PuTTYgen initial version. Still to do are basic user-friendliness
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8
9 #include "ssh.h"
10
11 unsigned short bnZero[1] = { 0 };
12 unsigned short bnOne[2] = { 1, 1 };
13
14 Bignum Zero = bnZero, One = bnOne;
15
16 Bignum newbn(int length) {
17 Bignum b = malloc((length+1)*sizeof(unsigned short));
18 if (!b)
19 abort(); /* FIXME */
20 memset(b, 0, (length+1)*sizeof(*b));
21 b[0] = length;
22 return b;
23 }
24
25 Bignum copybn(Bignum orig) {
26 Bignum b = malloc((orig[0]+1)*sizeof(unsigned short));
27 if (!b)
28 abort(); /* FIXME */
29 memcpy(b, orig, (orig[0]+1)*sizeof(*b));
30 return b;
31 }
32
33 void freebn(Bignum b) {
34 /*
35 * Burn the evidence, just in case.
36 */
37 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
38 free(b);
39 }
40
41 /*
42 * Compute c = a * b.
43 * Input is in the first len words of a and b.
44 * Result is returned in the first 2*len words of c.
45 */
46 static void internal_mul(unsigned short *a, unsigned short *b,
47 unsigned short *c, int len)
48 {
49 int i, j;
50 unsigned long ai, t;
51
52 for (j = 0; j < 2*len; j++)
53 c[j] = 0;
54
55 for (i = len - 1; i >= 0; i--) {
56 ai = a[i];
57 t = 0;
58 for (j = len - 1; j >= 0; j--) {
59 t += ai * (unsigned long) b[j];
60 t += (unsigned long) c[i+j+1];
61 c[i+j+1] = (unsigned short)t;
62 t = t >> 16;
63 }
64 c[i] = (unsigned short)t;
65 }
66 }
67
68 static void internal_add_shifted(unsigned short *number,
69 unsigned n, int shift) {
70 int word = 1 + (shift / 16);
71 int bshift = shift % 16;
72 unsigned long addend;
73
74 addend = n << bshift;
75
76 while (addend) {
77 addend += number[word];
78 number[word] = (unsigned short) addend & 0xFFFF;
79 addend >>= 16;
80 word++;
81 }
82 }
83
84 /*
85 * Compute a = a % m.
86 * Input in first alen words of a and first mlen words of m.
87 * Output in first alen words of a
88 * (of which first alen-mlen words will be zero).
89 * The MSW of m MUST have its high bit set.
90 * Quotient is accumulated in the `quotient' array, which is a Bignum
91 * rather than the internal bigendian format. Quotient parts are shifted
92 * left by `qshift' before adding into quot.
93 */
94 static void internal_mod(unsigned short *a, int alen,
95 unsigned short *m, int mlen,
96 unsigned short *quot, int qshift)
97 {
98 unsigned short m0, m1;
99 unsigned int h;
100 int i, k;
101
102 m0 = m[0];
103 if (mlen > 1)
104 m1 = m[1];
105 else
106 m1 = 0;
107
108 for (i = 0; i <= alen-mlen; i++) {
109 unsigned long t;
110 unsigned int q, r, c, ai1;
111
112 if (i == 0) {
113 h = 0;
114 } else {
115 h = a[i-1];
116 a[i-1] = 0;
117 }
118
119 if (i == alen-1)
120 ai1 = 0;
121 else
122 ai1 = a[i+1];
123
124 /* Find q = h:a[i] / m0 */
125 t = ((unsigned long) h << 16) + a[i];
126 q = t / m0;
127 r = t % m0;
128
129 /* Refine our estimate of q by looking at
130 h:a[i]:a[i+1] / m0:m1 */
131 t = (long) m1 * (long) q;
132 if (t > ((unsigned long) r << 16) + ai1) {
133 q--;
134 t -= m1;
135 r = (r + m0) & 0xffff; /* overflow? */
136 if (r >= (unsigned long)m0 &&
137 t > ((unsigned long) r << 16) + ai1)
138 q--;
139 }
140
141 /* Subtract q * m from a[i...] */
142 c = 0;
143 for (k = mlen - 1; k >= 0; k--) {
144 t = (long) q * (long) m[k];
145 t += c;
146 c = t >> 16;
147 if ((unsigned short) t > a[i+k]) c++;
148 a[i+k] -= (unsigned short) t;
149 }
150
151 /* Add back m in case of borrow */
152 if (c != h) {
153 t = 0;
154 for (k = mlen - 1; k >= 0; k--) {
155 t += m[k];
156 t += a[i+k];
157 a[i+k] = (unsigned short)t;
158 t = t >> 16;
159 }
160 q--;
161 }
162 if (quot)
163 internal_add_shifted(quot, q, qshift + 16 * (alen-mlen-i));
164 }
165 }
166
167 /*
168 * Compute (base ^ exp) % mod.
169 * The base MUST be smaller than the modulus.
170 * The most significant word of mod MUST be non-zero.
171 * We assume that the result array is the same size as the mod array.
172 */
173 void modpow(Bignum base, Bignum exp, Bignum mod, Bignum result)
174 {
175 unsigned short *a, *b, *n, *m;
176 int mshift;
177 int mlen, i, j;
178
179 /* Allocate m of size mlen, copy mod to m */
180 /* We use big endian internally */
181 mlen = mod[0];
182 m = malloc(mlen * sizeof(unsigned short));
183 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
184
185 /* Shift m left to make msb bit set */
186 for (mshift = 0; mshift < 15; mshift++)
187 if ((m[0] << mshift) & 0x8000) break;
188 if (mshift) {
189 for (i = 0; i < mlen - 1; i++)
190 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
191 m[mlen-1] = m[mlen-1] << mshift;
192 }
193
194 /* Allocate n of size mlen, copy base to n */
195 n = malloc(mlen * sizeof(unsigned short));
196 i = mlen - base[0];
197 for (j = 0; j < i; j++) n[j] = 0;
198 for (j = 0; j < base[0]; j++) n[i+j] = base[base[0] - j];
199
200 /* Allocate a and b of size 2*mlen. Set a = 1 */
201 a = malloc(2 * mlen * sizeof(unsigned short));
202 b = malloc(2 * mlen * sizeof(unsigned short));
203 for (i = 0; i < 2*mlen; i++) a[i] = 0;
204 a[2*mlen-1] = 1;
205
206 /* Skip leading zero bits of exp. */
207 i = 0; j = 15;
208 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
209 j--;
210 if (j < 0) { i++; j = 15; }
211 }
212
213 /* Main computation */
214 while (i < exp[0]) {
215 while (j >= 0) {
216 internal_mul(a + mlen, a + mlen, b, mlen);
217 internal_mod(b, mlen*2, m, mlen, NULL, 0);
218 if ((exp[exp[0] - i] & (1 << j)) != 0) {
219 internal_mul(b + mlen, n, a, mlen);
220 internal_mod(a, mlen*2, m, mlen, NULL, 0);
221 } else {
222 unsigned short *t;
223 t = a; a = b; b = t;
224 }
225 j--;
226 }
227 i++; j = 15;
228 }
229
230 /* Fixup result in case the modulus was shifted */
231 if (mshift) {
232 for (i = mlen - 1; i < 2*mlen - 1; i++)
233 a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
234 a[2*mlen-1] = a[2*mlen-1] << mshift;
235 internal_mod(a, mlen*2, m, mlen, NULL, 0);
236 for (i = 2*mlen - 1; i >= mlen; i--)
237 a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
238 }
239
240 /* Copy result to buffer */
241 for (i = 0; i < mlen; i++)
242 result[result[0] - i] = a[i+mlen];
243
244 /* Free temporary arrays */
245 for (i = 0; i < 2*mlen; i++) a[i] = 0; free(a);
246 for (i = 0; i < 2*mlen; i++) b[i] = 0; free(b);
247 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
248 for (i = 0; i < mlen; i++) n[i] = 0; free(n);
249 }
250
251 /*
252 * Compute (p * q) % mod.
253 * The most significant word of mod MUST be non-zero.
254 * We assume that the result array is the same size as the mod array.
255 */
256 void modmul(Bignum p, Bignum q, Bignum mod, Bignum result)
257 {
258 unsigned short *a, *n, *m, *o;
259 int mshift;
260 int pqlen, mlen, i, j;
261
262 /* Allocate m of size mlen, copy mod to m */
263 /* We use big endian internally */
264 mlen = mod[0];
265 m = malloc(mlen * sizeof(unsigned short));
266 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
267
268 /* Shift m left to make msb bit set */
269 for (mshift = 0; mshift < 15; mshift++)
270 if ((m[0] << mshift) & 0x8000) break;
271 if (mshift) {
272 for (i = 0; i < mlen - 1; i++)
273 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
274 m[mlen-1] = m[mlen-1] << mshift;
275 }
276
277 pqlen = (p[0] > q[0] ? p[0] : q[0]);
278
279 /* Allocate n of size pqlen, copy p to n */
280 n = malloc(pqlen * sizeof(unsigned short));
281 i = pqlen - p[0];
282 for (j = 0; j < i; j++) n[j] = 0;
283 for (j = 0; j < p[0]; j++) n[i+j] = p[p[0] - j];
284
285 /* Allocate o of size pqlen, copy q to o */
286 o = malloc(pqlen * sizeof(unsigned short));
287 i = pqlen - q[0];
288 for (j = 0; j < i; j++) o[j] = 0;
289 for (j = 0; j < q[0]; j++) o[i+j] = q[q[0] - j];
290
291 /* Allocate a of size 2*pqlen for result */
292 a = malloc(2 * pqlen * sizeof(unsigned short));
293
294 /* Main computation */
295 internal_mul(n, o, a, pqlen);
296 internal_mod(a, pqlen*2, m, mlen, NULL, 0);
297
298 /* Fixup result in case the modulus was shifted */
299 if (mshift) {
300 for (i = 2*pqlen - mlen - 1; i < 2*pqlen - 1; i++)
301 a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
302 a[2*pqlen-1] = a[2*pqlen-1] << mshift;
303 internal_mod(a, pqlen*2, m, mlen, NULL, 0);
304 for (i = 2*pqlen - 1; i >= 2*pqlen - mlen; i--)
305 a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
306 }
307
308 /* Copy result to buffer */
309 for (i = 0; i < mlen; i++)
310 result[result[0] - i] = a[i+2*pqlen-mlen];
311
312 /* Free temporary arrays */
313 for (i = 0; i < 2*pqlen; i++) a[i] = 0; free(a);
314 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
315 for (i = 0; i < pqlen; i++) n[i] = 0; free(n);
316 for (i = 0; i < pqlen; i++) o[i] = 0; free(o);
317 }
318
319 /*
320 * Compute p % mod.
321 * The most significant word of mod MUST be non-zero.
322 * We assume that the result array is the same size as the mod array.
323 * We optionally write out a quotient.
324 */
325 void bigmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
326 {
327 unsigned short *n, *m;
328 int mshift;
329 int plen, mlen, i, j;
330
331 /* Allocate m of size mlen, copy mod to m */
332 /* We use big endian internally */
333 mlen = mod[0];
334 m = malloc(mlen * sizeof(unsigned short));
335 for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
336
337 /* Shift m left to make msb bit set */
338 for (mshift = 0; mshift < 15; mshift++)
339 if ((m[0] << mshift) & 0x8000) break;
340 if (mshift) {
341 for (i = 0; i < mlen - 1; i++)
342 m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
343 m[mlen-1] = m[mlen-1] << mshift;
344 }
345
346 plen = p[0];
347 /* Ensure plen > mlen */
348 if (plen <= mlen) plen = mlen+1;
349
350 /* Allocate n of size plen, copy p to n */
351 n = malloc(plen * sizeof(unsigned short));
352 for (j = 0; j < plen; j++) n[j] = 0;
353 for (j = 1; j <= p[0]; j++) n[plen-j] = p[j];
354
355 /* Main computation */
356 internal_mod(n, plen, m, mlen, quotient, mshift);
357
358 /* Fixup result in case the modulus was shifted */
359 if (mshift) {
360 for (i = plen - mlen - 1; i < plen - 1; i++)
361 n[i] = (n[i] << mshift) | (n[i+1] >> (16-mshift));
362 n[plen-1] = n[plen-1] << mshift;
363 internal_mod(n, plen, m, mlen, quotient, 0);
364 for (i = plen - 1; i >= plen - mlen; i--)
365 n[i] = (n[i] >> mshift) | (n[i-1] << (16-mshift));
366 }
367
368 /* Copy result to buffer */
369 for (i = 1; i <= result[0]; i++) {
370 int j = plen-i;
371 result[i] = j>=0 ? n[j] : 0;
372 }
373
374 /* Free temporary arrays */
375 for (i = 0; i < mlen; i++) m[i] = 0; free(m);
376 for (i = 0; i < plen; i++) n[i] = 0; free(n);
377 }
378
379 /*
380 * Decrement a number.
381 */
382 void decbn(Bignum bn) {
383 int i = 1;
384 while (i < bn[0] && bn[i] == 0)
385 bn[i++] = 0xFFFF;
386 bn[i]--;
387 }
388
389 /*
390 * Read an ssh1-format bignum from a data buffer. Return the number
391 * of bytes consumed.
392 */
393 int ssh1_read_bignum(unsigned char *data, Bignum *result) {
394 unsigned char *p = data;
395 Bignum bn;
396 int i;
397 int w, b;
398
399 w = 0;
400 for (i=0; i<2; i++)
401 w = (w << 8) + *p++;
402
403 b = (w+7)/8; /* bits -> bytes */
404 w = (w+15)/16; /* bits -> words */
405
406 if (!result) /* just return length */
407 return b + 2;
408
409 bn = newbn(w);
410
411 for (i=1; i<=w; i++)
412 bn[i] = 0;
413 for (i=b; i-- ;) {
414 unsigned char byte = *p++;
415 if (i & 1)
416 bn[1+i/2] |= byte<<8;
417 else
418 bn[1+i/2] |= byte;
419 }
420
421 *result = bn;
422
423 return p - data;
424 }
425
426 /*
427 * Return the bit count of a bignum, for ssh1 encoding.
428 */
429 int ssh1_bignum_bitcount(Bignum bn) {
430 int bitcount = bn[0] * 16 - 1;
431
432 while (bitcount >= 0 && (bn[bitcount/16+1] >> (bitcount % 16)) == 0)
433 bitcount--;
434 return bitcount + 1;
435 }
436
437 /*
438 * Return the byte length of a bignum when ssh1 encoded.
439 */
440 int ssh1_bignum_length(Bignum bn) {
441 return 2 + (ssh1_bignum_bitcount(bn)+7)/8;
442 }
443
444 /*
445 * Return a byte from a bignum; 0 is least significant, etc.
446 */
447 int bignum_byte(Bignum bn, int i) {
448 if (i >= 2*bn[0])
449 return 0; /* beyond the end */
450 else if (i & 1)
451 return (bn[i/2+1] >> 8) & 0xFF;
452 else
453 return (bn[i/2+1] ) & 0xFF;
454 }
455
456 /*
457 * Return a bit from a bignum; 0 is least significant, etc.
458 */
459 int bignum_bit(Bignum bn, int i) {
460 if (i >= 16*bn[0])
461 return 0; /* beyond the end */
462 else
463 return (bn[i/16+1] >> (i%16)) & 1;
464 }
465
466 /*
467 * Set a bit in a bignum; 0 is least significant, etc.
468 */
469 void bignum_set_bit(Bignum bn, int bitnum, int value) {
470 if (bitnum >= 16*bn[0])
471 abort(); /* beyond the end */
472 else {
473 int v = bitnum/16+1;
474 int mask = 1 << (bitnum%16);
475 if (value)
476 bn[v] |= mask;
477 else
478 bn[v] &= ~mask;
479 }
480 }
481
482 /*
483 * Write a ssh1-format bignum into a buffer. It is assumed the
484 * buffer is big enough. Returns the number of bytes used.
485 */
486 int ssh1_write_bignum(void *data, Bignum bn) {
487 unsigned char *p = data;
488 int len = ssh1_bignum_length(bn);
489 int i;
490 int bitc = ssh1_bignum_bitcount(bn);
491
492 *p++ = (bitc >> 8) & 0xFF;
493 *p++ = (bitc ) & 0xFF;
494 for (i = len-2; i-- ;)
495 *p++ = bignum_byte(bn, i);
496 return len;
497 }
498
499 /*
500 * Compare two bignums. Returns like strcmp.
501 */
502 int bignum_cmp(Bignum a, Bignum b) {
503 int amax = a[0], bmax = b[0];
504 int i = (amax > bmax ? amax : bmax);
505 while (i) {
506 unsigned short aval = (i > amax ? 0 : a[i]);
507 unsigned short bval = (i > bmax ? 0 : b[i]);
508 if (aval < bval) return -1;
509 if (aval > bval) return +1;
510 i--;
511 }
512 return 0;
513 }
514
515 /*
516 * Right-shift one bignum to form another.
517 */
518 Bignum bignum_rshift(Bignum a, int shift) {
519 Bignum ret;
520 int i, shiftw, shiftb, shiftbb, bits;
521 unsigned short ai, ai1;
522
523 bits = ssh1_bignum_bitcount(a) - shift;
524 ret = newbn((bits+15)/16);
525
526 if (ret) {
527 shiftw = shift / 16;
528 shiftb = shift % 16;
529 shiftbb = 16 - shiftb;
530
531 ai1 = a[shiftw+1];
532 for (i = 1; i <= ret[0]; i++) {
533 ai = ai1;
534 ai1 = (i+shiftw+1 <= a[0] ? a[i+shiftw+1] : 0);
535 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & 0xFFFF;
536 }
537 }
538
539 return ret;
540 }
541
542 /*
543 * Non-modular multiplication and addition.
544 */
545 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) {
546 int alen = a[0], blen = b[0];
547 int mlen = (alen > blen ? alen : blen);
548 int rlen, i, maxspot;
549 unsigned short *workspace;
550 Bignum ret;
551
552 /* mlen space for a, mlen space for b, 2*mlen for result */
553 workspace = malloc(mlen * 4 * sizeof(unsigned short));
554 for (i = 0; i < mlen; i++) {
555 workspace[0*mlen + i] = (mlen-i <= a[0] ? a[mlen-i] : 0);
556 workspace[1*mlen + i] = (mlen-i <= b[0] ? b[mlen-i] : 0);
557 }
558
559 internal_mul(workspace+0*mlen, workspace+1*mlen, workspace+2*mlen, mlen);
560
561 /* now just copy the result back */
562 rlen = alen + blen + 1;
563 if (addend && rlen <= addend[0])
564 rlen = addend[0] + 1;
565 ret = newbn(rlen);
566 maxspot = 0;
567 for (i = 1; i <= ret[0]; i++) {
568 ret[i] = (i <= 2*mlen ? workspace[4*mlen - i] : 0);
569 if (ret[i] != 0)
570 maxspot = i;
571 }
572 ret[0] = maxspot;
573
574 /* now add in the addend, if any */
575 if (addend) {
576 unsigned long carry = 0;
577 for (i = 1; i <= rlen; i++) {
578 carry += (i <= ret[0] ? ret[i] : 0);
579 carry += (i <= addend[0] ? addend[i] : 0);
580 ret[i] = (unsigned short) carry & 0xFFFF;
581 carry >>= 16;
582 if (ret[i] != 0 && i > maxspot)
583 maxspot = i;
584 }
585 }
586 ret[0] = maxspot;
587
588 return ret;
589 }
590
591 /*
592 * Non-modular multiplication.
593 */
594 Bignum bigmul(Bignum a, Bignum b) {
595 return bigmuladd(a, b, NULL);
596 }
597
598 /*
599 * Convert a (max 16-bit) short into a bignum.
600 */
601 Bignum bignum_from_short(unsigned short n) {
602 Bignum ret;
603
604 ret = newbn(2);
605 ret[1] = n & 0xFFFF;
606 ret[2] = (n >> 16) & 0xFFFF;
607 ret[0] = (ret[2] ? 2 : 1);
608 return ret;
609 }
610
611 /*
612 * Add a long to a bignum.
613 */
614 Bignum bignum_add_long(Bignum number, unsigned long addend) {
615 Bignum ret = newbn(number[0]+1);
616 int i, maxspot = 0;
617 unsigned long carry = 0;
618
619 for (i = 1; i <= ret[0]; i++) {
620 carry += addend & 0xFFFF;
621 carry += (i <= number[0] ? number[i] : 0);
622 addend >>= 16;
623 ret[i] = (unsigned short) carry & 0xFFFF;
624 carry >>= 16;
625 if (ret[i] != 0)
626 maxspot = i;
627 }
628 ret[0] = maxspot;
629 return ret;
630 }
631
632 /*
633 * Compute the residue of a bignum, modulo a (max 16-bit) short.
634 */
635 unsigned short bignum_mod_short(Bignum number, unsigned short modulus) {
636 unsigned long mod, r;
637 int i;
638
639 r = 0;
640 mod = modulus;
641 for (i = number[0]; i > 0; i--)
642 r = (r * 65536 + number[i]) % mod;
643 return (unsigned short) r;
644 }
645
646 static void diagbn(char *prefix, Bignum md) {
647 int i, nibbles, morenibbles;
648 static const char hex[] = "0123456789ABCDEF";
649
650 printf("%s0x", prefix ? prefix : "");
651
652 nibbles = (3 + ssh1_bignum_bitcount(md))/4; if (nibbles<1) nibbles=1;
653 morenibbles = 4*md[0] - nibbles;
654 for (i=0; i<morenibbles; i++) putchar('-');
655 for (i=nibbles; i-- ;)
656 putchar(hex[(bignum_byte(md, i/2) >> (4*(i%2))) & 0xF]);
657
658 if (prefix) putchar('\n');
659 }
660
661 /*
662 * Greatest common divisor.
663 */
664 Bignum biggcd(Bignum av, Bignum bv) {
665 Bignum a = copybn(av);
666 Bignum b = copybn(bv);
667
668 diagbn("a = ", a);
669 diagbn("b = ", b);
670 while (bignum_cmp(b, Zero) != 0) {
671 Bignum t = newbn(b[0]);
672 bigmod(a, b, t, NULL);
673 diagbn("t = ", t);
674 while (t[0] > 1 && t[t[0]] == 0) t[0]--;
675 freebn(a);
676 a = b;
677 b = t;
678 }
679
680 freebn(b);
681 return a;
682 }
683
684 /*
685 * Modular inverse, using Euclid's extended algorithm.
686 */
687 Bignum modinv(Bignum number, Bignum modulus) {
688 Bignum a = copybn(modulus);
689 Bignum b = copybn(number);
690 Bignum xp = copybn(Zero);
691 Bignum x = copybn(One);
692 int sign = +1;
693
694 while (bignum_cmp(b, One) != 0) {
695 Bignum t = newbn(b[0]);
696 Bignum q = newbn(a[0]);
697 bigmod(a, b, t, q);
698 while (t[0] > 1 && t[t[0]] == 0) t[0]--;
699 freebn(a);
700 a = b;
701 b = t;
702 t = xp;
703 xp = x;
704 x = bigmuladd(q, xp, t);
705 sign = -sign;
706 freebn(t);
707 }
708
709 freebn(b);
710 freebn(a);
711 freebn(xp);
712
713 /* now we know that sign * x == 1, and that x < modulus */
714 if (sign < 0) {
715 /* set a new x to be modulus - x */
716 Bignum newx = newbn(modulus[0]);
717 unsigned short carry = 0;
718 int maxspot = 1;
719 int i;
720
721 for (i = 1; i <= newx[0]; i++) {
722 unsigned short aword = (i <= modulus[0] ? modulus[i] : 0);
723 unsigned short bword = (i <= x[0] ? x[i] : 0);
724 newx[i] = aword - bword - carry;
725 bword = ~bword;
726 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
727 if (newx[i] != 0)
728 maxspot = i;
729 }
730 newx[0] = maxspot;
731 freebn(x);
732 x = newx;
733 }
734
735 /* and return. */
736 return x;
737 }
738
739 /*
740 * Render a bignum into decimal. Return a malloced string holding
741 * the decimal representation.
742 */
743 char *bignum_decimal(Bignum x) {
744 int ndigits, ndigit;
745 int i, iszero;
746 unsigned long carry;
747 char *ret;
748 unsigned short *workspace;
749
750 /*
751 * First, estimate the number of digits. Since log(10)/log(2)
752 * is just greater than 93/28 (the joys of continued fraction
753 * approximations...) we know that for every 93 bits, we need
754 * at most 28 digits. This will tell us how much to malloc.
755 *
756 * Formally: if x has i bits, that means x is strictly less
757 * than 2^i. Since 2 is less than 10^(28/93), this is less than
758 * 10^(28i/93). We need an integer power of ten, so we must
759 * round up (rounding down might make it less than x again).
760 * Therefore if we multiply the bit count by 28/93, rounding
761 * up, we will have enough digits.
762 */
763 i = ssh1_bignum_bitcount(x);
764 ndigits = (28*i + 92)/93; /* multiply by 28/93 and round up */
765 ndigits++; /* allow for trailing \0 */
766 ret = malloc(ndigits);
767
768 /*
769 * Now allocate some workspace to hold the binary form as we
770 * repeatedly divide it by ten. Initialise this to the
771 * big-endian form of the number.
772 */
773 workspace = malloc(sizeof(unsigned short) * x[0]);
774 for (i = 0; i < x[0]; i++)
775 workspace[i] = x[x[0] - i];
776
777 /*
778 * Next, write the decimal number starting with the last digit.
779 * We use ordinary short division, dividing 10 into the
780 * workspace.
781 */
782 ndigit = ndigits-1;
783 ret[ndigit] = '\0';
784 do {
785 iszero = 1;
786 carry = 0;
787 for (i = 0; i < x[0]; i++) {
788 carry = (carry << 16) + workspace[i];
789 workspace[i] = (unsigned short) (carry / 10);
790 if (workspace[i])
791 iszero = 0;
792 carry %= 10;
793 }
794 ret[--ndigit] = (char)(carry + '0');
795 } while (!iszero);
796
797 /*
798 * There's a chance we've fallen short of the start of the
799 * string. Correct if so.
800 */
801 if (ndigit > 0)
802 memmove(ret, ret+ndigit, ndigits-ndigit);
803
804 /*
805 * Done.
806 */
807 return ret;
808 }