Support for falling back through the list of addresses returned from
[u/mdw/putty] / unix / uxnet.c
1 /*
2 * Unix networking abstraction.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/ioctl.h>
14 #include <arpa/inet.h>
15 #include <netinet/in.h>
16 #include <netinet/tcp.h>
17 #include <netdb.h>
18 #include <sys/un.h>
19
20 #define DEFINE_PLUG_METHOD_MACROS
21 #include "putty.h"
22 #include "network.h"
23 #include "tree234.h"
24
25 #ifndef X11_UNIX_PATH
26 # define X11_UNIX_PATH "/tmp/.X11-unix/X"
27 #endif
28
29 #define ipv4_is_loopback(addr) (inet_netof(addr) == IN_LOOPBACKNET)
30
31 struct Socket_tag {
32 struct socket_function_table *fn;
33 /* the above variable absolutely *must* be the first in this structure */
34 const char *error;
35 int s;
36 Plug plug;
37 void *private_ptr;
38 bufchain output_data;
39 int connected;
40 int writable;
41 int frozen; /* this causes readability notifications to be ignored */
42 int frozen_readable; /* this means we missed at least one readability
43 * notification while we were frozen */
44 int localhost_only; /* for listening sockets */
45 char oobdata[1];
46 int sending_oob;
47 int oobpending; /* is there OOB data available to read? */
48 int oobinline;
49 int pending_error; /* in case send() returns error */
50 int listener;
51 int nodelay, keepalive; /* for connect()-type sockets */
52 int privport, port; /* and again */
53 SockAddr addr;
54 };
55
56 /*
57 * We used to typedef struct Socket_tag *Socket.
58 *
59 * Since we have made the networking abstraction slightly more
60 * abstract, Socket no longer means a tcp socket (it could mean
61 * an ssl socket). So now we must use Actual_Socket when we know
62 * we are talking about a tcp socket.
63 */
64 typedef struct Socket_tag *Actual_Socket;
65
66 struct SockAddr_tag {
67 const char *error;
68 /*
69 * Which address family this address belongs to. AF_INET for
70 * IPv4; AF_INET6 for IPv6; AF_UNSPEC indicates that name
71 * resolution has not been done and a simple host name is held
72 * in this SockAddr structure.
73 */
74 int family;
75 #ifndef NO_IPV6
76 struct addrinfo *ais; /* Addresses IPv6 style. */
77 struct addrinfo *ai; /* steps along the linked list */
78 #else
79 unsigned long *addresses; /* Addresses IPv4 style. */
80 int naddresses, curraddr;
81 #endif
82 char hostname[512]; /* Store an unresolved host name. */
83 };
84
85 static tree234 *sktree;
86
87 static void uxsel_tell(Actual_Socket s);
88
89 static int cmpfortree(void *av, void *bv)
90 {
91 Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
92 int as = a->s, bs = b->s;
93 if (as < bs)
94 return -1;
95 if (as > bs)
96 return +1;
97 return 0;
98 }
99
100 static int cmpforsearch(void *av, void *bv)
101 {
102 Actual_Socket b = (Actual_Socket) bv;
103 int as = *(int *)av, bs = b->s;
104 if (as < bs)
105 return -1;
106 if (as > bs)
107 return +1;
108 return 0;
109 }
110
111 void sk_init(void)
112 {
113 sktree = newtree234(cmpfortree);
114 }
115
116 void sk_cleanup(void)
117 {
118 Actual_Socket s;
119 int i;
120
121 if (sktree) {
122 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
123 close(s->s);
124 }
125 }
126 }
127
128 SockAddr sk_namelookup(const char *host, char **canonicalname, int address_family)
129 {
130 SockAddr ret = snew(struct SockAddr_tag);
131 #ifndef NO_IPV6
132 struct addrinfo hints;
133 int err;
134 #else
135 unsigned long a;
136 struct hostent *h = NULL;
137 int n;
138 #endif
139 char realhost[8192];
140
141 /* Clear the structure and default to IPv4. */
142 memset(ret, 0, sizeof(struct SockAddr_tag));
143 ret->family = 0; /* We set this one when we have resolved the host. */
144 *realhost = '\0';
145 ret->error = NULL;
146
147 #ifndef NO_IPV6
148 hints.ai_flags = AI_CANONNAME;
149 hints.ai_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
150 address_family == ADDRTYPE_IPV6 ? AF_INET6 :
151 AF_UNSPEC);
152 hints.ai_socktype = SOCK_STREAM;
153 hints.ai_protocol = 0;
154 hints.ai_addrlen = 0;
155 hints.ai_addr = NULL;
156 hints.ai_canonname = NULL;
157 hints.ai_next = NULL;
158 err = getaddrinfo(host, NULL, &hints, &ret->ais);
159 ret->ai = ret->ais;
160 if (err != 0) {
161 ret->error = gai_strerror(err);
162 return ret;
163 }
164 ret->family = ret->ai->ai_family;
165 *realhost = '\0';
166 if (ret->ai->ai_canonname != NULL)
167 strncat(realhost, ret->ai->ai_canonname, sizeof(realhost) - 1);
168 else
169 strncat(realhost, host, sizeof(realhost) - 1);
170 #else
171 if ((a = inet_addr(host)) == (unsigned long)(in_addr_t)(-1)) {
172 /*
173 * Otherwise use the IPv4-only gethostbyname... (NOTE:
174 * we don't use gethostbyname as a fallback!)
175 */
176 if (ret->family == 0) {
177 /*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
178 if ( (h = gethostbyname(host)) )
179 ret->family = AF_INET;
180 }
181 if (ret->family == 0) {
182 ret->error = (h_errno == HOST_NOT_FOUND ||
183 h_errno == NO_DATA ||
184 h_errno == NO_ADDRESS ? "Host does not exist" :
185 h_errno == TRY_AGAIN ?
186 "Temporary name service failure" :
187 "gethostbyname: unknown error");
188 return ret;
189 }
190 /* This way we are always sure the h->h_name is valid :) */
191 strncpy(realhost, h->h_name, sizeof(realhost));
192 for (n = 0; h->h_addr_list[n]; n++);
193 ret->addresses = snewn(n, unsigned long);
194 ret->naddresses = n;
195 for (n = 0; n < ret->naddresses; n++) {
196 memcpy(&a, h->h_addr_list[n], sizeof(a));
197 ret->addresses[n] = ntohl(a);
198 }
199 } else {
200 /*
201 * This must be a numeric IPv4 address because it caused a
202 * success return from inet_addr.
203 */
204 ret->family = AF_INET;
205 strncpy(realhost, host, sizeof(realhost));
206 ret->addresses = snew(unsigned long);
207 ret->naddresses = 1;
208 ret->addresses[0] = ntohl(a);
209 ret->curraddr = 0;
210 }
211 #endif
212 realhost[lenof(realhost)-1] = '\0';
213 *canonicalname = snewn(1+strlen(realhost), char);
214 strcpy(*canonicalname, realhost);
215 return ret;
216 }
217
218 SockAddr sk_nonamelookup(const char *host)
219 {
220 SockAddr ret = snew(struct SockAddr_tag);
221 ret->error = NULL;
222 ret->family = AF_UNSPEC;
223 strncpy(ret->hostname, host, lenof(ret->hostname));
224 ret->hostname[lenof(ret->hostname)-1] = '\0';
225 #ifndef NO_IPV6
226 ret->ais = NULL;
227 #else
228 ret->addresses = NULL;
229 #endif
230 return ret;
231 }
232
233 static int sk_nextaddr(SockAddr addr)
234 {
235 #ifndef NO_IPV6
236 if (addr->ai->ai_next) {
237 addr->ai = addr->ai->ai_next;
238 addr->family = addr->ai->ai_family;
239 return TRUE;
240 } else
241 return FALSE;
242 #else
243 if (addr->curraddr+1 < addr->naddresses) {
244 addr->curraddr++;
245 return TRUE;
246 } else {
247 return FALSE;
248 }
249 #endif
250 }
251
252 void sk_getaddr(SockAddr addr, char *buf, int buflen)
253 {
254
255 if (addr->family == AF_UNSPEC) {
256 strncpy(buf, addr->hostname, buflen);
257 buf[buflen-1] = '\0';
258 } else {
259 #ifndef NO_IPV6
260 if (getnameinfo(addr->ai->ai_addr, addr->ai->ai_addrlen, buf, buflen,
261 NULL, 0, NI_NUMERICHOST) != 0) {
262 buf[0] = '\0';
263 strncat(buf, "<unknown>", buflen - 1);
264 }
265 #else
266 struct in_addr a;
267 assert(addr->family == AF_INET);
268 a.s_addr = htonl(addr->addresses[addr->curraddr]);
269 strncpy(buf, inet_ntoa(a), buflen);
270 buf[buflen-1] = '\0';
271 #endif
272 }
273 }
274
275 int sk_hostname_is_local(char *name)
276 {
277 return !strcmp(name, "localhost");
278 }
279
280 int sk_address_is_local(SockAddr addr)
281 {
282
283 if (addr->family == AF_UNSPEC)
284 return 0; /* we don't know; assume not */
285 else {
286 #ifndef NO_IPV6
287 if (addr->family == AF_INET)
288 return ipv4_is_loopback(
289 ((struct sockaddr_in *)addr->ai->ai_addr)->sin_addr);
290 else if (addr->family == AF_INET6)
291 return IN6_IS_ADDR_LOOPBACK(
292 &((struct sockaddr_in6 *)addr->ai->ai_addr)->sin6_addr);
293 else
294 return 0;
295 #else
296 struct in_addr a;
297 assert(addr->family == AF_INET);
298 a.s_addr = htonl(addr->addresses[addr->curraddr]);
299 return ipv4_is_loopback(a);
300 #endif
301 }
302 }
303
304 int sk_addrtype(SockAddr addr)
305 {
306 return (addr->family == AF_INET ? ADDRTYPE_IPV4 :
307 #ifndef NO_IPV6
308 addr->family == AF_INET6 ? ADDRTYPE_IPV6 :
309 #endif
310 ADDRTYPE_NAME);
311 }
312
313 void sk_addrcopy(SockAddr addr, char *buf)
314 {
315
316 #ifndef NO_IPV6
317 if (addr->family == AF_INET)
318 memcpy(buf, &((struct sockaddr_in *)addr->ai->ai_addr)->sin_addr,
319 sizeof(struct in_addr));
320 else if (addr->family == AF_INET6)
321 memcpy(buf, &((struct sockaddr_in6 *)addr->ai->ai_addr)->sin6_addr,
322 sizeof(struct in6_addr));
323 else
324 assert(FALSE);
325 #else
326 struct in_addr a;
327
328 assert(addr->family == AF_INET);
329 a.s_addr = htonl(addr->addresses[addr->curraddr]);
330 memcpy(buf, (char*) &a.s_addr, 4);
331 #endif
332 }
333
334 void sk_addr_free(SockAddr addr)
335 {
336
337 #ifndef NO_IPV6
338 if (addr->ais != NULL)
339 freeaddrinfo(addr->ais);
340 #else
341 sfree(addr->addresses);
342 #endif
343 sfree(addr);
344 }
345
346 static Plug sk_tcp_plug(Socket sock, Plug p)
347 {
348 Actual_Socket s = (Actual_Socket) sock;
349 Plug ret = s->plug;
350 if (p)
351 s->plug = p;
352 return ret;
353 }
354
355 static void sk_tcp_flush(Socket s)
356 {
357 /*
358 * We send data to the socket as soon as we can anyway,
359 * so we don't need to do anything here. :-)
360 */
361 }
362
363 static void sk_tcp_close(Socket s);
364 static int sk_tcp_write(Socket s, const char *data, int len);
365 static int sk_tcp_write_oob(Socket s, const char *data, int len);
366 static void sk_tcp_set_private_ptr(Socket s, void *ptr);
367 static void *sk_tcp_get_private_ptr(Socket s);
368 static void sk_tcp_set_frozen(Socket s, int is_frozen);
369 static const char *sk_tcp_socket_error(Socket s);
370
371 static struct socket_function_table tcp_fn_table = {
372 sk_tcp_plug,
373 sk_tcp_close,
374 sk_tcp_write,
375 sk_tcp_write_oob,
376 sk_tcp_flush,
377 sk_tcp_set_private_ptr,
378 sk_tcp_get_private_ptr,
379 sk_tcp_set_frozen,
380 sk_tcp_socket_error
381 };
382
383 Socket sk_register(OSSocket sockfd, Plug plug)
384 {
385 Actual_Socket ret;
386
387 /*
388 * Create Socket structure.
389 */
390 ret = snew(struct Socket_tag);
391 ret->fn = &tcp_fn_table;
392 ret->error = NULL;
393 ret->plug = plug;
394 bufchain_init(&ret->output_data);
395 ret->writable = 1; /* to start with */
396 ret->sending_oob = 0;
397 ret->frozen = 1;
398 ret->frozen_readable = 0;
399 ret->localhost_only = 0; /* unused, but best init anyway */
400 ret->pending_error = 0;
401 ret->oobpending = FALSE;
402 ret->listener = 0;
403 ret->addr = NULL;
404
405 ret->s = sockfd;
406
407 if (ret->s < 0) {
408 ret->error = strerror(errno);
409 return (Socket) ret;
410 }
411
412 ret->oobinline = 0;
413
414 uxsel_tell(ret);
415 add234(sktree, ret);
416
417 return (Socket) ret;
418 }
419
420 static int try_connect(Actual_Socket sock)
421 {
422 int s;
423 #ifndef NO_IPV6
424 struct sockaddr_in6 a6;
425 #endif
426 struct sockaddr_in a;
427 struct sockaddr_un au;
428 const struct sockaddr *sa;
429 int err = 0;
430 short localport;
431 int fl, salen;
432
433 if (sock->s >= 0)
434 close(sock->s);
435
436 plug_log(sock->plug, 0, sock->addr, sock->port, NULL, 0);
437
438 /*
439 * Open socket.
440 */
441 assert(sock->addr->family != AF_UNSPEC);
442 s = socket(sock->addr->family, SOCK_STREAM, 0);
443 sock->s = s;
444
445 if (s < 0) {
446 err = errno;
447 goto ret;
448 }
449
450 if (sock->oobinline) {
451 int b = TRUE;
452 setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
453 }
454
455 if (sock->nodelay) {
456 int b = TRUE;
457 setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
458 }
459
460 if (sock->keepalive) {
461 int b = TRUE;
462 setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, (void *) &b, sizeof(b));
463 }
464
465 /*
466 * Bind to local address.
467 */
468 if (sock->privport)
469 localport = 1023; /* count from 1023 downwards */
470 else
471 localport = 0; /* just use port 0 (ie kernel picks) */
472
473 /* BSD IP stacks need sockaddr_in zeroed before filling in */
474 memset(&a,'\0',sizeof(struct sockaddr_in));
475 #ifndef NO_IPV6
476 memset(&a6,'\0',sizeof(struct sockaddr_in6));
477 #endif
478
479 /* We don't try to bind to a local address for UNIX domain sockets. (Why
480 * do we bother doing the bind when localport == 0 anyway?) */
481 if(sock->addr->family != AF_UNIX) {
482 /* Loop round trying to bind */
483 while (1) {
484 int retcode;
485
486 #ifndef NO_IPV6
487 if (sock->addr->family == AF_INET6) {
488 /* XXX use getaddrinfo to get a local address? */
489 a6.sin6_family = AF_INET6;
490 a6.sin6_addr = in6addr_any;
491 a6.sin6_port = htons(localport);
492 retcode = bind(s, (struct sockaddr *) &a6, sizeof(a6));
493 } else
494 #endif
495 {
496 assert(sock->addr->family == AF_INET);
497 a.sin_family = AF_INET;
498 a.sin_addr.s_addr = htonl(INADDR_ANY);
499 a.sin_port = htons(localport);
500 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
501 }
502 if (retcode >= 0) {
503 err = 0;
504 break; /* done */
505 } else {
506 err = errno;
507 if (err != EADDRINUSE) /* failed, for a bad reason */
508 break;
509 }
510
511 if (localport == 0)
512 break; /* we're only looping once */
513 localport--;
514 if (localport == 0)
515 break; /* we might have got to the end */
516 }
517
518 if (err)
519 goto ret;
520 }
521
522 /*
523 * Connect to remote address.
524 */
525 switch(sock->addr->family) {
526 #ifndef NO_IPV6
527 case AF_INET:
528 /* XXX would be better to have got getaddrinfo() to fill in the port. */
529 ((struct sockaddr_in *)sock->addr->ai->ai_addr)->sin_port =
530 htons(sock->port);
531 sa = (const struct sockaddr *)sock->addr->ai->ai_addr;
532 salen = sock->addr->ai->ai_addrlen;
533 break;
534 case AF_INET6:
535 ((struct sockaddr_in *)sock->addr->ai->ai_addr)->sin_port =
536 htons(sock->port);
537 sa = (const struct sockaddr *)sock->addr->ai->ai_addr;
538 salen = sock->addr->ai->ai_addrlen;
539 break;
540 #else
541 case AF_INET:
542 a.sin_family = AF_INET;
543 a.sin_addr.s_addr = htonl(sock->addr->addresses[sock->addr->curraddr]);
544 a.sin_port = htons((short) sock->port);
545 sa = (const struct sockaddr *)&a;
546 salen = sizeof a;
547 break;
548 #endif
549 case AF_UNIX:
550 assert(sock->port == 0); /* to catch confused people */
551 assert(strlen(sock->addr->hostname) < sizeof au.sun_path);
552 memset(&au, 0, sizeof au);
553 au.sun_family = AF_UNIX;
554 strcpy(au.sun_path, sock->addr->hostname);
555 sa = (const struct sockaddr *)&au;
556 salen = sizeof au;
557 break;
558
559 default:
560 assert(0 && "unknown address family");
561 }
562
563 fl = fcntl(s, F_GETFL);
564 if (fl != -1)
565 fcntl(s, F_SETFL, fl | O_NONBLOCK);
566
567 if ((connect(s, sa, salen)) < 0) {
568 if ( errno != EINPROGRESS ) {
569 err = errno;
570 goto ret;
571 }
572 } else {
573 /*
574 * If we _don't_ get EWOULDBLOCK, the connect has completed
575 * and we should set the socket as connected and writable.
576 */
577 sock->connected = 1;
578 sock->writable = 1;
579 }
580
581 uxsel_tell(sock);
582 add234(sktree, sock);
583
584 ret:
585 if (err)
586 plug_log(sock->plug, 1, sock->addr, sock->port, strerror(err), err);
587 return err;
588 }
589
590 Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
591 int nodelay, int keepalive, Plug plug)
592 {
593 Actual_Socket ret;
594 int err;
595
596 /*
597 * Create Socket structure.
598 */
599 ret = snew(struct Socket_tag);
600 ret->fn = &tcp_fn_table;
601 ret->error = NULL;
602 ret->plug = plug;
603 bufchain_init(&ret->output_data);
604 ret->connected = 0; /* to start with */
605 ret->writable = 0; /* to start with */
606 ret->sending_oob = 0;
607 ret->frozen = 0;
608 ret->frozen_readable = 0;
609 ret->localhost_only = 0; /* unused, but best init anyway */
610 ret->pending_error = 0;
611 ret->oobpending = FALSE;
612 ret->listener = 0;
613 ret->addr = addr;
614 ret->s = -1;
615 ret->oobinline = oobinline;
616 ret->nodelay = nodelay;
617 ret->keepalive = keepalive;
618 ret->privport = privport;
619 ret->port = port;
620
621 err = 0;
622 do {
623 err = try_connect(ret);
624 } while (err && sk_nextaddr(ret->addr));
625
626 if (err)
627 ret->error = strerror(err);
628
629 return (Socket) ret;
630 }
631
632 Socket sk_newlistener(char *srcaddr, int port, Plug plug, int local_host_only, int address_family)
633 {
634 int s;
635 #ifndef NO_IPV6
636 struct addrinfo hints, *ai;
637 char portstr[6];
638 struct sockaddr_in6 a6;
639 #endif
640 struct sockaddr *addr;
641 int addrlen;
642 struct sockaddr_in a;
643 Actual_Socket ret;
644 int retcode;
645 int on = 1;
646
647 /*
648 * Create Socket structure.
649 */
650 ret = snew(struct Socket_tag);
651 ret->fn = &tcp_fn_table;
652 ret->error = NULL;
653 ret->plug = plug;
654 bufchain_init(&ret->output_data);
655 ret->writable = 0; /* to start with */
656 ret->sending_oob = 0;
657 ret->frozen = 0;
658 ret->frozen_readable = 0;
659 ret->localhost_only = local_host_only;
660 ret->pending_error = 0;
661 ret->oobpending = FALSE;
662 ret->listener = 1;
663 ret->addr = NULL;
664
665 /*
666 * Translate address_family from platform-independent constants
667 * into local reality.
668 */
669 address_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
670 address_family == ADDRTYPE_IPV6 ? AF_INET6 : AF_UNSPEC);
671
672 #ifndef NO_IPV6
673 /* Let's default to IPv6.
674 * If the stack doesn't support IPv6, we will fall back to IPv4. */
675 if (address_family == AF_UNSPEC) address_family = AF_INET6;
676 #else
677 /* No other choice, default to IPv4 */
678 if (address_family == AF_UNSPEC) address_family = AF_INET;
679 #endif
680
681 /*
682 * Open socket.
683 */
684 s = socket(address_family, SOCK_STREAM, 0);
685
686 /* If the host doesn't support IPv6 try fallback to IPv4. */
687 if (s < 0 && address_family == AF_INET6) {
688 address_family = AF_INET;
689 s = socket(address_family, SOCK_STREAM, 0);
690 }
691
692 if (s < 0) {
693 ret->error = strerror(errno);
694 return (Socket) ret;
695 }
696
697 ret->oobinline = 0;
698
699 setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
700
701 retcode = -1;
702 addr = NULL; addrlen = -1; /* placate optimiser */
703
704 if (srcaddr != NULL) {
705 #ifndef NO_IPV6
706 hints.ai_flags = AI_NUMERICHOST;
707 hints.ai_family = address_family;
708 hints.ai_socktype = 0;
709 hints.ai_protocol = 0;
710 hints.ai_addrlen = 0;
711 hints.ai_addr = NULL;
712 hints.ai_canonname = NULL;
713 hints.ai_next = NULL;
714 sprintf(portstr, "%d", port);
715 retcode = getaddrinfo(srcaddr, portstr, &hints, &ai);
716 addr = ai->ai_addr;
717 addrlen = ai->ai_addrlen;
718 #else
719 memset(&a,'\0',sizeof(struct sockaddr_in));
720 a.sin_family = AF_INET;
721 a.sin_port = htons(port);
722 a.sin_addr.s_addr = inet_addr(srcaddr);
723 if (a.sin_addr.s_addr != (in_addr_t)(-1)) {
724 /* Override localhost_only with specified listen addr. */
725 ret->localhost_only = ipv4_is_loopback(a.sin_addr);
726 got_addr = 1;
727 }
728 addr = (struct sockaddr *)a;
729 addrlen = sizeof(a);
730 retcode = 0;
731 #endif
732 }
733
734 if (retcode != 0) {
735 #ifndef NO_IPV6
736 if (address_family == AF_INET6) {
737 memset(&a6,'\0',sizeof(struct sockaddr_in6));
738 a6.sin6_family = AF_INET6;
739 a6.sin6_port = htons(port);
740 if (local_host_only)
741 a6.sin6_addr = in6addr_loopback;
742 else
743 a6.sin6_addr = in6addr_any;
744 addr = (struct sockaddr *)&a6;
745 addrlen = sizeof(a6);
746 } else
747 #endif
748 {
749 memset(&a,'\0',sizeof(struct sockaddr_in));
750 a.sin_family = AF_INET;
751 a.sin_port = htons(port);
752 if (local_host_only)
753 a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
754 else
755 a.sin_addr.s_addr = htonl(INADDR_ANY);
756 addr = (struct sockaddr *)&a;
757 addrlen = sizeof(a);
758 }
759 }
760
761 retcode = bind(s, addr, addrlen);
762 if (retcode < 0) {
763 close(s);
764 ret->error = strerror(errno);
765 return (Socket) ret;
766 }
767
768 if (listen(s, SOMAXCONN) < 0) {
769 close(s);
770 ret->error = strerror(errno);
771 return (Socket) ret;
772 }
773
774 ret->s = s;
775
776 uxsel_tell(ret);
777 add234(sktree, ret);
778
779 return (Socket) ret;
780 }
781
782 static void sk_tcp_close(Socket sock)
783 {
784 Actual_Socket s = (Actual_Socket) sock;
785
786 uxsel_del(s->s);
787 del234(sktree, s);
788 close(s->s);
789 if (s->addr)
790 sk_addr_free(s->addr);
791 sfree(s);
792 }
793
794 int sk_getxdmdata(void *sock, unsigned long *ip, int *port)
795 {
796 Actual_Socket s = (Actual_Socket) sock;
797 struct sockaddr_in addr;
798 socklen_t addrlen;
799
800 /*
801 * We must check that this socket really _is_ an Actual_Socket.
802 */
803 if (s->fn != &tcp_fn_table)
804 return 0; /* failure */
805
806 addrlen = sizeof(addr);
807 if (getsockname(s->s, (struct sockaddr *)&addr, &addrlen) < 0)
808 return 0;
809 switch(addr.sin_family) {
810 case AF_INET:
811 *ip = ntohl(addr.sin_addr.s_addr);
812 *port = ntohs(addr.sin_port);
813 break;
814 case AF_UNIX:
815 /*
816 * For a Unix socket, we return 0xFFFFFFFF for the IP address and
817 * our current pid for the port. Bizarre, but such is life.
818 */
819 *ip = ntohl(0xFFFFFFFF);
820 *port = getpid();
821 break;
822
823 /* XXX IPV6 */
824
825 default:
826 return 0;
827 }
828
829 return 1;
830 }
831
832 /*
833 * The function which tries to send on a socket once it's deemed
834 * writable.
835 */
836 void try_send(Actual_Socket s)
837 {
838 while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
839 int nsent;
840 int err;
841 void *data;
842 int len, urgentflag;
843
844 if (s->sending_oob) {
845 urgentflag = MSG_OOB;
846 len = s->sending_oob;
847 data = &s->oobdata;
848 } else {
849 urgentflag = 0;
850 bufchain_prefix(&s->output_data, &data, &len);
851 }
852 nsent = send(s->s, data, len, urgentflag);
853 noise_ultralight(nsent);
854 if (nsent <= 0) {
855 err = (nsent < 0 ? errno : 0);
856 if (err == EWOULDBLOCK) {
857 /*
858 * Perfectly normal: we've sent all we can for the moment.
859 */
860 s->writable = FALSE;
861 return;
862 } else if (nsent == 0 ||
863 err == ECONNABORTED || err == ECONNRESET) {
864 /*
865 * If send() returns CONNABORTED or CONNRESET, we
866 * unfortunately can't just call plug_closing(),
867 * because it's quite likely that we're currently
868 * _in_ a call from the code we'd be calling back
869 * to, so we'd have to make half the SSH code
870 * reentrant. Instead we flag a pending error on
871 * the socket, to be dealt with (by calling
872 * plug_closing()) at some suitable future moment.
873 */
874 s->pending_error = err;
875 return;
876 } else {
877 /* We're inside the Unix frontend here, so we know
878 * that the frontend handle is unnecessary. */
879 logevent(NULL, strerror(err));
880 fatalbox("%s", strerror(err));
881 }
882 } else {
883 if (s->sending_oob) {
884 if (nsent < len) {
885 memmove(s->oobdata, s->oobdata+nsent, len-nsent);
886 s->sending_oob = len - nsent;
887 } else {
888 s->sending_oob = 0;
889 }
890 } else {
891 bufchain_consume(&s->output_data, nsent);
892 }
893 }
894 }
895 uxsel_tell(s);
896 }
897
898 static int sk_tcp_write(Socket sock, const char *buf, int len)
899 {
900 Actual_Socket s = (Actual_Socket) sock;
901
902 /*
903 * Add the data to the buffer list on the socket.
904 */
905 bufchain_add(&s->output_data, buf, len);
906
907 /*
908 * Now try sending from the start of the buffer list.
909 */
910 if (s->writable)
911 try_send(s);
912
913 /*
914 * Update the select() status to correctly reflect whether or
915 * not we should be selecting for write.
916 */
917 uxsel_tell(s);
918
919 return bufchain_size(&s->output_data);
920 }
921
922 static int sk_tcp_write_oob(Socket sock, const char *buf, int len)
923 {
924 Actual_Socket s = (Actual_Socket) sock;
925
926 /*
927 * Replace the buffer list on the socket with the data.
928 */
929 bufchain_clear(&s->output_data);
930 assert(len <= sizeof(s->oobdata));
931 memcpy(s->oobdata, buf, len);
932 s->sending_oob = len;
933
934 /*
935 * Now try sending from the start of the buffer list.
936 */
937 if (s->writable)
938 try_send(s);
939
940 /*
941 * Update the select() status to correctly reflect whether or
942 * not we should be selecting for write.
943 */
944 uxsel_tell(s);
945
946 return s->sending_oob;
947 }
948
949 static int net_select_result(int fd, int event)
950 {
951 int ret;
952 int err;
953 char buf[20480]; /* nice big buffer for plenty of speed */
954 Actual_Socket s;
955 u_long atmark;
956
957 /* Find the Socket structure */
958 s = find234(sktree, &fd, cmpforsearch);
959 if (!s)
960 return 1; /* boggle */
961
962 noise_ultralight(event);
963
964 switch (event) {
965 case 4: /* exceptional */
966 if (!s->oobinline) {
967 /*
968 * On a non-oobinline socket, this indicates that we
969 * can immediately perform an OOB read and get back OOB
970 * data, which we will send to the back end with
971 * type==2 (urgent data).
972 */
973 ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
974 noise_ultralight(ret);
975 if (ret <= 0) {
976 const char *str = (ret == 0 ? "Internal networking trouble" :
977 strerror(errno));
978 /* We're inside the Unix frontend here, so we know
979 * that the frontend handle is unnecessary. */
980 logevent(NULL, str);
981 fatalbox("%s", str);
982 } else {
983 /*
984 * Receiving actual data on a socket means we can
985 * stop falling back through the candidate
986 * addresses to connect to.
987 */
988 if (s->addr) {
989 sk_addr_free(s->addr);
990 s->addr = NULL;
991 }
992 return plug_receive(s->plug, 2, buf, ret);
993 }
994 break;
995 }
996
997 /*
998 * If we reach here, this is an oobinline socket, which
999 * means we should set s->oobpending and then deal with it
1000 * when we get called for the readability event (which
1001 * should also occur).
1002 */
1003 s->oobpending = TRUE;
1004 break;
1005 case 1: /* readable; also acceptance */
1006 if (s->listener) {
1007 /*
1008 * On a listening socket, the readability event means a
1009 * connection is ready to be accepted.
1010 */
1011 struct sockaddr_in isa;
1012 int addrlen = sizeof(struct sockaddr_in);
1013 int t; /* socket of connection */
1014
1015 memset(&isa, 0, sizeof(struct sockaddr_in));
1016 err = 0;
1017 t = accept(s->s,(struct sockaddr *)&isa,(socklen_t *) &addrlen);
1018 if (t < 0) {
1019 break;
1020 }
1021
1022 if (s->localhost_only && !ipv4_is_loopback(isa.sin_addr)) {
1023 close(t); /* someone let nonlocal through?! */
1024 } else if (plug_accepting(s->plug, t)) {
1025 close(t); /* denied or error */
1026 }
1027 break;
1028 }
1029
1030 /*
1031 * If we reach here, this is not a listening socket, so
1032 * readability really means readability.
1033 */
1034
1035 /* In the case the socket is still frozen, we don't even bother */
1036 if (s->frozen) {
1037 s->frozen_readable = 1;
1038 break;
1039 }
1040
1041 /*
1042 * We have received data on the socket. For an oobinline
1043 * socket, this might be data _before_ an urgent pointer,
1044 * in which case we send it to the back end with type==1
1045 * (data prior to urgent).
1046 */
1047 if (s->oobinline && s->oobpending) {
1048 atmark = 1;
1049 if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
1050 s->oobpending = FALSE; /* clear this indicator */
1051 } else
1052 atmark = 1;
1053
1054 ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
1055 noise_ultralight(ret);
1056 if (ret < 0) {
1057 if (errno == EWOULDBLOCK) {
1058 break;
1059 }
1060 }
1061 if (ret < 0) {
1062 /*
1063 * An error at this point _might_ be an error reported
1064 * by a non-blocking connect(). So before we return a
1065 * panic status to the user, let's just see whether
1066 * that's the case.
1067 */
1068 int err = errno;
1069 if (s->addr) {
1070 plug_log(s->plug, 1, s->addr, s->port, strerror(err), err);
1071 while (s->addr && sk_nextaddr(s->addr)) {
1072 err = try_connect(s);
1073 }
1074 }
1075 if (err != 0)
1076 return plug_closing(s->plug, strerror(err), err, 0);
1077 } else if (0 == ret) {
1078 return plug_closing(s->plug, NULL, 0, 0);
1079 } else {
1080 /*
1081 * Receiving actual data on a socket means we can
1082 * stop falling back through the candidate
1083 * addresses to connect to.
1084 */
1085 if (s->addr) {
1086 sk_addr_free(s->addr);
1087 s->addr = NULL;
1088 }
1089 return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
1090 }
1091 break;
1092 case 2: /* writable */
1093 if (!s->connected) {
1094 /*
1095 * select() reports a socket as _writable_ when an
1096 * asynchronous connection is completed.
1097 */
1098 s->connected = s->writable = 1;
1099 uxsel_tell(s);
1100 break;
1101 } else {
1102 int bufsize_before, bufsize_after;
1103 s->writable = 1;
1104 bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
1105 try_send(s);
1106 bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
1107 if (bufsize_after < bufsize_before)
1108 plug_sent(s->plug, bufsize_after);
1109 }
1110 break;
1111 }
1112
1113 return 1;
1114 }
1115
1116 /*
1117 * Deal with socket errors detected in try_send().
1118 */
1119 void net_pending_errors(void)
1120 {
1121 int i;
1122 Actual_Socket s;
1123
1124 /*
1125 * This might be a fiddly business, because it's just possible
1126 * that handling a pending error on one socket might cause
1127 * others to be closed. (I can't think of any reason this might
1128 * happen in current SSH implementation, but to maintain
1129 * generality of this network layer I'll assume the worst.)
1130 *
1131 * So what we'll do is search the socket list for _one_ socket
1132 * with a pending error, and then handle it, and then search
1133 * the list again _from the beginning_. Repeat until we make a
1134 * pass with no socket errors present. That way we are
1135 * protected against the socket list changing under our feet.
1136 */
1137
1138 do {
1139 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
1140 if (s->pending_error) {
1141 /*
1142 * An error has occurred on this socket. Pass it to the
1143 * plug.
1144 */
1145 plug_closing(s->plug, strerror(s->pending_error),
1146 s->pending_error, 0);
1147 break;
1148 }
1149 }
1150 } while (s);
1151 }
1152
1153 /*
1154 * Each socket abstraction contains a `void *' private field in
1155 * which the client can keep state.
1156 */
1157 static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
1158 {
1159 Actual_Socket s = (Actual_Socket) sock;
1160 s->private_ptr = ptr;
1161 }
1162
1163 static void *sk_tcp_get_private_ptr(Socket sock)
1164 {
1165 Actual_Socket s = (Actual_Socket) sock;
1166 return s->private_ptr;
1167 }
1168
1169 /*
1170 * Special error values are returned from sk_namelookup and sk_new
1171 * if there's a problem. These functions extract an error message,
1172 * or return NULL if there's no problem.
1173 */
1174 const char *sk_addr_error(SockAddr addr)
1175 {
1176 return addr->error;
1177 }
1178 static const char *sk_tcp_socket_error(Socket sock)
1179 {
1180 Actual_Socket s = (Actual_Socket) sock;
1181 return s->error;
1182 }
1183
1184 static void sk_tcp_set_frozen(Socket sock, int is_frozen)
1185 {
1186 Actual_Socket s = (Actual_Socket) sock;
1187 if (s->frozen == is_frozen)
1188 return;
1189 s->frozen = is_frozen;
1190 if (!is_frozen && s->frozen_readable) {
1191 char c;
1192 recv(s->s, &c, 1, MSG_PEEK);
1193 }
1194 s->frozen_readable = 0;
1195 uxsel_tell(s);
1196 }
1197
1198 static void uxsel_tell(Actual_Socket s)
1199 {
1200 int rwx = 0;
1201 if (!s->connected)
1202 rwx |= 2; /* write == connect */
1203 if (s->connected && !s->frozen)
1204 rwx |= 1 | 4; /* read, except */
1205 if (bufchain_size(&s->output_data))
1206 rwx |= 2; /* write */
1207 if (s->listener)
1208 rwx |= 1; /* read == accept */
1209 uxsel_set(s->s, rwx, net_select_result);
1210 }
1211
1212 int net_service_lookup(char *service)
1213 {
1214 struct servent *se;
1215 se = getservbyname(service, NULL);
1216 if (se != NULL)
1217 return ntohs(se->s_port);
1218 else
1219 return 0;
1220 }
1221
1222 SockAddr platform_get_x11_unix_address(int displaynum, char **canonicalname)
1223 {
1224 SockAddr ret = snew(struct SockAddr_tag);
1225 int n;
1226
1227 memset(ret, 0, sizeof *ret);
1228 ret->family = AF_UNIX;
1229 n = snprintf(ret->hostname, sizeof ret->hostname,
1230 "%s%d", X11_UNIX_PATH, displaynum);
1231 if(n < 0)
1232 ret->error = "snprintf failed";
1233 else if(n >= sizeof ret->hostname)
1234 ret->error = "X11 UNIX name too long";
1235 else
1236 *canonicalname = dupstr(ret->hostname);
1237 #ifndef NO_IPV6
1238 ret->ais = NULL;
1239 #else
1240 ret->addresses = NULL;
1241 #endif
1242 return ret;
1243 }