RSA key authentication in ssh1 works; SSH2 is nearly there
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8
9 #include <stdio.h> /* FIXME */
10 #include <stdarg.h> /* FIXME */
11 #include <windows.h> /* FIXME */
12 #include "putty.h" /* FIXME */
13
14 #include "ssh.h"
15
16 unsigned short bnZero[1] = { 0 };
17 unsigned short bnOne[2] = { 1, 1 };
18
19 Bignum Zero = bnZero, One = bnOne;
20
21 Bignum newbn(int length) {
22 Bignum b = malloc((length+1)*sizeof(unsigned short));
23 if (!b)
24 abort(); /* FIXME */
25 memset(b, 0, (length+1)*sizeof(*b));
26 b[0] = length;
27 return b;
28 }
29
30 Bignum copybn(Bignum orig) {
31 Bignum b = malloc((orig[0]+1)*sizeof(unsigned short));
32 if (!b)
33 abort(); /* FIXME */
34 memcpy(b, orig, (orig[0]+1)*sizeof(*b));
35 return b;
36 }
37
38 void freebn(Bignum b) {
39 /*
40 * Burn the evidence, just in case.
41 */
42 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
43 free(b);
44 }
45
46 /*
47 * Compute c = a * b.
48 * Input is in the first len words of a and b.
49 * Result is returned in the first 2*len words of c.
50 */
51 static void bigmul(unsigned short *a, unsigned short *b, unsigned short *c,
52 int len)
53 {
54 int i, j;
55 unsigned long ai, t;
56
57 for (j = len - 1; j >= 0; j--)
58 c[j+len] = 0;
59
60 for (i = len - 1; i >= 0; i--) {
61 ai = a[i];
62 t = 0;
63 for (j = len - 1; j >= 0; j--) {
64 t += ai * (unsigned long) b[j];
65 t += (unsigned long) c[i+j+1];
66 c[i+j+1] = (unsigned short)t;
67 t = t >> 16;
68 }
69 c[i] = (unsigned short)t;
70 }
71 }
72
73 /*
74 * Compute a = a % m.
75 * Input in first len2 words of a and first len words of m.
76 * Output in first len2 words of a
77 * (of which first len2-len words will be zero).
78 * The MSW of m MUST have its high bit set.
79 */
80 static void bigmod(unsigned short *a, unsigned short *m,
81 int len, int len2)
82 {
83 unsigned short m0, m1;
84 unsigned int h;
85 int i, k;
86
87 /* Special case for len == 1 */
88 if (len == 1) {
89 a[1] = (((long) a[0] << 16) + a[1]) % m[0];
90 a[0] = 0;
91 return;
92 }
93
94 m0 = m[0];
95 m1 = m[1];
96
97 for (i = 0; i <= len2-len; i++) {
98 unsigned long t;
99 unsigned int q, r, c;
100
101 if (i == 0) {
102 h = 0;
103 } else {
104 h = a[i-1];
105 a[i-1] = 0;
106 }
107
108 /* Find q = h:a[i] / m0 */
109 t = ((unsigned long) h << 16) + a[i];
110 q = t / m0;
111 r = t % m0;
112
113 /* Refine our estimate of q by looking at
114 h:a[i]:a[i+1] / m0:m1 */
115 t = (long) m1 * (long) q;
116 if (t > ((unsigned long) r << 16) + a[i+1]) {
117 q--;
118 t -= m1;
119 r = (r + m0) & 0xffff; /* overflow? */
120 if (r >= (unsigned long)m0 &&
121 t > ((unsigned long) r << 16) + a[i+1])
122 q--;
123 }
124
125 /* Substract q * m from a[i...] */
126 c = 0;
127 for (k = len - 1; k >= 0; k--) {
128 t = (long) q * (long) m[k];
129 t += c;
130 c = t >> 16;
131 if ((unsigned short) t > a[i+k]) c++;
132 a[i+k] -= (unsigned short) t;
133 }
134
135 /* Add back m in case of borrow */
136 if (c != h) {
137 t = 0;
138 for (k = len - 1; k >= 0; k--) {
139 t += m[k];
140 t += a[i+k];
141 a[i+k] = (unsigned short)t;
142 t = t >> 16;
143 }
144 }
145 }
146 }
147
148 /*
149 * Compute (base ^ exp) % mod.
150 * The base MUST be smaller than the modulus.
151 * The most significant word of mod MUST be non-zero.
152 * We assume that the result array is the same size as the mod array.
153 */
154 void modpow(Bignum base, Bignum exp, Bignum mod, Bignum result)
155 {
156 unsigned short *a, *b, *n, *m;
157 int mshift;
158 int mlen, i, j;
159
160 /* Allocate m of size mlen, copy mod to m */
161 /* We use big endian internally */
162 mlen = mod[0];
163 m = malloc(mlen * sizeof(unsigned short));
164 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
165
166 /* Shift m left to make msb bit set */
167 for (mshift = 0; mshift < 15; mshift++)
168 if ((m[0] << mshift) & 0x8000) break;
169 if (mshift) {
170 for (i = 0; i < mlen - 1; i++)
171 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
172 m[mlen-1] = m[mlen-1] << mshift;
173 }
174
175 /* Allocate n of size mlen, copy base to n */
176 n = malloc(mlen * sizeof(unsigned short));
177 i = mlen - base[0];
178 for (j = 0; j < i; j++) n[j] = 0;
179 for (j = 0; j < base[0]; j++) n[i+j] = base[base[0] - j];
180
181 /* Allocate a and b of size 2*mlen. Set a = 1 */
182 a = malloc(2 * mlen * sizeof(unsigned short));
183 b = malloc(2 * mlen * sizeof(unsigned short));
184 for (i = 0; i < 2*mlen; i++) a[i] = 0;
185 a[2*mlen-1] = 1;
186
187 /* Skip leading zero bits of exp. */
188 i = 0; j = 15;
189 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
190 j--;
191 if (j < 0) { i++; j = 15; }
192 }
193
194 /* Main computation */
195 while (i < exp[0]) {
196 while (j >= 0) {
197 bigmul(a + mlen, a + mlen, b, mlen);
198 bigmod(b, m, mlen, mlen*2);
199 if ((exp[exp[0] - i] & (1 << j)) != 0) {
200 bigmul(b + mlen, n, a, mlen);
201 bigmod(a, m, mlen, mlen*2);
202 } else {
203 unsigned short *t;
204 t = a; a = b; b = t;
205 }
206 j--;
207 }
208 i++; j = 15;
209 }
210
211 /* Fixup result in case the modulus was shifted */
212 if (mshift) {
213 for (i = mlen - 1; i < 2*mlen - 1; i++)
214 a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
215 a[2*mlen-1] = a[2*mlen-1] << mshift;
216 bigmod(a, m, mlen, mlen*2);
217 for (i = 2*mlen - 1; i >= mlen; i--)
218 a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
219 }
220
221 /* Copy result to buffer */
222 for (i = 0; i < mlen; i++)
223 result[result[0] - i] = a[i+mlen];
224
225 /* Free temporary arrays */
226 for (i = 0; i < 2*mlen; i++) a[i] = 0; free(a);
227 for (i = 0; i < 2*mlen; i++) b[i] = 0; free(b);
228 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
229 for (i = 0; i < mlen; i++) n[i] = 0; free(n);
230 }
231
232 /*
233 * Compute (p * q) % mod.
234 * The most significant word of mod MUST be non-zero.
235 * We assume that the result array is the same size as the mod array.
236 */
237 void modmul(Bignum p, Bignum q, Bignum mod, Bignum result)
238 {
239 unsigned short *a, *n, *m, *o;
240 int mshift;
241 int pqlen, mlen, i, j;
242
243 /* Allocate m of size mlen, copy mod to m */
244 /* We use big endian internally */
245 mlen = mod[0];
246 m = malloc(mlen * sizeof(unsigned short));
247 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
248
249 /* Shift m left to make msb bit set */
250 for (mshift = 0; mshift < 15; mshift++)
251 if ((m[0] << mshift) & 0x8000) break;
252 if (mshift) {
253 for (i = 0; i < mlen - 1; i++)
254 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
255 m[mlen-1] = m[mlen-1] << mshift;
256 }
257
258 pqlen = (p[0] > q[0] ? p[0] : q[0]);
259
260 /* Allocate n of size pqlen, copy p to n */
261 n = malloc(pqlen * sizeof(unsigned short));
262 i = pqlen - p[0];
263 for (j = 0; j < i; j++) n[j] = 0;
264 for (j = 0; j < p[0]; j++) n[i+j] = p[p[0] - j];
265
266 /* Allocate o of size pqlen, copy q to o */
267 o = malloc(pqlen * sizeof(unsigned short));
268 i = pqlen - q[0];
269 for (j = 0; j < i; j++) o[j] = 0;
270 for (j = 0; j < q[0]; j++) o[i+j] = q[q[0] - j];
271
272 /* Allocate a of size 2*pqlen for result */
273 a = malloc(2 * pqlen * sizeof(unsigned short));
274
275 /* Main computation */
276 bigmul(n, o, a, pqlen);
277 bigmod(a, m, mlen, 2*pqlen);
278
279 /* Fixup result in case the modulus was shifted */
280 if (mshift) {
281 for (i = 2*pqlen - mlen - 1; i < 2*pqlen - 1; i++)
282 a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
283 a[2*pqlen-1] = a[2*pqlen-1] << mshift;
284 bigmod(a, m, mlen, pqlen*2);
285 for (i = 2*pqlen - 1; i >= 2*pqlen - mlen; i--)
286 a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
287 }
288
289 /* Copy result to buffer */
290 for (i = 0; i < mlen; i++)
291 result[result[0] - i] = a[i+2*pqlen-mlen];
292
293 /* Free temporary arrays */
294 for (i = 0; i < 2*pqlen; i++) a[i] = 0; free(a);
295 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
296 for (i = 0; i < pqlen; i++) n[i] = 0; free(n);
297 for (i = 0; i < pqlen; i++) o[i] = 0; free(o);
298 }
299
300 /*
301 * Decrement a number.
302 */
303 void decbn(Bignum bn) {
304 int i = 1;
305 while (i < bn[0] && bn[i] == 0)
306 bn[i++] = 0xFFFF;
307 bn[i]--;
308 }
309
310 /*
311 * Read an ssh1-format bignum from a data buffer. Return the number
312 * of bytes consumed.
313 */
314 int ssh1_read_bignum(unsigned char *data, Bignum *result) {
315 unsigned char *p = data;
316 Bignum bn;
317 int i;
318 int w, b;
319
320 w = 0;
321 for (i=0; i<2; i++)
322 w = (w << 8) + *p++;
323
324 b = (w+7)/8; /* bits -> bytes */
325 w = (w+15)/16; /* bits -> words */
326
327 bn = newbn(w);
328
329 for (i=1; i<=w; i++)
330 bn[i] = 0;
331 for (i=b; i-- ;) {
332 unsigned char byte = *p++;
333 if (i & 1)
334 bn[1+i/2] |= byte<<8;
335 else
336 bn[1+i/2] |= byte;
337 }
338
339 *result = bn;
340
341 return p - data;
342 }