Cosmetic, to fix ssh2-des-cbc-is-std
[u/mdw/putty] / sshdes.c
1 #include <assert.h>
2 #include "ssh.h"
3
4
5 /* des.c - implementation of DES
6 */
7
8 /*
9 * Description of DES
10 * ------------------
11 *
12 * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
13 * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
14 * And S-boxes are indexed by six consecutive bits, not by the outer two
15 * followed by the middle four.
16 *
17 * The DES encryption routine requires a 64-bit input, and a key schedule K
18 * containing 16 48-bit elements.
19 *
20 * First the input is permuted by the initial permutation IP.
21 * Then the input is split into 32-bit words L and R. (L is the MSW.)
22 * Next, 16 rounds. In each round:
23 * (L, R) <- (R, L xor f(R, K[i]))
24 * Then the pre-output words L and R are swapped.
25 * Then L and R are glued back together into a 64-bit word. (L is the MSW,
26 * again, but since we just swapped them, the MSW is the R that came out
27 * of the last round.)
28 * The 64-bit output block is permuted by the inverse of IP and returned.
29 *
30 * Decryption is identical except that the elements of K are used in the
31 * opposite order. (This wouldn't work if that word swap didn't happen.)
32 *
33 * The function f, used in each round, accepts a 32-bit word R and a
34 * 48-bit key block K. It produces a 32-bit output.
35 *
36 * First R is expanded to 48 bits using the bit-selection function E.
37 * The resulting 48-bit block is XORed with the key block K to produce
38 * a 48-bit block X.
39 * This block X is split into eight groups of 6 bits. Each group of 6
40 * bits is then looked up in one of the eight S-boxes to convert
41 * it to 4 bits. These eight groups of 4 bits are glued back
42 * together to produce a 32-bit preoutput block.
43 * The preoutput block is permuted using the permutation P and returned.
44 *
45 * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
46 * the approved input format for the key is a 64-bit word, eight of the
47 * bits are discarded, so the actual quantity of key used is 56 bits.
48 *
49 * First the input key is converted to two 28-bit words C and D using
50 * the bit-selection function PC1.
51 * Then 16 rounds of key setup occur. In each round, C and D are each
52 * rotated left by either 1 or 2 bits (depending on which round), and
53 * then converted into a key schedule element using the bit-selection
54 * function PC2.
55 *
56 * That's the actual algorithm. Now for the tedious details: all those
57 * painful permutations and lookup tables.
58 *
59 * IP is a 64-to-64 bit permutation. Its output contains the following
60 * bits of its input (listed in order MSB to LSB of output).
61 *
62 * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
63 * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
64 * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
65 * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
66 *
67 * E is a 32-to-48 bit selection function. Its output contains the following
68 * bits of its input (listed in order MSB to LSB of output).
69 *
70 * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
71 * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
72 *
73 * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
74 * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
75 * The S-boxes are listed below. The first S-box listed is applied to the
76 * most significant six bits of the block X; the last one is applied to the
77 * least significant.
78 *
79 * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
80 * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
81 * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
82 * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
83 *
84 * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
85 * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
86 * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
87 * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
88 *
89 * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
90 * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
91 * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
92 * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
93 *
94 * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
95 * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
96 * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
97 * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
98 *
99 * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
100 * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
101 * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
102 * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
103 *
104 * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
105 * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
106 * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
107 * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
108 *
109 * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
110 * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
111 * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
112 * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
113 *
114 * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
115 * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
116 * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
117 * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
118 *
119 * P is a 32-to-32 bit permutation. Its output contains the following
120 * bits of its input (listed in order MSB to LSB of output).
121 *
122 * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
123 * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
124 *
125 * PC1 is a 64-to-56 bit selection function. Its output is in two words,
126 * C and D. The word C contains the following bits of its input (listed
127 * in order MSB to LSB of output).
128 *
129 * 7 15 23 31 39 47 55 63 6 14 22 30 38 46
130 * 54 62 5 13 21 29 37 45 53 61 4 12 20 28
131 *
132 * And the word D contains these bits.
133 *
134 * 1 9 17 25 33 41 49 57 2 10 18 26 34 42
135 * 50 58 3 11 19 27 35 43 51 59 36 44 52 60
136 *
137 * PC2 is a 56-to-48 bit selection function. Its input is in two words,
138 * C and D. These are treated as one 56-bit word (with C more significant,
139 * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
140 * 0 of the word are bits 27 to 0 of D). The output contains the following
141 * bits of this 56-bit input word (listed in order MSB to LSB of output).
142 *
143 * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
144 * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
145 */
146
147 /*
148 * Implementation details
149 * ----------------------
150 *
151 * If you look at the code in this module, you'll find it looks
152 * nothing _like_ the above algorithm. Here I explain the
153 * differences...
154 *
155 * Key setup has not been heavily optimised here. We are not
156 * concerned with key agility: we aren't codebreakers. We don't
157 * mind a little delay (and it really is a little one; it may be a
158 * factor of five or so slower than it could be but it's still not
159 * an appreciable length of time) while setting up. The only tweaks
160 * in the key setup are ones which change the format of the key
161 * schedule to speed up the actual encryption. I'll describe those
162 * below.
163 *
164 * The first and most obvious optimisation is the S-boxes. Since
165 * each S-box always targets the same four bits in the final 32-bit
166 * word, so the output from (for example) S-box 0 must always be
167 * shifted left 28 bits, we can store the already-shifted outputs
168 * in the lookup tables. This reduces lookup-and-shift to lookup,
169 * so the S-box step is now just a question of ORing together eight
170 * table lookups.
171 *
172 * The permutation P is just a bit order change; it's invariant
173 * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
174 * can apply P to every entry of the S-box tables and then we don't
175 * have to do it in the code of f(). This yields a set of tables
176 * which might be called SP-boxes.
177 *
178 * The bit-selection function E is our next target. Note that E is
179 * immediately followed by the operation of splitting into 6-bit
180 * chunks. Examining the 6-bit chunks coming out of E we notice
181 * they're all contiguous within the word (speaking cyclically -
182 * the end two wrap round); so we can extract those bit strings
183 * individually rather than explicitly running E. This would yield
184 * code such as
185 *
186 * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
187 * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
188 *
189 * and so on; and the key schedule preparation would have to
190 * provide each 6-bit chunk separately.
191 *
192 * Really we'd like to XOR in the key schedule element before
193 * looking up bit strings in R. This we can't do, naively, because
194 * the 6-bit strings we want overlap. But look at the strings:
195 *
196 * 3322222222221111111111
197 * bit 10987654321098765432109876543210
198 *
199 * box0 XXXXX X
200 * box1 XXXXXX
201 * box2 XXXXXX
202 * box3 XXXXXX
203 * box4 XXXXXX
204 * box5 XXXXXX
205 * box6 XXXXXX
206 * box7 X XXXXX
207 *
208 * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
209 * overlap with each other. Neither do the ones for boxes 1, 3, 5
210 * and 7. So we could provide the key schedule in the form of two
211 * words that we can separately XOR into R, and then every S-box
212 * index is available as a (cyclically) contiguous 6-bit substring
213 * of one or the other of the results.
214 *
215 * The comments in Eric Young's libdes implementation point out
216 * that two of these bit strings require a rotation (rather than a
217 * simple shift) to extract. It's unavoidable that at least _one_
218 * must do; but we can actually run the whole inner algorithm (all
219 * 16 rounds) rotated one bit to the left, so that what the `real'
220 * DES description sees as L=0x80000001 we see as L=0x00000003.
221 * This requires rotating all our SP-box entries one bit to the
222 * left, and rotating each word of the key schedule elements one to
223 * the left, and rotating L and R one bit left just after IP and
224 * one bit right again just before FP. And in each round we convert
225 * a rotate into a shift, so we've saved a few per cent.
226 *
227 * That's about it for the inner loop; the SP-box tables as listed
228 * below are what I've described here (the original S value,
229 * shifted to its final place in the input to P, run through P, and
230 * then rotated one bit left). All that remains is to optimise the
231 * initial permutation IP.
232 *
233 * IP is not an arbitrary permutation. It has the nice property
234 * that if you take any bit number, write it in binary (6 bits),
235 * permute those 6 bits and invert some of them, you get the final
236 * position of that bit. Specifically, the bit whose initial
237 * position is given (in binary) as fedcba ends up in position
238 * AcbFED (where a capital letter denotes the inverse of a bit).
239 *
240 * We have the 64-bit data in two 32-bit words L and R, where bits
241 * in L are those with f=1 and bits in R are those with f=0. We
242 * note that we can do a simple transformation: suppose we exchange
243 * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
244 * the bit fedcba to be in position cedfba - we've `swapped' bits c
245 * and f in the position of each bit!
246 *
247 * Better still, this transformation is easy. In the example above,
248 * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
249 * are 0xF0F0F0F0. So we can do
250 *
251 * difference = ((R >> 4) ^ L) & 0x0F0F0F0F
252 * R ^= (difference << 4)
253 * L ^= difference
254 *
255 * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
256 * Also, we can invert the bit at the top just by exchanging L and
257 * R. So in a few swaps and a few of these bit operations we can
258 * do:
259 *
260 * Initially the position of bit fedcba is fedcba
261 * Swap L with R to make it Fedcba
262 * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
263 * Perform bitswap(16,0x0000FFFF) to make it ecdFba
264 * Swap L with R to make it EcdFba
265 * Perform bitswap( 2,0x33333333) to make it bcdFEa
266 * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
267 * Swap L with R to make it DcbFEa
268 * Perform bitswap( 1,0x55555555) to make it acbFED
269 * Swap L with R to make it AcbFED
270 *
271 * (In the actual code the four swaps are implicit: R and L are
272 * simply used the other way round in the first, second and last
273 * bitswap operations.)
274 *
275 * The final permutation is just the inverse of IP, so it can be
276 * performed by a similar set of operations.
277 */
278
279 typedef struct {
280 word32 k0246[16], k1357[16];
281 word32 iv0, iv1;
282 } DESContext;
283
284 #define rotl(x, c) ( (x << c) | (x >> (32-c)) )
285 #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
286
287 static word32 bitsel(word32 * input, const int *bitnums, int size)
288 {
289 word32 ret = 0;
290 while (size--) {
291 int bitpos = *bitnums++;
292 ret <<= 1;
293 if (bitpos >= 0)
294 ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
295 }
296 return ret;
297 }
298
299 static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)
300 {
301
302 static const int PC1_Cbits[] = {
303 7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
304 54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
305 };
306 static const int PC1_Dbits[] = {
307 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
308 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
309 };
310 /*
311 * The bit numbers in the two lists below don't correspond to
312 * the ones in the above description of PC2, because in the
313 * above description C and D are concatenated so `bit 28' means
314 * bit 0 of C. In this implementation we're using the standard
315 * `bitsel' function above and C is in the second word, so bit
316 * 0 of C is addressed by writing `32' here.
317 */
318 static const int PC2_0246[] = {
319 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
320 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
321 };
322 static const int PC2_1357[] = {
323 -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
324 -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
325 };
326 static const int leftshifts[] =
327 { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
328
329 word32 C, D;
330 word32 buf[2];
331 int i;
332
333 buf[0] = key_lsw;
334 buf[1] = key_msw;
335
336 C = bitsel(buf, PC1_Cbits, 28);
337 D = bitsel(buf, PC1_Dbits, 28);
338
339 for (i = 0; i < 16; i++) {
340 C = rotl28(C, leftshifts[i]);
341 D = rotl28(D, leftshifts[i]);
342 buf[0] = D;
343 buf[1] = C;
344 sched->k0246[i] = bitsel(buf, PC2_0246, 32);
345 sched->k1357[i] = bitsel(buf, PC2_1357, 32);
346 }
347
348 sched->iv0 = sched->iv1 = 0;
349 }
350
351 static const word32 SPboxes[8][64] = {
352 {0x01010400, 0x00000000, 0x00010000, 0x01010404,
353 0x01010004, 0x00010404, 0x00000004, 0x00010000,
354 0x00000400, 0x01010400, 0x01010404, 0x00000400,
355 0x01000404, 0x01010004, 0x01000000, 0x00000004,
356 0x00000404, 0x01000400, 0x01000400, 0x00010400,
357 0x00010400, 0x01010000, 0x01010000, 0x01000404,
358 0x00010004, 0x01000004, 0x01000004, 0x00010004,
359 0x00000000, 0x00000404, 0x00010404, 0x01000000,
360 0x00010000, 0x01010404, 0x00000004, 0x01010000,
361 0x01010400, 0x01000000, 0x01000000, 0x00000400,
362 0x01010004, 0x00010000, 0x00010400, 0x01000004,
363 0x00000400, 0x00000004, 0x01000404, 0x00010404,
364 0x01010404, 0x00010004, 0x01010000, 0x01000404,
365 0x01000004, 0x00000404, 0x00010404, 0x01010400,
366 0x00000404, 0x01000400, 0x01000400, 0x00000000,
367 0x00010004, 0x00010400, 0x00000000, 0x01010004L},
368
369 {0x80108020, 0x80008000, 0x00008000, 0x00108020,
370 0x00100000, 0x00000020, 0x80100020, 0x80008020,
371 0x80000020, 0x80108020, 0x80108000, 0x80000000,
372 0x80008000, 0x00100000, 0x00000020, 0x80100020,
373 0x00108000, 0x00100020, 0x80008020, 0x00000000,
374 0x80000000, 0x00008000, 0x00108020, 0x80100000,
375 0x00100020, 0x80000020, 0x00000000, 0x00108000,
376 0x00008020, 0x80108000, 0x80100000, 0x00008020,
377 0x00000000, 0x00108020, 0x80100020, 0x00100000,
378 0x80008020, 0x80100000, 0x80108000, 0x00008000,
379 0x80100000, 0x80008000, 0x00000020, 0x80108020,
380 0x00108020, 0x00000020, 0x00008000, 0x80000000,
381 0x00008020, 0x80108000, 0x00100000, 0x80000020,
382 0x00100020, 0x80008020, 0x80000020, 0x00100020,
383 0x00108000, 0x00000000, 0x80008000, 0x00008020,
384 0x80000000, 0x80100020, 0x80108020, 0x00108000L},
385
386 {0x00000208, 0x08020200, 0x00000000, 0x08020008,
387 0x08000200, 0x00000000, 0x00020208, 0x08000200,
388 0x00020008, 0x08000008, 0x08000008, 0x00020000,
389 0x08020208, 0x00020008, 0x08020000, 0x00000208,
390 0x08000000, 0x00000008, 0x08020200, 0x00000200,
391 0x00020200, 0x08020000, 0x08020008, 0x00020208,
392 0x08000208, 0x00020200, 0x00020000, 0x08000208,
393 0x00000008, 0x08020208, 0x00000200, 0x08000000,
394 0x08020200, 0x08000000, 0x00020008, 0x00000208,
395 0x00020000, 0x08020200, 0x08000200, 0x00000000,
396 0x00000200, 0x00020008, 0x08020208, 0x08000200,
397 0x08000008, 0x00000200, 0x00000000, 0x08020008,
398 0x08000208, 0x00020000, 0x08000000, 0x08020208,
399 0x00000008, 0x00020208, 0x00020200, 0x08000008,
400 0x08020000, 0x08000208, 0x00000208, 0x08020000,
401 0x00020208, 0x00000008, 0x08020008, 0x00020200L},
402
403 {0x00802001, 0x00002081, 0x00002081, 0x00000080,
404 0x00802080, 0x00800081, 0x00800001, 0x00002001,
405 0x00000000, 0x00802000, 0x00802000, 0x00802081,
406 0x00000081, 0x00000000, 0x00800080, 0x00800001,
407 0x00000001, 0x00002000, 0x00800000, 0x00802001,
408 0x00000080, 0x00800000, 0x00002001, 0x00002080,
409 0x00800081, 0x00000001, 0x00002080, 0x00800080,
410 0x00002000, 0x00802080, 0x00802081, 0x00000081,
411 0x00800080, 0x00800001, 0x00802000, 0x00802081,
412 0x00000081, 0x00000000, 0x00000000, 0x00802000,
413 0x00002080, 0x00800080, 0x00800081, 0x00000001,
414 0x00802001, 0x00002081, 0x00002081, 0x00000080,
415 0x00802081, 0x00000081, 0x00000001, 0x00002000,
416 0x00800001, 0x00002001, 0x00802080, 0x00800081,
417 0x00002001, 0x00002080, 0x00800000, 0x00802001,
418 0x00000080, 0x00800000, 0x00002000, 0x00802080L},
419
420 {0x00000100, 0x02080100, 0x02080000, 0x42000100,
421 0x00080000, 0x00000100, 0x40000000, 0x02080000,
422 0x40080100, 0x00080000, 0x02000100, 0x40080100,
423 0x42000100, 0x42080000, 0x00080100, 0x40000000,
424 0x02000000, 0x40080000, 0x40080000, 0x00000000,
425 0x40000100, 0x42080100, 0x42080100, 0x02000100,
426 0x42080000, 0x40000100, 0x00000000, 0x42000000,
427 0x02080100, 0x02000000, 0x42000000, 0x00080100,
428 0x00080000, 0x42000100, 0x00000100, 0x02000000,
429 0x40000000, 0x02080000, 0x42000100, 0x40080100,
430 0x02000100, 0x40000000, 0x42080000, 0x02080100,
431 0x40080100, 0x00000100, 0x02000000, 0x42080000,
432 0x42080100, 0x00080100, 0x42000000, 0x42080100,
433 0x02080000, 0x00000000, 0x40080000, 0x42000000,
434 0x00080100, 0x02000100, 0x40000100, 0x00080000,
435 0x00000000, 0x40080000, 0x02080100, 0x40000100L},
436
437 {0x20000010, 0x20400000, 0x00004000, 0x20404010,
438 0x20400000, 0x00000010, 0x20404010, 0x00400000,
439 0x20004000, 0x00404010, 0x00400000, 0x20000010,
440 0x00400010, 0x20004000, 0x20000000, 0x00004010,
441 0x00000000, 0x00400010, 0x20004010, 0x00004000,
442 0x00404000, 0x20004010, 0x00000010, 0x20400010,
443 0x20400010, 0x00000000, 0x00404010, 0x20404000,
444 0x00004010, 0x00404000, 0x20404000, 0x20000000,
445 0x20004000, 0x00000010, 0x20400010, 0x00404000,
446 0x20404010, 0x00400000, 0x00004010, 0x20000010,
447 0x00400000, 0x20004000, 0x20000000, 0x00004010,
448 0x20000010, 0x20404010, 0x00404000, 0x20400000,
449 0x00404010, 0x20404000, 0x00000000, 0x20400010,
450 0x00000010, 0x00004000, 0x20400000, 0x00404010,
451 0x00004000, 0x00400010, 0x20004010, 0x00000000,
452 0x20404000, 0x20000000, 0x00400010, 0x20004010L},
453
454 {0x00200000, 0x04200002, 0x04000802, 0x00000000,
455 0x00000800, 0x04000802, 0x00200802, 0x04200800,
456 0x04200802, 0x00200000, 0x00000000, 0x04000002,
457 0x00000002, 0x04000000, 0x04200002, 0x00000802,
458 0x04000800, 0x00200802, 0x00200002, 0x04000800,
459 0x04000002, 0x04200000, 0x04200800, 0x00200002,
460 0x04200000, 0x00000800, 0x00000802, 0x04200802,
461 0x00200800, 0x00000002, 0x04000000, 0x00200800,
462 0x04000000, 0x00200800, 0x00200000, 0x04000802,
463 0x04000802, 0x04200002, 0x04200002, 0x00000002,
464 0x00200002, 0x04000000, 0x04000800, 0x00200000,
465 0x04200800, 0x00000802, 0x00200802, 0x04200800,
466 0x00000802, 0x04000002, 0x04200802, 0x04200000,
467 0x00200800, 0x00000000, 0x00000002, 0x04200802,
468 0x00000000, 0x00200802, 0x04200000, 0x00000800,
469 0x04000002, 0x04000800, 0x00000800, 0x00200002L},
470
471 {0x10001040, 0x00001000, 0x00040000, 0x10041040,
472 0x10000000, 0x10001040, 0x00000040, 0x10000000,
473 0x00040040, 0x10040000, 0x10041040, 0x00041000,
474 0x10041000, 0x00041040, 0x00001000, 0x00000040,
475 0x10040000, 0x10000040, 0x10001000, 0x00001040,
476 0x00041000, 0x00040040, 0x10040040, 0x10041000,
477 0x00001040, 0x00000000, 0x00000000, 0x10040040,
478 0x10000040, 0x10001000, 0x00041040, 0x00040000,
479 0x00041040, 0x00040000, 0x10041000, 0x00001000,
480 0x00000040, 0x10040040, 0x00001000, 0x00041040,
481 0x10001000, 0x00000040, 0x10000040, 0x10040000,
482 0x10040040, 0x10000000, 0x00040000, 0x10001040,
483 0x00000000, 0x10041040, 0x00040040, 0x10000040,
484 0x10040000, 0x10001000, 0x10001040, 0x00000000,
485 0x10041040, 0x00041000, 0x00041000, 0x00001040,
486 0x00001040, 0x00040040, 0x10000000, 0x10041000L}
487 };
488
489 #define f(R, K0246, K1357) (\
490 s0246 = R ^ K0246, \
491 s1357 = R ^ K1357, \
492 s0246 = rotl(s0246, 28), \
493 SPboxes[0] [(s0246 >> 24) & 0x3F] | \
494 SPboxes[1] [(s1357 >> 24) & 0x3F] | \
495 SPboxes[2] [(s0246 >> 16) & 0x3F] | \
496 SPboxes[3] [(s1357 >> 16) & 0x3F] | \
497 SPboxes[4] [(s0246 >> 8) & 0x3F] | \
498 SPboxes[5] [(s1357 >> 8) & 0x3F] | \
499 SPboxes[6] [(s0246 ) & 0x3F] | \
500 SPboxes[7] [(s1357 ) & 0x3F])
501
502 #define bitswap(L, R, n, mask) (\
503 swap = mask & ( (R >> n) ^ L ), \
504 R ^= swap << n, \
505 L ^= swap)
506
507 /* Initial permutation */
508 #define IP(L, R) (\
509 bitswap(R, L, 4, 0x0F0F0F0F), \
510 bitswap(R, L, 16, 0x0000FFFF), \
511 bitswap(L, R, 2, 0x33333333), \
512 bitswap(L, R, 8, 0x00FF00FF), \
513 bitswap(R, L, 1, 0x55555555))
514
515 /* Final permutation */
516 #define FP(L, R) (\
517 bitswap(R, L, 1, 0x55555555), \
518 bitswap(L, R, 8, 0x00FF00FF), \
519 bitswap(L, R, 2, 0x33333333), \
520 bitswap(R, L, 16, 0x0000FFFF), \
521 bitswap(R, L, 4, 0x0F0F0F0F))
522
523 static void des_encipher(word32 * output, word32 L, word32 R,
524 DESContext * sched)
525 {
526 word32 swap, s0246, s1357;
527
528 IP(L, R);
529
530 L = rotl(L, 1);
531 R = rotl(R, 1);
532
533 L ^= f(R, sched->k0246[0], sched->k1357[0]);
534 R ^= f(L, sched->k0246[1], sched->k1357[1]);
535 L ^= f(R, sched->k0246[2], sched->k1357[2]);
536 R ^= f(L, sched->k0246[3], sched->k1357[3]);
537 L ^= f(R, sched->k0246[4], sched->k1357[4]);
538 R ^= f(L, sched->k0246[5], sched->k1357[5]);
539 L ^= f(R, sched->k0246[6], sched->k1357[6]);
540 R ^= f(L, sched->k0246[7], sched->k1357[7]);
541 L ^= f(R, sched->k0246[8], sched->k1357[8]);
542 R ^= f(L, sched->k0246[9], sched->k1357[9]);
543 L ^= f(R, sched->k0246[10], sched->k1357[10]);
544 R ^= f(L, sched->k0246[11], sched->k1357[11]);
545 L ^= f(R, sched->k0246[12], sched->k1357[12]);
546 R ^= f(L, sched->k0246[13], sched->k1357[13]);
547 L ^= f(R, sched->k0246[14], sched->k1357[14]);
548 R ^= f(L, sched->k0246[15], sched->k1357[15]);
549
550 L = rotl(L, 31);
551 R = rotl(R, 31);
552
553 swap = L;
554 L = R;
555 R = swap;
556
557 FP(L, R);
558
559 output[0] = L;
560 output[1] = R;
561 }
562
563 static void des_decipher(word32 * output, word32 L, word32 R,
564 DESContext * sched)
565 {
566 word32 swap, s0246, s1357;
567
568 IP(L, R);
569
570 L = rotl(L, 1);
571 R = rotl(R, 1);
572
573 L ^= f(R, sched->k0246[15], sched->k1357[15]);
574 R ^= f(L, sched->k0246[14], sched->k1357[14]);
575 L ^= f(R, sched->k0246[13], sched->k1357[13]);
576 R ^= f(L, sched->k0246[12], sched->k1357[12]);
577 L ^= f(R, sched->k0246[11], sched->k1357[11]);
578 R ^= f(L, sched->k0246[10], sched->k1357[10]);
579 L ^= f(R, sched->k0246[9], sched->k1357[9]);
580 R ^= f(L, sched->k0246[8], sched->k1357[8]);
581 L ^= f(R, sched->k0246[7], sched->k1357[7]);
582 R ^= f(L, sched->k0246[6], sched->k1357[6]);
583 L ^= f(R, sched->k0246[5], sched->k1357[5]);
584 R ^= f(L, sched->k0246[4], sched->k1357[4]);
585 L ^= f(R, sched->k0246[3], sched->k1357[3]);
586 R ^= f(L, sched->k0246[2], sched->k1357[2]);
587 L ^= f(R, sched->k0246[1], sched->k1357[1]);
588 R ^= f(L, sched->k0246[0], sched->k1357[0]);
589
590 L = rotl(L, 31);
591 R = rotl(R, 31);
592
593 swap = L;
594 L = R;
595 R = swap;
596
597 FP(L, R);
598
599 output[0] = L;
600 output[1] = R;
601 }
602
603 #define GET_32BIT_MSB_FIRST(cp) \
604 (((unsigned long)(unsigned char)(cp)[3]) | \
605 ((unsigned long)(unsigned char)(cp)[2] << 8) | \
606 ((unsigned long)(unsigned char)(cp)[1] << 16) | \
607 ((unsigned long)(unsigned char)(cp)[0] << 24))
608
609 #define PUT_32BIT_MSB_FIRST(cp, value) do { \
610 (cp)[3] = (value); \
611 (cp)[2] = (value) >> 8; \
612 (cp)[1] = (value) >> 16; \
613 (cp)[0] = (value) >> 24; } while (0)
614
615 static void des_cbc_encrypt(unsigned char *dest, const unsigned char *src,
616 unsigned int len, DESContext * sched)
617 {
618 word32 out[2], iv0, iv1;
619 unsigned int i;
620
621 assert((len & 7) == 0);
622
623 iv0 = sched->iv0;
624 iv1 = sched->iv1;
625 for (i = 0; i < len; i += 8) {
626 iv0 ^= GET_32BIT_MSB_FIRST(src);
627 src += 4;
628 iv1 ^= GET_32BIT_MSB_FIRST(src);
629 src += 4;
630 des_encipher(out, iv0, iv1, sched);
631 iv0 = out[0];
632 iv1 = out[1];
633 PUT_32BIT_MSB_FIRST(dest, iv0);
634 dest += 4;
635 PUT_32BIT_MSB_FIRST(dest, iv1);
636 dest += 4;
637 }
638 sched->iv0 = iv0;
639 sched->iv1 = iv1;
640 }
641
642 static void des_cbc_decrypt(unsigned char *dest, const unsigned char *src,
643 unsigned int len, DESContext * sched)
644 {
645 word32 out[2], iv0, iv1, xL, xR;
646 unsigned int i;
647
648 assert((len & 7) == 0);
649
650 iv0 = sched->iv0;
651 iv1 = sched->iv1;
652 for (i = 0; i < len; i += 8) {
653 xL = GET_32BIT_MSB_FIRST(src);
654 src += 4;
655 xR = GET_32BIT_MSB_FIRST(src);
656 src += 4;
657 des_decipher(out, xL, xR, sched);
658 iv0 ^= out[0];
659 iv1 ^= out[1];
660 PUT_32BIT_MSB_FIRST(dest, iv0);
661 dest += 4;
662 PUT_32BIT_MSB_FIRST(dest, iv1);
663 dest += 4;
664 iv0 = xL;
665 iv1 = xR;
666 }
667 sched->iv0 = iv0;
668 sched->iv1 = iv1;
669 }
670
671 static void des_3cbc_encrypt(unsigned char *dest, const unsigned char *src,
672 unsigned int len, DESContext * scheds)
673 {
674 des_cbc_encrypt(dest, src, len, &scheds[0]);
675 des_cbc_decrypt(dest, src, len, &scheds[1]);
676 des_cbc_encrypt(dest, src, len, &scheds[2]);
677 }
678
679 static void des_cbc3_encrypt(unsigned char *dest, const unsigned char *src,
680 unsigned int len, DESContext * scheds)
681 {
682 word32 out[2], iv0, iv1;
683 unsigned int i;
684
685 assert((len & 7) == 0);
686
687 iv0 = scheds->iv0;
688 iv1 = scheds->iv1;
689 for (i = 0; i < len; i += 8) {
690 iv0 ^= GET_32BIT_MSB_FIRST(src);
691 src += 4;
692 iv1 ^= GET_32BIT_MSB_FIRST(src);
693 src += 4;
694 des_encipher(out, iv0, iv1, &scheds[0]);
695 des_decipher(out, out[0], out[1], &scheds[1]);
696 des_encipher(out, out[0], out[1], &scheds[2]);
697 iv0 = out[0];
698 iv1 = out[1];
699 PUT_32BIT_MSB_FIRST(dest, iv0);
700 dest += 4;
701 PUT_32BIT_MSB_FIRST(dest, iv1);
702 dest += 4;
703 }
704 scheds->iv0 = iv0;
705 scheds->iv1 = iv1;
706 }
707
708 static void des_3cbc_decrypt(unsigned char *dest, const unsigned char *src,
709 unsigned int len, DESContext * scheds)
710 {
711 des_cbc_decrypt(dest, src, len, &scheds[2]);
712 des_cbc_encrypt(dest, src, len, &scheds[1]);
713 des_cbc_decrypt(dest, src, len, &scheds[0]);
714 }
715
716 static void des_cbc3_decrypt(unsigned char *dest, const unsigned char *src,
717 unsigned int len, DESContext * scheds)
718 {
719 word32 out[2], iv0, iv1, xL, xR;
720 unsigned int i;
721
722 assert((len & 7) == 0);
723
724 iv0 = scheds->iv0;
725 iv1 = scheds->iv1;
726 for (i = 0; i < len; i += 8) {
727 xL = GET_32BIT_MSB_FIRST(src);
728 src += 4;
729 xR = GET_32BIT_MSB_FIRST(src);
730 src += 4;
731 des_decipher(out, xL, xR, &scheds[2]);
732 des_encipher(out, out[0], out[1], &scheds[1]);
733 des_decipher(out, out[0], out[1], &scheds[0]);
734 iv0 ^= out[0];
735 iv1 ^= out[1];
736 PUT_32BIT_MSB_FIRST(dest, iv0);
737 dest += 4;
738 PUT_32BIT_MSB_FIRST(dest, iv1);
739 dest += 4;
740 iv0 = xL;
741 iv1 = xR;
742 }
743 scheds->iv0 = iv0;
744 scheds->iv1 = iv1;
745 }
746
747 static void *des3_make_context(void)
748 {
749 return snewn(3, DESContext);
750 }
751
752 static void *des3_ssh1_make_context(void)
753 {
754 /* Need 3 keys for each direction, in SSH1 */
755 return snewn(6, DESContext);
756 }
757
758 static void *des_make_context(void)
759 {
760 return snew(DESContext);
761 }
762
763 static void *des_ssh1_make_context(void)
764 {
765 /* Need one key for each direction, in SSH1 */
766 return snewn(2, DESContext);
767 }
768
769 static void des3_free_context(void *handle) /* used for both 3DES and DES */
770 {
771 sfree(handle);
772 }
773
774 static void des3_key(void *handle, unsigned char *key)
775 {
776 DESContext *keys = (DESContext *) handle;
777 des_key_setup(GET_32BIT_MSB_FIRST(key),
778 GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
779 des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
780 GET_32BIT_MSB_FIRST(key + 12), &keys[1]);
781 des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
782 GET_32BIT_MSB_FIRST(key + 20), &keys[2]);
783 }
784
785 static void des3_iv(void *handle, unsigned char *key)
786 {
787 DESContext *keys = (DESContext *) handle;
788 keys[0].iv0 = GET_32BIT_MSB_FIRST(key);
789 keys[0].iv1 = GET_32BIT_MSB_FIRST(key + 4);
790 }
791
792 static void des_key(void *handle, unsigned char *key)
793 {
794 DESContext *keys = (DESContext *) handle;
795 des_key_setup(GET_32BIT_MSB_FIRST(key),
796 GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
797 }
798
799 static void des3_sesskey(void *handle, unsigned char *key)
800 {
801 DESContext *keys = (DESContext *) handle;
802 des3_key(keys, key);
803 des3_key(keys+3, key);
804 }
805
806 static void des3_encrypt_blk(void *handle, unsigned char *blk, int len)
807 {
808 DESContext *keys = (DESContext *) handle;
809 des_3cbc_encrypt(blk, blk, len, keys);
810 }
811
812 static void des3_decrypt_blk(void *handle, unsigned char *blk, int len)
813 {
814 DESContext *keys = (DESContext *) handle;
815 des_3cbc_decrypt(blk, blk, len, keys+3);
816 }
817
818 static void des3_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
819 {
820 DESContext *keys = (DESContext *) handle;
821 des_cbc3_encrypt(blk, blk, len, keys);
822 }
823
824 static void des3_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
825 {
826 DESContext *keys = (DESContext *) handle;
827 des_cbc3_decrypt(blk, blk, len, keys);
828 }
829
830 static void des_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
831 {
832 DESContext *keys = (DESContext *) handle;
833 des_cbc_encrypt(blk, blk, len, keys);
834 }
835
836 static void des_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
837 {
838 DESContext *keys = (DESContext *) handle;
839 des_cbc_decrypt(blk, blk, len, keys);
840 }
841
842 void des3_decrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
843 {
844 DESContext ourkeys[3];
845 des_key_setup(GET_32BIT_MSB_FIRST(key),
846 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
847 des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
848 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
849 des_key_setup(GET_32BIT_MSB_FIRST(key),
850 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
851 des_3cbc_decrypt(blk, blk, len, ourkeys);
852 memset(ourkeys, 0, sizeof(ourkeys));
853 }
854
855 void des3_encrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
856 {
857 DESContext ourkeys[3];
858 des_key_setup(GET_32BIT_MSB_FIRST(key),
859 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
860 des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
861 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
862 des_key_setup(GET_32BIT_MSB_FIRST(key),
863 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
864 des_3cbc_encrypt(blk, blk, len, ourkeys);
865 memset(ourkeys, 0, sizeof(ourkeys));
866 }
867
868 void des3_decrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
869 unsigned char *blk, int len)
870 {
871 DESContext ourkeys[3];
872 des_key_setup(GET_32BIT_MSB_FIRST(key),
873 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
874 des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
875 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
876 des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
877 GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
878 ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
879 ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
880 des_cbc3_decrypt(blk, blk, len, ourkeys);
881 memset(ourkeys, 0, sizeof(ourkeys));
882 }
883
884 void des3_encrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
885 unsigned char *blk, int len)
886 {
887 DESContext ourkeys[3];
888 des_key_setup(GET_32BIT_MSB_FIRST(key),
889 GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
890 des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
891 GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
892 des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
893 GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
894 ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
895 ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
896 des_cbc3_encrypt(blk, blk, len, ourkeys);
897 memset(ourkeys, 0, sizeof(ourkeys));
898 }
899
900 static void des_keysetup_xdmauth(unsigned char *keydata, DESContext *dc)
901 {
902 unsigned char key[8];
903 int i, nbits, j;
904 unsigned int bits;
905
906 bits = 0;
907 nbits = 0;
908 j = 0;
909 for (i = 0; i < 8; i++) {
910 if (nbits < 7) {
911 bits = (bits << 8) | keydata[j];
912 nbits += 8;
913 j++;
914 }
915 key[i] = (bits >> (nbits - 7)) << 1;
916 bits &= ~(0x7F << (nbits - 7));
917 nbits -= 7;
918 }
919
920 des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key + 4), dc);
921 }
922
923 void des_encrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)
924 {
925 DESContext dc;
926 des_keysetup_xdmauth(keydata, &dc);
927 des_cbc_encrypt(blk, blk, 24, &dc);
928 }
929
930 void des_decrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)
931 {
932 DESContext dc;
933 des_keysetup_xdmauth(keydata, &dc);
934 des_cbc_decrypt(blk, blk, 24, &dc);
935 }
936
937 static const struct ssh2_cipher ssh_3des_ssh2 = {
938 des3_make_context, des3_free_context, des3_iv, des3_key,
939 des3_ssh2_encrypt_blk, des3_ssh2_decrypt_blk,
940 "3des-cbc",
941 8, 168, "triple-DES"
942 };
943
944 /*
945 * Single DES in ssh2. "des-cbc" is marked as HISTORIC in
946 * draft-ietf-secsh-assignednumbers-04.txt, referring to
947 * FIPS-46-3. ("Single DES (i.e., DES) will be permitted
948 * for legacy systems only.") , but ssh.com support it and
949 * apparently aren't the only people to do so, so we sigh
950 * and implement it anyway.
951 */
952 static const struct ssh2_cipher ssh_des_ssh2 = {
953 des_make_context, des3_free_context, des3_iv, des_key,
954 des_ssh2_encrypt_blk, des_ssh2_decrypt_blk,
955 "des-cbc",
956 8, 56, "single-DES"
957 };
958
959 static const struct ssh2_cipher *const des3_list[] = {
960 &ssh_3des_ssh2
961 };
962
963 const struct ssh2_ciphers ssh2_3des = {
964 sizeof(des3_list) / sizeof(*des3_list),
965 des3_list
966 };
967
968 static const struct ssh2_cipher *const des_list[] = {
969 &ssh_des_ssh2
970 };
971
972 const struct ssh2_ciphers ssh2_des = {
973 sizeof(des3_list) / sizeof(*des_list),
974 des_list
975 };
976
977 const struct ssh_cipher ssh_3des = {
978 des3_ssh1_make_context, des3_free_context, des3_sesskey,
979 des3_encrypt_blk, des3_decrypt_blk,
980 8, "triple-DES"
981 };
982
983 static void des_sesskey(void *handle, unsigned char *key)
984 {
985 DESContext *keys = (DESContext *) handle;
986 des_key(keys, key);
987 des_key(keys+1, key);
988 }
989
990 static void des_encrypt_blk(void *handle, unsigned char *blk, int len)
991 {
992 DESContext *keys = (DESContext *) handle;
993 des_cbc_encrypt(blk, blk, len, keys);
994 }
995
996 static void des_decrypt_blk(void *handle, unsigned char *blk, int len)
997 {
998 DESContext *keys = (DESContext *) handle;
999 des_cbc_decrypt(blk, blk, len, keys+1);
1000 }
1001
1002 const struct ssh_cipher ssh_des = {
1003 des_ssh1_make_context, des3_free_context, des_sesskey,
1004 des_encrypt_blk, des_decrypt_blk,
1005 8, "single-DES"
1006 };