Raise the default scrollback from 200 to 2000 lines. The former was
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 smemclr(b, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180 }
181
182 /*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187 static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189 {
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198 }
199
200 /*
201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 *
205 * 'scratch' must point to an array of BignumInt of size at least
206 * mul_compute_scratch(len). (This covers the needs of internal_mul
207 * and all its recursive calls to itself.)
208 */
209 #define KARATSUBA_THRESHOLD 50
210 static int mul_compute_scratch(int len)
211 {
212 int ret = 0;
213 while (len > KARATSUBA_THRESHOLD) {
214 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
215 int midlen = botlen + 1;
216 ret += 4*midlen;
217 len = midlen;
218 }
219 return ret;
220 }
221 static void internal_mul(const BignumInt *a, const BignumInt *b,
222 BignumInt *c, int len, BignumInt *scratch)
223 {
224 if (len > KARATSUBA_THRESHOLD) {
225 int i;
226
227 /*
228 * Karatsuba divide-and-conquer algorithm. Cut each input in
229 * half, so that it's expressed as two big 'digits' in a giant
230 * base D:
231 *
232 * a = a_1 D + a_0
233 * b = b_1 D + b_0
234 *
235 * Then the product is of course
236 *
237 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
238 *
239 * and we compute the three coefficients by recursively
240 * calling ourself to do half-length multiplications.
241 *
242 * The clever bit that makes this worth doing is that we only
243 * need _one_ half-length multiplication for the central
244 * coefficient rather than the two that it obviouly looks
245 * like, because we can use a single multiplication to compute
246 *
247 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
248 *
249 * and then we subtract the other two coefficients (a_1 b_1
250 * and a_0 b_0) which we were computing anyway.
251 *
252 * Hence we get to multiply two numbers of length N in about
253 * three times as much work as it takes to multiply numbers of
254 * length N/2, which is obviously better than the four times
255 * as much work it would take if we just did a long
256 * conventional multiply.
257 */
258
259 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
260 int midlen = botlen + 1;
261 BignumDblInt carry;
262 #ifdef KARA_DEBUG
263 int i;
264 #endif
265
266 /*
267 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
268 * in the output array, so we can compute them immediately in
269 * place.
270 */
271
272 #ifdef KARA_DEBUG
273 printf("a1,a0 = 0x");
274 for (i = 0; i < len; i++) {
275 if (i == toplen) printf(", 0x");
276 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
277 }
278 printf("\n");
279 printf("b1,b0 = 0x");
280 for (i = 0; i < len; i++) {
281 if (i == toplen) printf(", 0x");
282 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
283 }
284 printf("\n");
285 #endif
286
287 /* a_1 b_1 */
288 internal_mul(a, b, c, toplen, scratch);
289 #ifdef KARA_DEBUG
290 printf("a1b1 = 0x");
291 for (i = 0; i < 2*toplen; i++) {
292 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
293 }
294 printf("\n");
295 #endif
296
297 /* a_0 b_0 */
298 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
299 #ifdef KARA_DEBUG
300 printf("a0b0 = 0x");
301 for (i = 0; i < 2*botlen; i++) {
302 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
303 }
304 printf("\n");
305 #endif
306
307 /* Zero padding. midlen exceeds toplen by at most 2, so just
308 * zero the first two words of each input and the rest will be
309 * copied over. */
310 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
311
312 for (i = 0; i < toplen; i++) {
313 scratch[midlen - toplen + i] = a[i]; /* a_1 */
314 scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
315 }
316
317 /* compute a_1 + a_0 */
318 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
319 #ifdef KARA_DEBUG
320 printf("a1plusa0 = 0x");
321 for (i = 0; i < midlen; i++) {
322 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
323 }
324 printf("\n");
325 #endif
326 /* compute b_1 + b_0 */
327 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
328 scratch+midlen+1, botlen);
329 #ifdef KARA_DEBUG
330 printf("b1plusb0 = 0x");
331 for (i = 0; i < midlen; i++) {
332 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
333 }
334 printf("\n");
335 #endif
336
337 /*
338 * Now we can do the third multiplication.
339 */
340 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
341 scratch + 4*midlen);
342 #ifdef KARA_DEBUG
343 printf("a1plusa0timesb1plusb0 = 0x");
344 for (i = 0; i < 2*midlen; i++) {
345 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
346 }
347 printf("\n");
348 #endif
349
350 /*
351 * Now we can reuse the first half of 'scratch' to compute the
352 * sum of the outer two coefficients, to subtract from that
353 * product to obtain the middle one.
354 */
355 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
356 for (i = 0; i < 2*toplen; i++)
357 scratch[2*midlen - 2*toplen + i] = c[i];
358 scratch[1] = internal_add(scratch+2, c + 2*toplen,
359 scratch+2, 2*botlen);
360 #ifdef KARA_DEBUG
361 printf("a1b1plusa0b0 = 0x");
362 for (i = 0; i < 2*midlen; i++) {
363 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
364 }
365 printf("\n");
366 #endif
367
368 internal_sub(scratch + 2*midlen, scratch,
369 scratch + 2*midlen, 2*midlen);
370 #ifdef KARA_DEBUG
371 printf("a1b0plusa0b1 = 0x");
372 for (i = 0; i < 2*midlen; i++) {
373 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
374 }
375 printf("\n");
376 #endif
377
378 /*
379 * And now all we need to do is to add that middle coefficient
380 * back into the output. We may have to propagate a carry
381 * further up the output, but we can be sure it won't
382 * propagate right the way off the top.
383 */
384 carry = internal_add(c + 2*len - botlen - 2*midlen,
385 scratch + 2*midlen,
386 c + 2*len - botlen - 2*midlen, 2*midlen);
387 i = 2*len - botlen - 2*midlen - 1;
388 while (carry) {
389 assert(i >= 0);
390 carry += c[i];
391 c[i] = (BignumInt)carry;
392 carry >>= BIGNUM_INT_BITS;
393 i--;
394 }
395 #ifdef KARA_DEBUG
396 printf("ab = 0x");
397 for (i = 0; i < 2*len; i++) {
398 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
399 }
400 printf("\n");
401 #endif
402
403 } else {
404 int i;
405 BignumInt carry;
406 BignumDblInt t;
407 const BignumInt *ap, *bp;
408 BignumInt *cp, *cps;
409
410 /*
411 * Multiply in the ordinary O(N^2) way.
412 */
413
414 for (i = 0; i < 2 * len; i++)
415 c[i] = 0;
416
417 for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
418 carry = 0;
419 for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
420 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
421 *cp = (BignumInt) t;
422 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
423 }
424 *cp = carry;
425 }
426 }
427 }
428
429 /*
430 * Variant form of internal_mul used for the initial step of
431 * Montgomery reduction. Only bothers outputting 'len' words
432 * (everything above that is thrown away).
433 */
434 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
435 BignumInt *c, int len, BignumInt *scratch)
436 {
437 if (len > KARATSUBA_THRESHOLD) {
438 int i;
439
440 /*
441 * Karatsuba-aware version of internal_mul_low. As before, we
442 * express each input value as a shifted combination of two
443 * halves:
444 *
445 * a = a_1 D + a_0
446 * b = b_1 D + b_0
447 *
448 * Then the full product is, as before,
449 *
450 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
451 *
452 * Provided we choose D on the large side (so that a_0 and b_0
453 * are _at least_ as long as a_1 and b_1), we don't need the
454 * topmost term at all, and we only need half of the middle
455 * term. So there's no point in doing the proper Karatsuba
456 * optimisation which computes the middle term using the top
457 * one, because we'd take as long computing the top one as
458 * just computing the middle one directly.
459 *
460 * So instead, we do a much more obvious thing: we call the
461 * fully optimised internal_mul to compute a_0 b_0, and we
462 * recursively call ourself to compute the _bottom halves_ of
463 * a_1 b_0 and a_0 b_1, each of which we add into the result
464 * in the obvious way.
465 *
466 * In other words, there's no actual Karatsuba _optimisation_
467 * in this function; the only benefit in doing it this way is
468 * that we call internal_mul proper for a large part of the
469 * work, and _that_ can optimise its operation.
470 */
471
472 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
473
474 /*
475 * Scratch space for the various bits and pieces we're going
476 * to be adding together: we need botlen*2 words for a_0 b_0
477 * (though we may end up throwing away its topmost word), and
478 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
479 * to exactly 2*len.
480 */
481
482 /* a_0 b_0 */
483 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
484 scratch + 2*len);
485
486 /* a_1 b_0 */
487 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
488 scratch + 2*len);
489
490 /* a_0 b_1 */
491 internal_mul_low(a + len - toplen, b, scratch, toplen,
492 scratch + 2*len);
493
494 /* Copy the bottom half of the big coefficient into place */
495 for (i = 0; i < botlen; i++)
496 c[toplen + i] = scratch[2*toplen + botlen + i];
497
498 /* Add the two small coefficients, throwing away the returned carry */
499 internal_add(scratch, scratch + toplen, scratch, toplen);
500
501 /* And add that to the large coefficient, leaving the result in c. */
502 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
503 c, toplen);
504
505 } else {
506 int i;
507 BignumInt carry;
508 BignumDblInt t;
509 const BignumInt *ap, *bp;
510 BignumInt *cp, *cps;
511
512 /*
513 * Multiply in the ordinary O(N^2) way.
514 */
515
516 for (i = 0; i < len; i++)
517 c[i] = 0;
518
519 for (cps = c + len, ap = a + len; ap-- > a; cps--) {
520 carry = 0;
521 for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
522 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
523 *cp = (BignumInt) t;
524 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
525 }
526 }
527 }
528 }
529
530 /*
531 * Montgomery reduction. Expects x to be a big-endian array of 2*len
532 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
533 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
534 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
535 * x' < n.
536 *
537 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
538 * each, containing respectively n and the multiplicative inverse of
539 * -n mod r.
540 *
541 * 'tmp' is an array of BignumInt used as scratch space, of length at
542 * least 3*len + mul_compute_scratch(len).
543 */
544 static void monty_reduce(BignumInt *x, const BignumInt *n,
545 const BignumInt *mninv, BignumInt *tmp, int len)
546 {
547 int i;
548 BignumInt carry;
549
550 /*
551 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
552 * that mn is congruent to -x mod r. Hence, mn+x is an exact
553 * multiple of r, and is also (obviously) congruent to x mod n.
554 */
555 internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
556
557 /*
558 * Compute t = (mn+x)/r in ordinary, non-modular, integer
559 * arithmetic. By construction this is exact, and is congruent mod
560 * n to x * r^{-1}, i.e. the answer we want.
561 *
562 * The following multiply leaves that answer in the _most_
563 * significant half of the 'x' array, so then we must shift it
564 * down.
565 */
566 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
567 carry = internal_add(x, tmp+len, x, 2*len);
568 for (i = 0; i < len; i++)
569 x[len + i] = x[i], x[i] = 0;
570
571 /*
572 * Reduce t mod n. This doesn't require a full-on division by n,
573 * but merely a test and single optional subtraction, since we can
574 * show that 0 <= t < 2n.
575 *
576 * Proof:
577 * + we computed m mod r, so 0 <= m < r.
578 * + so 0 <= mn < rn, obviously
579 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
580 * + yielding 0 <= (mn+x)/r < 2n as required.
581 */
582 if (!carry) {
583 for (i = 0; i < len; i++)
584 if (x[len + i] != n[i])
585 break;
586 }
587 if (carry || i >= len || x[len + i] > n[i])
588 internal_sub(x+len, n, x+len, len);
589 }
590
591 static void internal_add_shifted(BignumInt *number,
592 unsigned n, int shift)
593 {
594 int word = 1 + (shift / BIGNUM_INT_BITS);
595 int bshift = shift % BIGNUM_INT_BITS;
596 BignumDblInt addend;
597
598 addend = (BignumDblInt)n << bshift;
599
600 while (addend) {
601 addend += number[word];
602 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
603 addend >>= BIGNUM_INT_BITS;
604 word++;
605 }
606 }
607
608 /*
609 * Compute a = a % m.
610 * Input in first alen words of a and first mlen words of m.
611 * Output in first alen words of a
612 * (of which first alen-mlen words will be zero).
613 * The MSW of m MUST have its high bit set.
614 * Quotient is accumulated in the `quotient' array, which is a Bignum
615 * rather than the internal bigendian format. Quotient parts are shifted
616 * left by `qshift' before adding into quot.
617 */
618 static void internal_mod(BignumInt *a, int alen,
619 BignumInt *m, int mlen,
620 BignumInt *quot, int qshift)
621 {
622 BignumInt m0, m1;
623 unsigned int h;
624 int i, k;
625
626 m0 = m[0];
627 if (mlen > 1)
628 m1 = m[1];
629 else
630 m1 = 0;
631
632 for (i = 0; i <= alen - mlen; i++) {
633 BignumDblInt t;
634 unsigned int q, r, c, ai1;
635
636 if (i == 0) {
637 h = 0;
638 } else {
639 h = a[i - 1];
640 a[i - 1] = 0;
641 }
642
643 if (i == alen - 1)
644 ai1 = 0;
645 else
646 ai1 = a[i + 1];
647
648 /* Find q = h:a[i] / m0 */
649 if (h >= m0) {
650 /*
651 * Special case.
652 *
653 * To illustrate it, suppose a BignumInt is 8 bits, and
654 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
655 * our initial division will be 0xA123 / 0xA1, which
656 * will give a quotient of 0x100 and a divide overflow.
657 * However, the invariants in this division algorithm
658 * are not violated, since the full number A1:23:... is
659 * _less_ than the quotient prefix A1:B2:... and so the
660 * following correction loop would have sorted it out.
661 *
662 * In this situation we set q to be the largest
663 * quotient we _can_ stomach (0xFF, of course).
664 */
665 q = BIGNUM_INT_MASK;
666 } else {
667 /* Macro doesn't want an array subscript expression passed
668 * into it (see definition), so use a temporary. */
669 BignumInt tmplo = a[i];
670 DIVMOD_WORD(q, r, h, tmplo, m0);
671
672 /* Refine our estimate of q by looking at
673 h:a[i]:a[i+1] / m0:m1 */
674 t = MUL_WORD(m1, q);
675 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
676 q--;
677 t -= m1;
678 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
679 if (r >= (BignumDblInt) m0 &&
680 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
681 }
682 }
683
684 /* Subtract q * m from a[i...] */
685 c = 0;
686 for (k = mlen - 1; k >= 0; k--) {
687 t = MUL_WORD(q, m[k]);
688 t += c;
689 c = (unsigned)(t >> BIGNUM_INT_BITS);
690 if ((BignumInt) t > a[i + k])
691 c++;
692 a[i + k] -= (BignumInt) t;
693 }
694
695 /* Add back m in case of borrow */
696 if (c != h) {
697 t = 0;
698 for (k = mlen - 1; k >= 0; k--) {
699 t += m[k];
700 t += a[i + k];
701 a[i + k] = (BignumInt) t;
702 t = t >> BIGNUM_INT_BITS;
703 }
704 q--;
705 }
706 if (quot)
707 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
708 }
709 }
710
711 /*
712 * Compute (base ^ exp) % mod, the pedestrian way.
713 */
714 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
715 {
716 BignumInt *a, *b, *n, *m, *scratch;
717 int mshift;
718 int mlen, scratchlen, i, j;
719 Bignum base, result;
720
721 /*
722 * The most significant word of mod needs to be non-zero. It
723 * should already be, but let's make sure.
724 */
725 assert(mod[mod[0]] != 0);
726
727 /*
728 * Make sure the base is smaller than the modulus, by reducing
729 * it modulo the modulus if not.
730 */
731 base = bigmod(base_in, mod);
732
733 /* Allocate m of size mlen, copy mod to m */
734 /* We use big endian internally */
735 mlen = mod[0];
736 m = snewn(mlen, BignumInt);
737 for (j = 0; j < mlen; j++)
738 m[j] = mod[mod[0] - j];
739
740 /* Shift m left to make msb bit set */
741 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
742 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
743 break;
744 if (mshift) {
745 for (i = 0; i < mlen - 1; i++)
746 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
747 m[mlen - 1] = m[mlen - 1] << mshift;
748 }
749
750 /* Allocate n of size mlen, copy base to n */
751 n = snewn(mlen, BignumInt);
752 i = mlen - base[0];
753 for (j = 0; j < i; j++)
754 n[j] = 0;
755 for (j = 0; j < (int)base[0]; j++)
756 n[i + j] = base[base[0] - j];
757
758 /* Allocate a and b of size 2*mlen. Set a = 1 */
759 a = snewn(2 * mlen, BignumInt);
760 b = snewn(2 * mlen, BignumInt);
761 for (i = 0; i < 2 * mlen; i++)
762 a[i] = 0;
763 a[2 * mlen - 1] = 1;
764
765 /* Scratch space for multiplies */
766 scratchlen = mul_compute_scratch(mlen);
767 scratch = snewn(scratchlen, BignumInt);
768
769 /* Skip leading zero bits of exp. */
770 i = 0;
771 j = BIGNUM_INT_BITS-1;
772 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
773 j--;
774 if (j < 0) {
775 i++;
776 j = BIGNUM_INT_BITS-1;
777 }
778 }
779
780 /* Main computation */
781 while (i < (int)exp[0]) {
782 while (j >= 0) {
783 internal_mul(a + mlen, a + mlen, b, mlen, scratch);
784 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
785 if ((exp[exp[0] - i] & (1 << j)) != 0) {
786 internal_mul(b + mlen, n, a, mlen, scratch);
787 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
788 } else {
789 BignumInt *t;
790 t = a;
791 a = b;
792 b = t;
793 }
794 j--;
795 }
796 i++;
797 j = BIGNUM_INT_BITS-1;
798 }
799
800 /* Fixup result in case the modulus was shifted */
801 if (mshift) {
802 for (i = mlen - 1; i < 2 * mlen - 1; i++)
803 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
804 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
805 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
806 for (i = 2 * mlen - 1; i >= mlen; i--)
807 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
808 }
809
810 /* Copy result to buffer */
811 result = newbn(mod[0]);
812 for (i = 0; i < mlen; i++)
813 result[result[0] - i] = a[i + mlen];
814 while (result[0] > 1 && result[result[0]] == 0)
815 result[0]--;
816
817 /* Free temporary arrays */
818 smemclr(a, 2 * mlen * sizeof(*a));
819 sfree(a);
820 smemclr(scratch, scratchlen * sizeof(*scratch));
821 sfree(scratch);
822 smemclr(b, 2 * mlen * sizeof(*b));
823 sfree(b);
824 smemclr(m, mlen * sizeof(*m));
825 sfree(m);
826 smemclr(n, mlen * sizeof(*n));
827 sfree(n);
828
829 freebn(base);
830
831 return result;
832 }
833
834 /*
835 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
836 * technique where possible, falling back to modpow_simple otherwise.
837 */
838 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
839 {
840 BignumInt *a, *b, *x, *n, *mninv, *scratch;
841 int len, scratchlen, i, j;
842 Bignum base, base2, r, rn, inv, result;
843
844 /*
845 * The most significant word of mod needs to be non-zero. It
846 * should already be, but let's make sure.
847 */
848 assert(mod[mod[0]] != 0);
849
850 /*
851 * mod had better be odd, or we can't do Montgomery multiplication
852 * using a power of two at all.
853 */
854 if (!(mod[1] & 1))
855 return modpow_simple(base_in, exp, mod);
856
857 /*
858 * Make sure the base is smaller than the modulus, by reducing
859 * it modulo the modulus if not.
860 */
861 base = bigmod(base_in, mod);
862
863 /*
864 * Compute the inverse of n mod r, for monty_reduce. (In fact we
865 * want the inverse of _minus_ n mod r, but we'll sort that out
866 * below.)
867 */
868 len = mod[0];
869 r = bn_power_2(BIGNUM_INT_BITS * len);
870 inv = modinv(mod, r);
871
872 /*
873 * Multiply the base by r mod n, to get it into Montgomery
874 * representation.
875 */
876 base2 = modmul(base, r, mod);
877 freebn(base);
878 base = base2;
879
880 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
881
882 freebn(r); /* won't need this any more */
883
884 /*
885 * Set up internal arrays of the right lengths, in big-endian
886 * format, containing the base, the modulus, and the modulus's
887 * inverse.
888 */
889 n = snewn(len, BignumInt);
890 for (j = 0; j < len; j++)
891 n[len - 1 - j] = mod[j + 1];
892
893 mninv = snewn(len, BignumInt);
894 for (j = 0; j < len; j++)
895 mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
896 freebn(inv); /* we don't need this copy of it any more */
897 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
898 x = snewn(len, BignumInt);
899 for (j = 0; j < len; j++)
900 x[j] = 0;
901 internal_sub(x, mninv, mninv, len);
902
903 /* x = snewn(len, BignumInt); */ /* already done above */
904 for (j = 0; j < len; j++)
905 x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
906 freebn(base); /* we don't need this copy of it any more */
907
908 a = snewn(2*len, BignumInt);
909 b = snewn(2*len, BignumInt);
910 for (j = 0; j < len; j++)
911 a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
912 freebn(rn);
913
914 /* Scratch space for multiplies */
915 scratchlen = 3*len + mul_compute_scratch(len);
916 scratch = snewn(scratchlen, BignumInt);
917
918 /* Skip leading zero bits of exp. */
919 i = 0;
920 j = BIGNUM_INT_BITS-1;
921 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
922 j--;
923 if (j < 0) {
924 i++;
925 j = BIGNUM_INT_BITS-1;
926 }
927 }
928
929 /* Main computation */
930 while (i < (int)exp[0]) {
931 while (j >= 0) {
932 internal_mul(a + len, a + len, b, len, scratch);
933 monty_reduce(b, n, mninv, scratch, len);
934 if ((exp[exp[0] - i] & (1 << j)) != 0) {
935 internal_mul(b + len, x, a, len, scratch);
936 monty_reduce(a, n, mninv, scratch, len);
937 } else {
938 BignumInt *t;
939 t = a;
940 a = b;
941 b = t;
942 }
943 j--;
944 }
945 i++;
946 j = BIGNUM_INT_BITS-1;
947 }
948
949 /*
950 * Final monty_reduce to get back from the adjusted Montgomery
951 * representation.
952 */
953 monty_reduce(a, n, mninv, scratch, len);
954
955 /* Copy result to buffer */
956 result = newbn(mod[0]);
957 for (i = 0; i < len; i++)
958 result[result[0] - i] = a[i + len];
959 while (result[0] > 1 && result[result[0]] == 0)
960 result[0]--;
961
962 /* Free temporary arrays */
963 smemclr(scratch, scratchlen * sizeof(*scratch));
964 sfree(scratch);
965 smemclr(a, 2 * len * sizeof(*a));
966 sfree(a);
967 smemclr(b, 2 * len * sizeof(*b));
968 sfree(b);
969 smemclr(mninv, len * sizeof(*mninv));
970 sfree(mninv);
971 smemclr(n, len * sizeof(*n));
972 sfree(n);
973 smemclr(x, len * sizeof(*x));
974 sfree(x);
975
976 return result;
977 }
978
979 /*
980 * Compute (p * q) % mod.
981 * The most significant word of mod MUST be non-zero.
982 * We assume that the result array is the same size as the mod array.
983 */
984 Bignum modmul(Bignum p, Bignum q, Bignum mod)
985 {
986 BignumInt *a, *n, *m, *o, *scratch;
987 int mshift, scratchlen;
988 int pqlen, mlen, rlen, i, j;
989 Bignum result;
990
991 /* Allocate m of size mlen, copy mod to m */
992 /* We use big endian internally */
993 mlen = mod[0];
994 m = snewn(mlen, BignumInt);
995 for (j = 0; j < mlen; j++)
996 m[j] = mod[mod[0] - j];
997
998 /* Shift m left to make msb bit set */
999 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1000 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1001 break;
1002 if (mshift) {
1003 for (i = 0; i < mlen - 1; i++)
1004 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1005 m[mlen - 1] = m[mlen - 1] << mshift;
1006 }
1007
1008 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1009
1010 /*
1011 * Make sure that we're allowing enough space. The shifting below
1012 * will underflow the vectors we allocate if pqlen is too small.
1013 */
1014 if (2*pqlen <= mlen)
1015 pqlen = mlen/2 + 1;
1016
1017 /* Allocate n of size pqlen, copy p to n */
1018 n = snewn(pqlen, BignumInt);
1019 i = pqlen - p[0];
1020 for (j = 0; j < i; j++)
1021 n[j] = 0;
1022 for (j = 0; j < (int)p[0]; j++)
1023 n[i + j] = p[p[0] - j];
1024
1025 /* Allocate o of size pqlen, copy q to o */
1026 o = snewn(pqlen, BignumInt);
1027 i = pqlen - q[0];
1028 for (j = 0; j < i; j++)
1029 o[j] = 0;
1030 for (j = 0; j < (int)q[0]; j++)
1031 o[i + j] = q[q[0] - j];
1032
1033 /* Allocate a of size 2*pqlen for result */
1034 a = snewn(2 * pqlen, BignumInt);
1035
1036 /* Scratch space for multiplies */
1037 scratchlen = mul_compute_scratch(pqlen);
1038 scratch = snewn(scratchlen, BignumInt);
1039
1040 /* Main computation */
1041 internal_mul(n, o, a, pqlen, scratch);
1042 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1043
1044 /* Fixup result in case the modulus was shifted */
1045 if (mshift) {
1046 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
1047 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
1048 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
1049 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1050 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
1051 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
1052 }
1053
1054 /* Copy result to buffer */
1055 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
1056 result = newbn(rlen);
1057 for (i = 0; i < rlen; i++)
1058 result[result[0] - i] = a[i + 2 * pqlen - rlen];
1059 while (result[0] > 1 && result[result[0]] == 0)
1060 result[0]--;
1061
1062 /* Free temporary arrays */
1063 smemclr(scratch, scratchlen * sizeof(*scratch));
1064 sfree(scratch);
1065 smemclr(a, 2 * pqlen * sizeof(*a));
1066 sfree(a);
1067 smemclr(m, mlen * sizeof(*m));
1068 sfree(m);
1069 smemclr(n, pqlen * sizeof(*n));
1070 sfree(n);
1071 smemclr(o, pqlen * sizeof(*o));
1072 sfree(o);
1073
1074 return result;
1075 }
1076
1077 /*
1078 * Compute p % mod.
1079 * The most significant word of mod MUST be non-zero.
1080 * We assume that the result array is the same size as the mod array.
1081 * We optionally write out a quotient if `quotient' is non-NULL.
1082 * We can avoid writing out the result if `result' is NULL.
1083 */
1084 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1085 {
1086 BignumInt *n, *m;
1087 int mshift;
1088 int plen, mlen, i, j;
1089
1090 /* Allocate m of size mlen, copy mod to m */
1091 /* We use big endian internally */
1092 mlen = mod[0];
1093 m = snewn(mlen, BignumInt);
1094 for (j = 0; j < mlen; j++)
1095 m[j] = mod[mod[0] - j];
1096
1097 /* Shift m left to make msb bit set */
1098 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1099 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1100 break;
1101 if (mshift) {
1102 for (i = 0; i < mlen - 1; i++)
1103 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1104 m[mlen - 1] = m[mlen - 1] << mshift;
1105 }
1106
1107 plen = p[0];
1108 /* Ensure plen > mlen */
1109 if (plen <= mlen)
1110 plen = mlen + 1;
1111
1112 /* Allocate n of size plen, copy p to n */
1113 n = snewn(plen, BignumInt);
1114 for (j = 0; j < plen; j++)
1115 n[j] = 0;
1116 for (j = 1; j <= (int)p[0]; j++)
1117 n[plen - j] = p[j];
1118
1119 /* Main computation */
1120 internal_mod(n, plen, m, mlen, quotient, mshift);
1121
1122 /* Fixup result in case the modulus was shifted */
1123 if (mshift) {
1124 for (i = plen - mlen - 1; i < plen - 1; i++)
1125 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
1126 n[plen - 1] = n[plen - 1] << mshift;
1127 internal_mod(n, plen, m, mlen, quotient, 0);
1128 for (i = plen - 1; i >= plen - mlen; i--)
1129 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
1130 }
1131
1132 /* Copy result to buffer */
1133 if (result) {
1134 for (i = 1; i <= (int)result[0]; i++) {
1135 int j = plen - i;
1136 result[i] = j >= 0 ? n[j] : 0;
1137 }
1138 }
1139
1140 /* Free temporary arrays */
1141 smemclr(m, mlen * sizeof(*m));
1142 sfree(m);
1143 smemclr(n, plen * sizeof(*n));
1144 sfree(n);
1145 }
1146
1147 /*
1148 * Decrement a number.
1149 */
1150 void decbn(Bignum bn)
1151 {
1152 int i = 1;
1153 while (i < (int)bn[0] && bn[i] == 0)
1154 bn[i++] = BIGNUM_INT_MASK;
1155 bn[i]--;
1156 }
1157
1158 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1159 {
1160 Bignum result;
1161 int w, i;
1162
1163 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1164
1165 result = newbn(w);
1166 for (i = 1; i <= w; i++)
1167 result[i] = 0;
1168 for (i = nbytes; i--;) {
1169 unsigned char byte = *data++;
1170 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1171 }
1172
1173 while (result[0] > 1 && result[result[0]] == 0)
1174 result[0]--;
1175 return result;
1176 }
1177
1178 /*
1179 * Read an SSH-1-format bignum from a data buffer. Return the number
1180 * of bytes consumed, or -1 if there wasn't enough data.
1181 */
1182 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1183 {
1184 const unsigned char *p = data;
1185 int i;
1186 int w, b;
1187
1188 if (len < 2)
1189 return -1;
1190
1191 w = 0;
1192 for (i = 0; i < 2; i++)
1193 w = (w << 8) + *p++;
1194 b = (w + 7) / 8; /* bits -> bytes */
1195
1196 if (len < b+2)
1197 return -1;
1198
1199 if (!result) /* just return length */
1200 return b + 2;
1201
1202 *result = bignum_from_bytes(p, b);
1203
1204 return p + b - data;
1205 }
1206
1207 /*
1208 * Return the bit count of a bignum, for SSH-1 encoding.
1209 */
1210 int bignum_bitcount(Bignum bn)
1211 {
1212 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1213 while (bitcount >= 0
1214 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1215 return bitcount + 1;
1216 }
1217
1218 /*
1219 * Return the byte length of a bignum when SSH-1 encoded.
1220 */
1221 int ssh1_bignum_length(Bignum bn)
1222 {
1223 return 2 + (bignum_bitcount(bn) + 7) / 8;
1224 }
1225
1226 /*
1227 * Return the byte length of a bignum when SSH-2 encoded.
1228 */
1229 int ssh2_bignum_length(Bignum bn)
1230 {
1231 return 4 + (bignum_bitcount(bn) + 8) / 8;
1232 }
1233
1234 /*
1235 * Return a byte from a bignum; 0 is least significant, etc.
1236 */
1237 int bignum_byte(Bignum bn, int i)
1238 {
1239 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1240 return 0; /* beyond the end */
1241 else
1242 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1243 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1244 }
1245
1246 /*
1247 * Return a bit from a bignum; 0 is least significant, etc.
1248 */
1249 int bignum_bit(Bignum bn, int i)
1250 {
1251 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1252 return 0; /* beyond the end */
1253 else
1254 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1255 }
1256
1257 /*
1258 * Set a bit in a bignum; 0 is least significant, etc.
1259 */
1260 void bignum_set_bit(Bignum bn, int bitnum, int value)
1261 {
1262 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1263 abort(); /* beyond the end */
1264 else {
1265 int v = bitnum / BIGNUM_INT_BITS + 1;
1266 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1267 if (value)
1268 bn[v] |= mask;
1269 else
1270 bn[v] &= ~mask;
1271 }
1272 }
1273
1274 /*
1275 * Write a SSH-1-format bignum into a buffer. It is assumed the
1276 * buffer is big enough. Returns the number of bytes used.
1277 */
1278 int ssh1_write_bignum(void *data, Bignum bn)
1279 {
1280 unsigned char *p = data;
1281 int len = ssh1_bignum_length(bn);
1282 int i;
1283 int bitc = bignum_bitcount(bn);
1284
1285 *p++ = (bitc >> 8) & 0xFF;
1286 *p++ = (bitc) & 0xFF;
1287 for (i = len - 2; i--;)
1288 *p++ = bignum_byte(bn, i);
1289 return len;
1290 }
1291
1292 /*
1293 * Compare two bignums. Returns like strcmp.
1294 */
1295 int bignum_cmp(Bignum a, Bignum b)
1296 {
1297 int amax = a[0], bmax = b[0];
1298 int i = (amax > bmax ? amax : bmax);
1299 while (i) {
1300 BignumInt aval = (i > amax ? 0 : a[i]);
1301 BignumInt bval = (i > bmax ? 0 : b[i]);
1302 if (aval < bval)
1303 return -1;
1304 if (aval > bval)
1305 return +1;
1306 i--;
1307 }
1308 return 0;
1309 }
1310
1311 /*
1312 * Right-shift one bignum to form another.
1313 */
1314 Bignum bignum_rshift(Bignum a, int shift)
1315 {
1316 Bignum ret;
1317 int i, shiftw, shiftb, shiftbb, bits;
1318 BignumInt ai, ai1;
1319
1320 bits = bignum_bitcount(a) - shift;
1321 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1322
1323 if (ret) {
1324 shiftw = shift / BIGNUM_INT_BITS;
1325 shiftb = shift % BIGNUM_INT_BITS;
1326 shiftbb = BIGNUM_INT_BITS - shiftb;
1327
1328 ai1 = a[shiftw + 1];
1329 for (i = 1; i <= (int)ret[0]; i++) {
1330 ai = ai1;
1331 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1332 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1333 }
1334 }
1335
1336 return ret;
1337 }
1338
1339 /*
1340 * Non-modular multiplication and addition.
1341 */
1342 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1343 {
1344 int alen = a[0], blen = b[0];
1345 int mlen = (alen > blen ? alen : blen);
1346 int rlen, i, maxspot;
1347 int wslen;
1348 BignumInt *workspace;
1349 Bignum ret;
1350
1351 /* mlen space for a, mlen space for b, 2*mlen for result,
1352 * plus scratch space for multiplication */
1353 wslen = mlen * 4 + mul_compute_scratch(mlen);
1354 workspace = snewn(wslen, BignumInt);
1355 for (i = 0; i < mlen; i++) {
1356 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1357 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
1358 }
1359
1360 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1361 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
1362
1363 /* now just copy the result back */
1364 rlen = alen + blen + 1;
1365 if (addend && rlen <= (int)addend[0])
1366 rlen = addend[0] + 1;
1367 ret = newbn(rlen);
1368 maxspot = 0;
1369 for (i = 1; i <= (int)ret[0]; i++) {
1370 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1371 if (ret[i] != 0)
1372 maxspot = i;
1373 }
1374 ret[0] = maxspot;
1375
1376 /* now add in the addend, if any */
1377 if (addend) {
1378 BignumDblInt carry = 0;
1379 for (i = 1; i <= rlen; i++) {
1380 carry += (i <= (int)ret[0] ? ret[i] : 0);
1381 carry += (i <= (int)addend[0] ? addend[i] : 0);
1382 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1383 carry >>= BIGNUM_INT_BITS;
1384 if (ret[i] != 0 && i > maxspot)
1385 maxspot = i;
1386 }
1387 }
1388 ret[0] = maxspot;
1389
1390 smemclr(workspace, wslen * sizeof(*workspace));
1391 sfree(workspace);
1392 return ret;
1393 }
1394
1395 /*
1396 * Non-modular multiplication.
1397 */
1398 Bignum bigmul(Bignum a, Bignum b)
1399 {
1400 return bigmuladd(a, b, NULL);
1401 }
1402
1403 /*
1404 * Simple addition.
1405 */
1406 Bignum bigadd(Bignum a, Bignum b)
1407 {
1408 int alen = a[0], blen = b[0];
1409 int rlen = (alen > blen ? alen : blen) + 1;
1410 int i, maxspot;
1411 Bignum ret;
1412 BignumDblInt carry;
1413
1414 ret = newbn(rlen);
1415
1416 carry = 0;
1417 maxspot = 0;
1418 for (i = 1; i <= rlen; i++) {
1419 carry += (i <= (int)a[0] ? a[i] : 0);
1420 carry += (i <= (int)b[0] ? b[i] : 0);
1421 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1422 carry >>= BIGNUM_INT_BITS;
1423 if (ret[i] != 0 && i > maxspot)
1424 maxspot = i;
1425 }
1426 ret[0] = maxspot;
1427
1428 return ret;
1429 }
1430
1431 /*
1432 * Subtraction. Returns a-b, or NULL if the result would come out
1433 * negative (recall that this entire bignum module only handles
1434 * positive numbers).
1435 */
1436 Bignum bigsub(Bignum a, Bignum b)
1437 {
1438 int alen = a[0], blen = b[0];
1439 int rlen = (alen > blen ? alen : blen);
1440 int i, maxspot;
1441 Bignum ret;
1442 BignumDblInt carry;
1443
1444 ret = newbn(rlen);
1445
1446 carry = 1;
1447 maxspot = 0;
1448 for (i = 1; i <= rlen; i++) {
1449 carry += (i <= (int)a[0] ? a[i] : 0);
1450 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1451 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1452 carry >>= BIGNUM_INT_BITS;
1453 if (ret[i] != 0 && i > maxspot)
1454 maxspot = i;
1455 }
1456 ret[0] = maxspot;
1457
1458 if (!carry) {
1459 freebn(ret);
1460 return NULL;
1461 }
1462
1463 return ret;
1464 }
1465
1466 /*
1467 * Create a bignum which is the bitmask covering another one. That
1468 * is, the smallest integer which is >= N and is also one less than
1469 * a power of two.
1470 */
1471 Bignum bignum_bitmask(Bignum n)
1472 {
1473 Bignum ret = copybn(n);
1474 int i;
1475 BignumInt j;
1476
1477 i = ret[0];
1478 while (n[i] == 0 && i > 0)
1479 i--;
1480 if (i <= 0)
1481 return ret; /* input was zero */
1482 j = 1;
1483 while (j < n[i])
1484 j = 2 * j + 1;
1485 ret[i] = j;
1486 while (--i > 0)
1487 ret[i] = BIGNUM_INT_MASK;
1488 return ret;
1489 }
1490
1491 /*
1492 * Convert a (max 32-bit) long into a bignum.
1493 */
1494 Bignum bignum_from_long(unsigned long nn)
1495 {
1496 Bignum ret;
1497 BignumDblInt n = nn;
1498
1499 ret = newbn(3);
1500 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1501 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1502 ret[3] = 0;
1503 ret[0] = (ret[2] ? 2 : 1);
1504 return ret;
1505 }
1506
1507 /*
1508 * Add a long to a bignum.
1509 */
1510 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1511 {
1512 Bignum ret = newbn(number[0] + 1);
1513 int i, maxspot = 0;
1514 BignumDblInt carry = 0, addend = addendx;
1515
1516 for (i = 1; i <= (int)ret[0]; i++) {
1517 carry += addend & BIGNUM_INT_MASK;
1518 carry += (i <= (int)number[0] ? number[i] : 0);
1519 addend >>= BIGNUM_INT_BITS;
1520 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1521 carry >>= BIGNUM_INT_BITS;
1522 if (ret[i] != 0)
1523 maxspot = i;
1524 }
1525 ret[0] = maxspot;
1526 return ret;
1527 }
1528
1529 /*
1530 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1531 */
1532 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1533 {
1534 BignumDblInt mod, r;
1535 int i;
1536
1537 r = 0;
1538 mod = modulus;
1539 for (i = number[0]; i > 0; i--)
1540 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1541 return (unsigned short) r;
1542 }
1543
1544 #ifdef DEBUG
1545 void diagbn(char *prefix, Bignum md)
1546 {
1547 int i, nibbles, morenibbles;
1548 static const char hex[] = "0123456789ABCDEF";
1549
1550 debug(("%s0x", prefix ? prefix : ""));
1551
1552 nibbles = (3 + bignum_bitcount(md)) / 4;
1553 if (nibbles < 1)
1554 nibbles = 1;
1555 morenibbles = 4 * md[0] - nibbles;
1556 for (i = 0; i < morenibbles; i++)
1557 debug(("-"));
1558 for (i = nibbles; i--;)
1559 debug(("%c",
1560 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1561
1562 if (prefix)
1563 debug(("\n"));
1564 }
1565 #endif
1566
1567 /*
1568 * Simple division.
1569 */
1570 Bignum bigdiv(Bignum a, Bignum b)
1571 {
1572 Bignum q = newbn(a[0]);
1573 bigdivmod(a, b, NULL, q);
1574 return q;
1575 }
1576
1577 /*
1578 * Simple remainder.
1579 */
1580 Bignum bigmod(Bignum a, Bignum b)
1581 {
1582 Bignum r = newbn(b[0]);
1583 bigdivmod(a, b, r, NULL);
1584 return r;
1585 }
1586
1587 /*
1588 * Greatest common divisor.
1589 */
1590 Bignum biggcd(Bignum av, Bignum bv)
1591 {
1592 Bignum a = copybn(av);
1593 Bignum b = copybn(bv);
1594
1595 while (bignum_cmp(b, Zero) != 0) {
1596 Bignum t = newbn(b[0]);
1597 bigdivmod(a, b, t, NULL);
1598 while (t[0] > 1 && t[t[0]] == 0)
1599 t[0]--;
1600 freebn(a);
1601 a = b;
1602 b = t;
1603 }
1604
1605 freebn(b);
1606 return a;
1607 }
1608
1609 /*
1610 * Modular inverse, using Euclid's extended algorithm.
1611 */
1612 Bignum modinv(Bignum number, Bignum modulus)
1613 {
1614 Bignum a = copybn(modulus);
1615 Bignum b = copybn(number);
1616 Bignum xp = copybn(Zero);
1617 Bignum x = copybn(One);
1618 int sign = +1;
1619
1620 while (bignum_cmp(b, One) != 0) {
1621 Bignum t = newbn(b[0]);
1622 Bignum q = newbn(a[0]);
1623 bigdivmod(a, b, t, q);
1624 while (t[0] > 1 && t[t[0]] == 0)
1625 t[0]--;
1626 freebn(a);
1627 a = b;
1628 b = t;
1629 t = xp;
1630 xp = x;
1631 x = bigmuladd(q, xp, t);
1632 sign = -sign;
1633 freebn(t);
1634 freebn(q);
1635 }
1636
1637 freebn(b);
1638 freebn(a);
1639 freebn(xp);
1640
1641 /* now we know that sign * x == 1, and that x < modulus */
1642 if (sign < 0) {
1643 /* set a new x to be modulus - x */
1644 Bignum newx = newbn(modulus[0]);
1645 BignumInt carry = 0;
1646 int maxspot = 1;
1647 int i;
1648
1649 for (i = 1; i <= (int)newx[0]; i++) {
1650 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1651 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1652 newx[i] = aword - bword - carry;
1653 bword = ~bword;
1654 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1655 if (newx[i] != 0)
1656 maxspot = i;
1657 }
1658 newx[0] = maxspot;
1659 freebn(x);
1660 x = newx;
1661 }
1662
1663 /* and return. */
1664 return x;
1665 }
1666
1667 /*
1668 * Render a bignum into decimal. Return a malloced string holding
1669 * the decimal representation.
1670 */
1671 char *bignum_decimal(Bignum x)
1672 {
1673 int ndigits, ndigit;
1674 int i, iszero;
1675 BignumDblInt carry;
1676 char *ret;
1677 BignumInt *workspace;
1678
1679 /*
1680 * First, estimate the number of digits. Since log(10)/log(2)
1681 * is just greater than 93/28 (the joys of continued fraction
1682 * approximations...) we know that for every 93 bits, we need
1683 * at most 28 digits. This will tell us how much to malloc.
1684 *
1685 * Formally: if x has i bits, that means x is strictly less
1686 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1687 * 10^(28i/93). We need an integer power of ten, so we must
1688 * round up (rounding down might make it less than x again).
1689 * Therefore if we multiply the bit count by 28/93, rounding
1690 * up, we will have enough digits.
1691 *
1692 * i=0 (i.e., x=0) is an irritating special case.
1693 */
1694 i = bignum_bitcount(x);
1695 if (!i)
1696 ndigits = 1; /* x = 0 */
1697 else
1698 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1699 ndigits++; /* allow for trailing \0 */
1700 ret = snewn(ndigits, char);
1701
1702 /*
1703 * Now allocate some workspace to hold the binary form as we
1704 * repeatedly divide it by ten. Initialise this to the
1705 * big-endian form of the number.
1706 */
1707 workspace = snewn(x[0], BignumInt);
1708 for (i = 0; i < (int)x[0]; i++)
1709 workspace[i] = x[x[0] - i];
1710
1711 /*
1712 * Next, write the decimal number starting with the last digit.
1713 * We use ordinary short division, dividing 10 into the
1714 * workspace.
1715 */
1716 ndigit = ndigits - 1;
1717 ret[ndigit] = '\0';
1718 do {
1719 iszero = 1;
1720 carry = 0;
1721 for (i = 0; i < (int)x[0]; i++) {
1722 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1723 workspace[i] = (BignumInt) (carry / 10);
1724 if (workspace[i])
1725 iszero = 0;
1726 carry %= 10;
1727 }
1728 ret[--ndigit] = (char) (carry + '0');
1729 } while (!iszero);
1730
1731 /*
1732 * There's a chance we've fallen short of the start of the
1733 * string. Correct if so.
1734 */
1735 if (ndigit > 0)
1736 memmove(ret, ret + ndigit, ndigits - ndigit);
1737
1738 /*
1739 * Done.
1740 */
1741 smemclr(workspace, x[0] * sizeof(*workspace));
1742 sfree(workspace);
1743 return ret;
1744 }
1745
1746 #ifdef TESTBN
1747
1748 #include <stdio.h>
1749 #include <stdlib.h>
1750 #include <ctype.h>
1751
1752 /*
1753 * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
1754 *
1755 * Then feed to this program's standard input the output of
1756 * testdata/bignum.py .
1757 */
1758
1759 void modalfatalbox(char *p, ...)
1760 {
1761 va_list ap;
1762 fprintf(stderr, "FATAL ERROR: ");
1763 va_start(ap, p);
1764 vfprintf(stderr, p, ap);
1765 va_end(ap);
1766 fputc('\n', stderr);
1767 exit(1);
1768 }
1769
1770 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1771
1772 int main(int argc, char **argv)
1773 {
1774 char *buf;
1775 int line = 0;
1776 int passes = 0, fails = 0;
1777
1778 while ((buf = fgetline(stdin)) != NULL) {
1779 int maxlen = strlen(buf);
1780 unsigned char *data = snewn(maxlen, unsigned char);
1781 unsigned char *ptrs[5], *q;
1782 int ptrnum;
1783 char *bufp = buf;
1784
1785 line++;
1786
1787 q = data;
1788 ptrnum = 0;
1789
1790 while (*bufp && !isspace((unsigned char)*bufp))
1791 bufp++;
1792 if (bufp)
1793 *bufp++ = '\0';
1794
1795 while (*bufp) {
1796 char *start, *end;
1797 int i;
1798
1799 while (*bufp && !isxdigit((unsigned char)*bufp))
1800 bufp++;
1801 start = bufp;
1802
1803 if (!*bufp)
1804 break;
1805
1806 while (*bufp && isxdigit((unsigned char)*bufp))
1807 bufp++;
1808 end = bufp;
1809
1810 if (ptrnum >= lenof(ptrs))
1811 break;
1812 ptrs[ptrnum++] = q;
1813
1814 for (i = -((end - start) & 1); i < end-start; i += 2) {
1815 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1816 val = val * 16 + fromxdigit(start[i+1]);
1817 *q++ = val;
1818 }
1819
1820 ptrs[ptrnum] = q;
1821 }
1822
1823 if (!strcmp(buf, "mul")) {
1824 Bignum a, b, c, p;
1825
1826 if (ptrnum != 3) {
1827 printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
1828 exit(1);
1829 }
1830 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1831 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1832 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1833 p = bigmul(a, b);
1834
1835 if (bignum_cmp(c, p) == 0) {
1836 passes++;
1837 } else {
1838 char *as = bignum_decimal(a);
1839 char *bs = bignum_decimal(b);
1840 char *cs = bignum_decimal(c);
1841 char *ps = bignum_decimal(p);
1842
1843 printf("%d: fail: %s * %s gave %s expected %s\n",
1844 line, as, bs, ps, cs);
1845 fails++;
1846
1847 sfree(as);
1848 sfree(bs);
1849 sfree(cs);
1850 sfree(ps);
1851 }
1852 freebn(a);
1853 freebn(b);
1854 freebn(c);
1855 freebn(p);
1856 } else if (!strcmp(buf, "modmul")) {
1857 Bignum a, b, m, c, p;
1858
1859 if (ptrnum != 4) {
1860 printf("%d: modmul with %d parameters, expected 4\n",
1861 line, ptrnum);
1862 exit(1);
1863 }
1864 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1865 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1866 m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1867 c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1868 p = modmul(a, b, m);
1869
1870 if (bignum_cmp(c, p) == 0) {
1871 passes++;
1872 } else {
1873 char *as = bignum_decimal(a);
1874 char *bs = bignum_decimal(b);
1875 char *ms = bignum_decimal(m);
1876 char *cs = bignum_decimal(c);
1877 char *ps = bignum_decimal(p);
1878
1879 printf("%d: fail: %s * %s mod %s gave %s expected %s\n",
1880 line, as, bs, ms, ps, cs);
1881 fails++;
1882
1883 sfree(as);
1884 sfree(bs);
1885 sfree(ms);
1886 sfree(cs);
1887 sfree(ps);
1888 }
1889 freebn(a);
1890 freebn(b);
1891 freebn(m);
1892 freebn(c);
1893 freebn(p);
1894 } else if (!strcmp(buf, "pow")) {
1895 Bignum base, expt, modulus, expected, answer;
1896
1897 if (ptrnum != 4) {
1898 printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
1899 exit(1);
1900 }
1901
1902 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1903 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1904 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1905 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1906 answer = modpow(base, expt, modulus);
1907
1908 if (bignum_cmp(expected, answer) == 0) {
1909 passes++;
1910 } else {
1911 char *as = bignum_decimal(base);
1912 char *bs = bignum_decimal(expt);
1913 char *cs = bignum_decimal(modulus);
1914 char *ds = bignum_decimal(answer);
1915 char *ps = bignum_decimal(expected);
1916
1917 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
1918 line, as, bs, cs, ds, ps);
1919 fails++;
1920
1921 sfree(as);
1922 sfree(bs);
1923 sfree(cs);
1924 sfree(ds);
1925 sfree(ps);
1926 }
1927 freebn(base);
1928 freebn(expt);
1929 freebn(modulus);
1930 freebn(expected);
1931 freebn(answer);
1932 } else {
1933 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
1934 exit(1);
1935 }
1936
1937 sfree(buf);
1938 sfree(data);
1939 }
1940
1941 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1942 return fails != 0;
1943 }
1944
1945 #endif