \0 */
1716 ret = snewn(ndigits, char);
1717
1718 /*
1719 * Now allocate some workspace to hold the binary form as we
1720 * repeatedly divide it by ten. Initialise this to the
1721 * big-endian form of the number.
1722 */
1723 workspace = snewn(x[0], BignumInt);
1724 for (i = 0; i < (int)x[0]; i++)
1725 workspace[i] = x[x[0] - i];
1726
1727 /*
1728 * Next, write the decimal number starting with the last digit.
1729 * We use ordinary short division, dividing 10 into the
1730 * workspace.
1731 */
1732 ndigit = ndigits - 1;
1733 ret[ndigit] = '\0';
1734 do {
1735 iszero = 1;
1736 carry = 0;
1737 for (i = 0; i < (int)x[0]; i++) {
1738 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1739 workspace[i] = (BignumInt) (carry / 10);
1740 if (workspace[i])
1741 iszero = 0;
1742 carry %= 10;
1743 }
1744 ret[--ndigit] = (char) (carry + '0');
1745 } while (!iszero);
1746
1747 /*
1748 * There's a chance we've fallen short of the start of the
1749 * string. Correct if so.
1750 */
1751 if (ndigit > 0)
1752 memmove(ret, ret + ndigit, ndigits - ndigit);
1753
1754 /*
1755 * Done.
1756 */
1757 smemclr(workspace, x[0] * sizeof(*workspace));
1758 sfree(workspace);
1759 return ret;
1760 }
1761
1762 #ifdef TESTBN
1763
1764 #include <stdio.h>
1765 #include <stdlib.h>
1766 #include <ctype.h>
1767
1768 /*
1769 * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
1770 *
1771 * Then feed to this program's standard input the output of
1772 * testdata/bignum.py .
1773 */
1774
1775 void modalfatalbox(char *p, ...)
1776 {
1777 va_list ap;
1778 fprintf(stderr, "FATAL ERROR: ");
1779 va_start(ap, p);
1780 vfprintf(stderr, p, ap);
1781 va_end(ap);
1782 fputc('\n', stderr);
1783 exit(1);
1784 }
1785
1786 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1787
1788 int main(int argc, char **argv)
1789 {
1790 char *buf;
1791 int line = 0;
1792 int passes = 0, fails = 0;
1793
1794 while ((buf = fgetline(stdin)) != NULL) {
1795 int maxlen = strlen(buf);
1796 unsigned char *data = snewn(maxlen, unsigned char);
1797 unsigned char *ptrs[5], *q;
1798 int ptrnum;
1799 char *bufp = buf;
1800
1801 line++;
1802
1803 q = data;
1804 ptrnum = 0;
1805
1806 while (*bufp && !isspace((unsigned char)*bufp))
1807 bufp++;
1808 if (bufp)
1809 *bufp++ = '\0';
1810
1811 while (*bufp) {
1812 char *start, *end;
1813 int i;
1814
1815 while (*bufp && !isxdigit((unsigned char)*bufp))
1816 bufp++;
1817 start = bufp;
1818
1819 if (!*bufp)
1820 break;
1821
1822 while (*bufp && isxdigit((unsigned char)*bufp))
1823 bufp++;
1824 end = bufp;
1825
1826 if (ptrnum >= lenof(ptrs))
1827 break;
1828 ptrs[ptrnum++] = q;
1829
1830 for (i = -((end - start) & 1); i < end-start; i += 2) {
1831 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1832 val = val * 16 + fromxdigit(start[i+1]);
1833 *q++ = val;
1834 }
1835
1836 ptrs[ptrnum] = q;
1837 }
1838
1839 if (!strcmp(buf, "mul")) {
1840 Bignum a, b, c, p;
1841
1842 if (ptrnum != 3) {
1843 printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
1844 exit(1);
1845 }
1846 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1847 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1848 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1849 p = bigmul(a, b);
1850
1851 if (bignum_cmp(c, p) == 0) {
1852 passes++;
1853 } else {
1854 char *as = bignum_decimal(a);
1855 char *bs = bignum_decimal(b);
1856 char *cs = bignum_decimal(c);
1857 char *ps = bignum_decimal(p);
1858
1859 printf("%d: fail: %s * %s gave %s expected %s\n",
1860 line, as, bs, ps, cs);
1861 fails++;
1862
1863 sfree(as);
1864 sfree(bs);
1865 sfree(cs);
1866 sfree(ps);
1867 }
1868 freebn(a);
1869 freebn(b);
1870 freebn(c);
1871 freebn(p);
1872 } else if (!strcmp(buf, "modmul")) {
1873 Bignum a, b, m, c, p;
1874
1875 if (ptrnum != 4) {
1876 printf("%d: modmul with %d parameters, expected 4\n",
1877 line, ptrnum);
1878 exit(1);
1879 }
1880 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1881 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1882 m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1883 c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1884 p = modmul(a, b, m);
1885
1886 if (bignum_cmp(c, p) == 0) {
1887 passes++;
1888 } else {
1889 char *as = bignum_decimal(a);
1890 char *bs = bignum_decimal(b);
1891 char *ms = bignum_decimal(m);
1892 char *cs = bignum_decimal(c);
1893 char *ps = bignum_decimal(p);
1894
1895 printf("%d: fail: %s * %s mod %s gave %s expected %s\n",
1896 line, as, bs, ms, ps, cs);
1897 fails++;
1898
1899 sfree(as);
1900 sfree(bs);
1901 sfree(ms);
1902 sfree(cs);
1903 sfree(ps);
1904 }
1905 freebn(a);
1906 freebn(b);
1907 freebn(m);
1908 freebn(c);
1909 freebn(p);
1910 } else if (!strcmp(buf, "pow")) {
1911 Bignum base, expt, modulus, expected, answer;
1912
1913 if (ptrnum != 4) {
1914 printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
1915 exit(1);
1916 }
1917
1918 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1919 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1920 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1921 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1922 answer = modpow(base, expt, modulus);
1923
1924 if (bignum_cmp(expected, answer) == 0) {
1925 passes++;
1926 } else {
1927 char *as = bignum_decimal(base);
1928 char *bs = bignum_decimal(expt);
1929 char *cs = bignum_decimal(modulus);
1930 char *ds = bignum_decimal(answer);
1931 char *ps = bignum_decimal(expected);
1932
1933 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
1934 line, as, bs, cs, ds, ps);
1935 fails++;
1936
1937 sfree(as);
1938 sfree(bs);
1939 sfree(cs);
1940 sfree(ds);
1941 sfree(ps);
1942 }
1943 freebn(base);
1944 freebn(expt);
1945 freebn(modulus);
1946 freebn(expected);
1947 freebn(answer);
1948 } else {
1949 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
1950 exit(1);
1951 }
1952
1953 sfree(buf);
1954 sfree(data);
1955 }
1956
1957 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1958 return fails != 0;
1959 }
1960
1961 #endif