Get rid of all the MSVC warnings.
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #else
55 typedef unsigned short BignumInt;
56 typedef unsigned long BignumDblInt;
57 #define BIGNUM_INT_MASK 0xFFFFU
58 #define BIGNUM_TOP_BIT 0x8000U
59 #define BIGNUM_INT_BITS 16
60 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
61 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
62 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
63 q = n / w; \
64 r = n % w; \
65 } while (0)
66 #endif
67
68 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
69
70 #define BIGNUM_INTERNAL
71 typedef BignumInt *Bignum;
72
73 #include "ssh.h"
74
75 BignumInt bnZero[1] = { 0 };
76 BignumInt bnOne[2] = { 1, 1 };
77
78 /*
79 * The Bignum format is an array of `BignumInt'. The first
80 * element of the array counts the remaining elements. The
81 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
82 * significant digit first. (So it's trivial to extract the bit
83 * with value 2^n for any n.)
84 *
85 * All Bignums in this module are positive. Negative numbers must
86 * be dealt with outside it.
87 *
88 * INVARIANT: the most significant word of any Bignum must be
89 * nonzero.
90 */
91
92 Bignum Zero = bnZero, One = bnOne;
93
94 static Bignum newbn(int length)
95 {
96 Bignum b = snewn(length + 1, BignumInt);
97 if (!b)
98 abort(); /* FIXME */
99 memset(b, 0, (length + 1) * sizeof(*b));
100 b[0] = length;
101 return b;
102 }
103
104 void bn_restore_invariant(Bignum b)
105 {
106 while (b[0] > 1 && b[b[0]] == 0)
107 b[0]--;
108 }
109
110 Bignum copybn(Bignum orig)
111 {
112 Bignum b = snewn(orig[0] + 1, BignumInt);
113 if (!b)
114 abort(); /* FIXME */
115 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
116 return b;
117 }
118
119 void freebn(Bignum b)
120 {
121 /*
122 * Burn the evidence, just in case.
123 */
124 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
125 sfree(b);
126 }
127
128 Bignum bn_power_2(int n)
129 {
130 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
131 bignum_set_bit(ret, n, 1);
132 return ret;
133 }
134
135 /*
136 * Compute c = a * b.
137 * Input is in the first len words of a and b.
138 * Result is returned in the first 2*len words of c.
139 */
140 static void internal_mul(BignumInt *a, BignumInt *b,
141 BignumInt *c, int len)
142 {
143 int i, j;
144 BignumDblInt t;
145
146 for (j = 0; j < 2 * len; j++)
147 c[j] = 0;
148
149 for (i = len - 1; i >= 0; i--) {
150 t = 0;
151 for (j = len - 1; j >= 0; j--) {
152 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
153 t += (BignumDblInt) c[i + j + 1];
154 c[i + j + 1] = (BignumInt) t;
155 t = t >> BIGNUM_INT_BITS;
156 }
157 c[i] = (BignumInt) t;
158 }
159 }
160
161 static void internal_add_shifted(BignumInt *number,
162 unsigned n, int shift)
163 {
164 int word = 1 + (shift / BIGNUM_INT_BITS);
165 int bshift = shift % BIGNUM_INT_BITS;
166 BignumDblInt addend;
167
168 addend = (BignumDblInt)n << bshift;
169
170 while (addend) {
171 addend += number[word];
172 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
173 addend >>= BIGNUM_INT_BITS;
174 word++;
175 }
176 }
177
178 /*
179 * Compute a = a % m.
180 * Input in first alen words of a and first mlen words of m.
181 * Output in first alen words of a
182 * (of which first alen-mlen words will be zero).
183 * The MSW of m MUST have its high bit set.
184 * Quotient is accumulated in the `quotient' array, which is a Bignum
185 * rather than the internal bigendian format. Quotient parts are shifted
186 * left by `qshift' before adding into quot.
187 */
188 static void internal_mod(BignumInt *a, int alen,
189 BignumInt *m, int mlen,
190 BignumInt *quot, int qshift)
191 {
192 BignumInt m0, m1;
193 unsigned int h;
194 int i, k;
195
196 m0 = m[0];
197 if (mlen > 1)
198 m1 = m[1];
199 else
200 m1 = 0;
201
202 for (i = 0; i <= alen - mlen; i++) {
203 BignumDblInt t;
204 unsigned int q, r, c, ai1;
205
206 if (i == 0) {
207 h = 0;
208 } else {
209 h = a[i - 1];
210 a[i - 1] = 0;
211 }
212
213 if (i == alen - 1)
214 ai1 = 0;
215 else
216 ai1 = a[i + 1];
217
218 /* Find q = h:a[i] / m0 */
219 if (h >= m0) {
220 /*
221 * Special case.
222 *
223 * To illustrate it, suppose a BignumInt is 8 bits, and
224 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
225 * our initial division will be 0xA123 / 0xA1, which
226 * will give a quotient of 0x100 and a divide overflow.
227 * However, the invariants in this division algorithm
228 * are not violated, since the full number A1:23:... is
229 * _less_ than the quotient prefix A1:B2:... and so the
230 * following correction loop would have sorted it out.
231 *
232 * In this situation we set q to be the largest
233 * quotient we _can_ stomach (0xFF, of course).
234 */
235 q = BIGNUM_INT_MASK;
236 } else {
237 /* Macro doesn't want an array subscript expression passed
238 * into it (see definition), so use a temporary. */
239 BignumInt tmplo = a[i];
240 DIVMOD_WORD(q, r, h, tmplo, m0);
241
242 /* Refine our estimate of q by looking at
243 h:a[i]:a[i+1] / m0:m1 */
244 t = MUL_WORD(m1, q);
245 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
246 q--;
247 t -= m1;
248 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
249 if (r >= (BignumDblInt) m0 &&
250 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
251 }
252 }
253
254 /* Subtract q * m from a[i...] */
255 c = 0;
256 for (k = mlen - 1; k >= 0; k--) {
257 t = MUL_WORD(q, m[k]);
258 t += c;
259 c = (unsigned)(t >> BIGNUM_INT_BITS);
260 if ((BignumInt) t > a[i + k])
261 c++;
262 a[i + k] -= (BignumInt) t;
263 }
264
265 /* Add back m in case of borrow */
266 if (c != h) {
267 t = 0;
268 for (k = mlen - 1; k >= 0; k--) {
269 t += m[k];
270 t += a[i + k];
271 a[i + k] = (BignumInt) t;
272 t = t >> BIGNUM_INT_BITS;
273 }
274 q--;
275 }
276 if (quot)
277 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
278 }
279 }
280
281 /*
282 * Compute (base ^ exp) % mod.
283 */
284 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
285 {
286 BignumInt *a, *b, *n, *m;
287 int mshift;
288 int mlen, i, j;
289 Bignum base, result;
290
291 /*
292 * The most significant word of mod needs to be non-zero. It
293 * should already be, but let's make sure.
294 */
295 assert(mod[mod[0]] != 0);
296
297 /*
298 * Make sure the base is smaller than the modulus, by reducing
299 * it modulo the modulus if not.
300 */
301 base = bigmod(base_in, mod);
302
303 /* Allocate m of size mlen, copy mod to m */
304 /* We use big endian internally */
305 mlen = mod[0];
306 m = snewn(mlen, BignumInt);
307 for (j = 0; j < mlen; j++)
308 m[j] = mod[mod[0] - j];
309
310 /* Shift m left to make msb bit set */
311 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
312 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
313 break;
314 if (mshift) {
315 for (i = 0; i < mlen - 1; i++)
316 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
317 m[mlen - 1] = m[mlen - 1] << mshift;
318 }
319
320 /* Allocate n of size mlen, copy base to n */
321 n = snewn(mlen, BignumInt);
322 i = mlen - base[0];
323 for (j = 0; j < i; j++)
324 n[j] = 0;
325 for (j = 0; j < (int)base[0]; j++)
326 n[i + j] = base[base[0] - j];
327
328 /* Allocate a and b of size 2*mlen. Set a = 1 */
329 a = snewn(2 * mlen, BignumInt);
330 b = snewn(2 * mlen, BignumInt);
331 for (i = 0; i < 2 * mlen; i++)
332 a[i] = 0;
333 a[2 * mlen - 1] = 1;
334
335 /* Skip leading zero bits of exp. */
336 i = 0;
337 j = BIGNUM_INT_BITS-1;
338 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
339 j--;
340 if (j < 0) {
341 i++;
342 j = BIGNUM_INT_BITS-1;
343 }
344 }
345
346 /* Main computation */
347 while (i < (int)exp[0]) {
348 while (j >= 0) {
349 internal_mul(a + mlen, a + mlen, b, mlen);
350 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
351 if ((exp[exp[0] - i] & (1 << j)) != 0) {
352 internal_mul(b + mlen, n, a, mlen);
353 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
354 } else {
355 BignumInt *t;
356 t = a;
357 a = b;
358 b = t;
359 }
360 j--;
361 }
362 i++;
363 j = BIGNUM_INT_BITS-1;
364 }
365
366 /* Fixup result in case the modulus was shifted */
367 if (mshift) {
368 for (i = mlen - 1; i < 2 * mlen - 1; i++)
369 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
370 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
371 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
372 for (i = 2 * mlen - 1; i >= mlen; i--)
373 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
374 }
375
376 /* Copy result to buffer */
377 result = newbn(mod[0]);
378 for (i = 0; i < mlen; i++)
379 result[result[0] - i] = a[i + mlen];
380 while (result[0] > 1 && result[result[0]] == 0)
381 result[0]--;
382
383 /* Free temporary arrays */
384 for (i = 0; i < 2 * mlen; i++)
385 a[i] = 0;
386 sfree(a);
387 for (i = 0; i < 2 * mlen; i++)
388 b[i] = 0;
389 sfree(b);
390 for (i = 0; i < mlen; i++)
391 m[i] = 0;
392 sfree(m);
393 for (i = 0; i < mlen; i++)
394 n[i] = 0;
395 sfree(n);
396
397 freebn(base);
398
399 return result;
400 }
401
402 /*
403 * Compute (p * q) % mod.
404 * The most significant word of mod MUST be non-zero.
405 * We assume that the result array is the same size as the mod array.
406 */
407 Bignum modmul(Bignum p, Bignum q, Bignum mod)
408 {
409 BignumInt *a, *n, *m, *o;
410 int mshift;
411 int pqlen, mlen, rlen, i, j;
412 Bignum result;
413
414 /* Allocate m of size mlen, copy mod to m */
415 /* We use big endian internally */
416 mlen = mod[0];
417 m = snewn(mlen, BignumInt);
418 for (j = 0; j < mlen; j++)
419 m[j] = mod[mod[0] - j];
420
421 /* Shift m left to make msb bit set */
422 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
423 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
424 break;
425 if (mshift) {
426 for (i = 0; i < mlen - 1; i++)
427 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
428 m[mlen - 1] = m[mlen - 1] << mshift;
429 }
430
431 pqlen = (p[0] > q[0] ? p[0] : q[0]);
432
433 /* Allocate n of size pqlen, copy p to n */
434 n = snewn(pqlen, BignumInt);
435 i = pqlen - p[0];
436 for (j = 0; j < i; j++)
437 n[j] = 0;
438 for (j = 0; j < (int)p[0]; j++)
439 n[i + j] = p[p[0] - j];
440
441 /* Allocate o of size pqlen, copy q to o */
442 o = snewn(pqlen, BignumInt);
443 i = pqlen - q[0];
444 for (j = 0; j < i; j++)
445 o[j] = 0;
446 for (j = 0; j < (int)q[0]; j++)
447 o[i + j] = q[q[0] - j];
448
449 /* Allocate a of size 2*pqlen for result */
450 a = snewn(2 * pqlen, BignumInt);
451
452 /* Main computation */
453 internal_mul(n, o, a, pqlen);
454 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
455
456 /* Fixup result in case the modulus was shifted */
457 if (mshift) {
458 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
459 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
460 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
461 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
462 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
463 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
464 }
465
466 /* Copy result to buffer */
467 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
468 result = newbn(rlen);
469 for (i = 0; i < rlen; i++)
470 result[result[0] - i] = a[i + 2 * pqlen - rlen];
471 while (result[0] > 1 && result[result[0]] == 0)
472 result[0]--;
473
474 /* Free temporary arrays */
475 for (i = 0; i < 2 * pqlen; i++)
476 a[i] = 0;
477 sfree(a);
478 for (i = 0; i < mlen; i++)
479 m[i] = 0;
480 sfree(m);
481 for (i = 0; i < pqlen; i++)
482 n[i] = 0;
483 sfree(n);
484 for (i = 0; i < pqlen; i++)
485 o[i] = 0;
486 sfree(o);
487
488 return result;
489 }
490
491 /*
492 * Compute p % mod.
493 * The most significant word of mod MUST be non-zero.
494 * We assume that the result array is the same size as the mod array.
495 * We optionally write out a quotient if `quotient' is non-NULL.
496 * We can avoid writing out the result if `result' is NULL.
497 */
498 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
499 {
500 BignumInt *n, *m;
501 int mshift;
502 int plen, mlen, i, j;
503
504 /* Allocate m of size mlen, copy mod to m */
505 /* We use big endian internally */
506 mlen = mod[0];
507 m = snewn(mlen, BignumInt);
508 for (j = 0; j < mlen; j++)
509 m[j] = mod[mod[0] - j];
510
511 /* Shift m left to make msb bit set */
512 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
513 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
514 break;
515 if (mshift) {
516 for (i = 0; i < mlen - 1; i++)
517 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
518 m[mlen - 1] = m[mlen - 1] << mshift;
519 }
520
521 plen = p[0];
522 /* Ensure plen > mlen */
523 if (plen <= mlen)
524 plen = mlen + 1;
525
526 /* Allocate n of size plen, copy p to n */
527 n = snewn(plen, BignumInt);
528 for (j = 0; j < plen; j++)
529 n[j] = 0;
530 for (j = 1; j <= (int)p[0]; j++)
531 n[plen - j] = p[j];
532
533 /* Main computation */
534 internal_mod(n, plen, m, mlen, quotient, mshift);
535
536 /* Fixup result in case the modulus was shifted */
537 if (mshift) {
538 for (i = plen - mlen - 1; i < plen - 1; i++)
539 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
540 n[plen - 1] = n[plen - 1] << mshift;
541 internal_mod(n, plen, m, mlen, quotient, 0);
542 for (i = plen - 1; i >= plen - mlen; i--)
543 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
544 }
545
546 /* Copy result to buffer */
547 if (result) {
548 for (i = 1; i <= (int)result[0]; i++) {
549 int j = plen - i;
550 result[i] = j >= 0 ? n[j] : 0;
551 }
552 }
553
554 /* Free temporary arrays */
555 for (i = 0; i < mlen; i++)
556 m[i] = 0;
557 sfree(m);
558 for (i = 0; i < plen; i++)
559 n[i] = 0;
560 sfree(n);
561 }
562
563 /*
564 * Decrement a number.
565 */
566 void decbn(Bignum bn)
567 {
568 int i = 1;
569 while (i < (int)bn[0] && bn[i] == 0)
570 bn[i++] = BIGNUM_INT_MASK;
571 bn[i]--;
572 }
573
574 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
575 {
576 Bignum result;
577 int w, i;
578
579 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
580
581 result = newbn(w);
582 for (i = 1; i <= w; i++)
583 result[i] = 0;
584 for (i = nbytes; i--;) {
585 unsigned char byte = *data++;
586 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
587 }
588
589 while (result[0] > 1 && result[result[0]] == 0)
590 result[0]--;
591 return result;
592 }
593
594 /*
595 * Read an SSH-1-format bignum from a data buffer. Return the number
596 * of bytes consumed, or -1 if there wasn't enough data.
597 */
598 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
599 {
600 const unsigned char *p = data;
601 int i;
602 int w, b;
603
604 if (len < 2)
605 return -1;
606
607 w = 0;
608 for (i = 0; i < 2; i++)
609 w = (w << 8) + *p++;
610 b = (w + 7) / 8; /* bits -> bytes */
611
612 if (len < b+2)
613 return -1;
614
615 if (!result) /* just return length */
616 return b + 2;
617
618 *result = bignum_from_bytes(p, b);
619
620 return p + b - data;
621 }
622
623 /*
624 * Return the bit count of a bignum, for SSH-1 encoding.
625 */
626 int bignum_bitcount(Bignum bn)
627 {
628 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
629 while (bitcount >= 0
630 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
631 return bitcount + 1;
632 }
633
634 /*
635 * Return the byte length of a bignum when SSH-1 encoded.
636 */
637 int ssh1_bignum_length(Bignum bn)
638 {
639 return 2 + (bignum_bitcount(bn) + 7) / 8;
640 }
641
642 /*
643 * Return the byte length of a bignum when SSH-2 encoded.
644 */
645 int ssh2_bignum_length(Bignum bn)
646 {
647 return 4 + (bignum_bitcount(bn) + 8) / 8;
648 }
649
650 /*
651 * Return a byte from a bignum; 0 is least significant, etc.
652 */
653 int bignum_byte(Bignum bn, int i)
654 {
655 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
656 return 0; /* beyond the end */
657 else
658 return (bn[i / BIGNUM_INT_BYTES + 1] >>
659 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
660 }
661
662 /*
663 * Return a bit from a bignum; 0 is least significant, etc.
664 */
665 int bignum_bit(Bignum bn, int i)
666 {
667 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
668 return 0; /* beyond the end */
669 else
670 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
671 }
672
673 /*
674 * Set a bit in a bignum; 0 is least significant, etc.
675 */
676 void bignum_set_bit(Bignum bn, int bitnum, int value)
677 {
678 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
679 abort(); /* beyond the end */
680 else {
681 int v = bitnum / BIGNUM_INT_BITS + 1;
682 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
683 if (value)
684 bn[v] |= mask;
685 else
686 bn[v] &= ~mask;
687 }
688 }
689
690 /*
691 * Write a SSH-1-format bignum into a buffer. It is assumed the
692 * buffer is big enough. Returns the number of bytes used.
693 */
694 int ssh1_write_bignum(void *data, Bignum bn)
695 {
696 unsigned char *p = data;
697 int len = ssh1_bignum_length(bn);
698 int i;
699 int bitc = bignum_bitcount(bn);
700
701 *p++ = (bitc >> 8) & 0xFF;
702 *p++ = (bitc) & 0xFF;
703 for (i = len - 2; i--;)
704 *p++ = bignum_byte(bn, i);
705 return len;
706 }
707
708 /*
709 * Compare two bignums. Returns like strcmp.
710 */
711 int bignum_cmp(Bignum a, Bignum b)
712 {
713 int amax = a[0], bmax = b[0];
714 int i = (amax > bmax ? amax : bmax);
715 while (i) {
716 BignumInt aval = (i > amax ? 0 : a[i]);
717 BignumInt bval = (i > bmax ? 0 : b[i]);
718 if (aval < bval)
719 return -1;
720 if (aval > bval)
721 return +1;
722 i--;
723 }
724 return 0;
725 }
726
727 /*
728 * Right-shift one bignum to form another.
729 */
730 Bignum bignum_rshift(Bignum a, int shift)
731 {
732 Bignum ret;
733 int i, shiftw, shiftb, shiftbb, bits;
734 BignumInt ai, ai1;
735
736 bits = bignum_bitcount(a) - shift;
737 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
738
739 if (ret) {
740 shiftw = shift / BIGNUM_INT_BITS;
741 shiftb = shift % BIGNUM_INT_BITS;
742 shiftbb = BIGNUM_INT_BITS - shiftb;
743
744 ai1 = a[shiftw + 1];
745 for (i = 1; i <= (int)ret[0]; i++) {
746 ai = ai1;
747 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
748 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
749 }
750 }
751
752 return ret;
753 }
754
755 /*
756 * Non-modular multiplication and addition.
757 */
758 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
759 {
760 int alen = a[0], blen = b[0];
761 int mlen = (alen > blen ? alen : blen);
762 int rlen, i, maxspot;
763 BignumInt *workspace;
764 Bignum ret;
765
766 /* mlen space for a, mlen space for b, 2*mlen for result */
767 workspace = snewn(mlen * 4, BignumInt);
768 for (i = 0; i < mlen; i++) {
769 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
770 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
771 }
772
773 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
774 workspace + 2 * mlen, mlen);
775
776 /* now just copy the result back */
777 rlen = alen + blen + 1;
778 if (addend && rlen <= (int)addend[0])
779 rlen = addend[0] + 1;
780 ret = newbn(rlen);
781 maxspot = 0;
782 for (i = 1; i <= (int)ret[0]; i++) {
783 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
784 if (ret[i] != 0)
785 maxspot = i;
786 }
787 ret[0] = maxspot;
788
789 /* now add in the addend, if any */
790 if (addend) {
791 BignumDblInt carry = 0;
792 for (i = 1; i <= rlen; i++) {
793 carry += (i <= (int)ret[0] ? ret[i] : 0);
794 carry += (i <= (int)addend[0] ? addend[i] : 0);
795 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
796 carry >>= BIGNUM_INT_BITS;
797 if (ret[i] != 0 && i > maxspot)
798 maxspot = i;
799 }
800 }
801 ret[0] = maxspot;
802
803 sfree(workspace);
804 return ret;
805 }
806
807 /*
808 * Non-modular multiplication.
809 */
810 Bignum bigmul(Bignum a, Bignum b)
811 {
812 return bigmuladd(a, b, NULL);
813 }
814
815 /*
816 * Create a bignum which is the bitmask covering another one. That
817 * is, the smallest integer which is >= N and is also one less than
818 * a power of two.
819 */
820 Bignum bignum_bitmask(Bignum n)
821 {
822 Bignum ret = copybn(n);
823 int i;
824 BignumInt j;
825
826 i = ret[0];
827 while (n[i] == 0 && i > 0)
828 i--;
829 if (i <= 0)
830 return ret; /* input was zero */
831 j = 1;
832 while (j < n[i])
833 j = 2 * j + 1;
834 ret[i] = j;
835 while (--i > 0)
836 ret[i] = BIGNUM_INT_MASK;
837 return ret;
838 }
839
840 /*
841 * Convert a (max 32-bit) long into a bignum.
842 */
843 Bignum bignum_from_long(unsigned long nn)
844 {
845 Bignum ret;
846 BignumDblInt n = nn;
847
848 ret = newbn(3);
849 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
850 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
851 ret[3] = 0;
852 ret[0] = (ret[2] ? 2 : 1);
853 return ret;
854 }
855
856 /*
857 * Add a long to a bignum.
858 */
859 Bignum bignum_add_long(Bignum number, unsigned long addendx)
860 {
861 Bignum ret = newbn(number[0] + 1);
862 int i, maxspot = 0;
863 BignumDblInt carry = 0, addend = addendx;
864
865 for (i = 1; i <= (int)ret[0]; i++) {
866 carry += addend & BIGNUM_INT_MASK;
867 carry += (i <= (int)number[0] ? number[i] : 0);
868 addend >>= BIGNUM_INT_BITS;
869 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
870 carry >>= BIGNUM_INT_BITS;
871 if (ret[i] != 0)
872 maxspot = i;
873 }
874 ret[0] = maxspot;
875 return ret;
876 }
877
878 /*
879 * Compute the residue of a bignum, modulo a (max 16-bit) short.
880 */
881 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
882 {
883 BignumDblInt mod, r;
884 int i;
885
886 r = 0;
887 mod = modulus;
888 for (i = number[0]; i > 0; i--)
889 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
890 return (unsigned short) r;
891 }
892
893 #ifdef DEBUG
894 void diagbn(char *prefix, Bignum md)
895 {
896 int i, nibbles, morenibbles;
897 static const char hex[] = "0123456789ABCDEF";
898
899 debug(("%s0x", prefix ? prefix : ""));
900
901 nibbles = (3 + bignum_bitcount(md)) / 4;
902 if (nibbles < 1)
903 nibbles = 1;
904 morenibbles = 4 * md[0] - nibbles;
905 for (i = 0; i < morenibbles; i++)
906 debug(("-"));
907 for (i = nibbles; i--;)
908 debug(("%c",
909 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
910
911 if (prefix)
912 debug(("\n"));
913 }
914 #endif
915
916 /*
917 * Simple division.
918 */
919 Bignum bigdiv(Bignum a, Bignum b)
920 {
921 Bignum q = newbn(a[0]);
922 bigdivmod(a, b, NULL, q);
923 return q;
924 }
925
926 /*
927 * Simple remainder.
928 */
929 Bignum bigmod(Bignum a, Bignum b)
930 {
931 Bignum r = newbn(b[0]);
932 bigdivmod(a, b, r, NULL);
933 return r;
934 }
935
936 /*
937 * Greatest common divisor.
938 */
939 Bignum biggcd(Bignum av, Bignum bv)
940 {
941 Bignum a = copybn(av);
942 Bignum b = copybn(bv);
943
944 while (bignum_cmp(b, Zero) != 0) {
945 Bignum t = newbn(b[0]);
946 bigdivmod(a, b, t, NULL);
947 while (t[0] > 1 && t[t[0]] == 0)
948 t[0]--;
949 freebn(a);
950 a = b;
951 b = t;
952 }
953
954 freebn(b);
955 return a;
956 }
957
958 /*
959 * Modular inverse, using Euclid's extended algorithm.
960 */
961 Bignum modinv(Bignum number, Bignum modulus)
962 {
963 Bignum a = copybn(modulus);
964 Bignum b = copybn(number);
965 Bignum xp = copybn(Zero);
966 Bignum x = copybn(One);
967 int sign = +1;
968
969 while (bignum_cmp(b, One) != 0) {
970 Bignum t = newbn(b[0]);
971 Bignum q = newbn(a[0]);
972 bigdivmod(a, b, t, q);
973 while (t[0] > 1 && t[t[0]] == 0)
974 t[0]--;
975 freebn(a);
976 a = b;
977 b = t;
978 t = xp;
979 xp = x;
980 x = bigmuladd(q, xp, t);
981 sign = -sign;
982 freebn(t);
983 freebn(q);
984 }
985
986 freebn(b);
987 freebn(a);
988 freebn(xp);
989
990 /* now we know that sign * x == 1, and that x < modulus */
991 if (sign < 0) {
992 /* set a new x to be modulus - x */
993 Bignum newx = newbn(modulus[0]);
994 BignumInt carry = 0;
995 int maxspot = 1;
996 int i;
997
998 for (i = 1; i <= (int)newx[0]; i++) {
999 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1000 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1001 newx[i] = aword - bword - carry;
1002 bword = ~bword;
1003 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1004 if (newx[i] != 0)
1005 maxspot = i;
1006 }
1007 newx[0] = maxspot;
1008 freebn(x);
1009 x = newx;
1010 }
1011
1012 /* and return. */
1013 return x;
1014 }
1015
1016 /*
1017 * Render a bignum into decimal. Return a malloced string holding
1018 * the decimal representation.
1019 */
1020 char *bignum_decimal(Bignum x)
1021 {
1022 int ndigits, ndigit;
1023 int i, iszero;
1024 BignumDblInt carry;
1025 char *ret;
1026 BignumInt *workspace;
1027
1028 /*
1029 * First, estimate the number of digits. Since log(10)/log(2)
1030 * is just greater than 93/28 (the joys of continued fraction
1031 * approximations...) we know that for every 93 bits, we need
1032 * at most 28 digits. This will tell us how much to malloc.
1033 *
1034 * Formally: if x has i bits, that means x is strictly less
1035 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1036 * 10^(28i/93). We need an integer power of ten, so we must
1037 * round up (rounding down might make it less than x again).
1038 * Therefore if we multiply the bit count by 28/93, rounding
1039 * up, we will have enough digits.
1040 *
1041 * i=0 (i.e., x=0) is an irritating special case.
1042 */
1043 i = bignum_bitcount(x);
1044 if (!i)
1045 ndigits = 1; /* x = 0 */
1046 else
1047 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1048 ndigits++; /* allow for trailing \0 */
1049 ret = snewn(ndigits, char);
1050
1051 /*
1052 * Now allocate some workspace to hold the binary form as we
1053 * repeatedly divide it by ten. Initialise this to the
1054 * big-endian form of the number.
1055 */
1056 workspace = snewn(x[0], BignumInt);
1057 for (i = 0; i < (int)x[0]; i++)
1058 workspace[i] = x[x[0] - i];
1059
1060 /*
1061 * Next, write the decimal number starting with the last digit.
1062 * We use ordinary short division, dividing 10 into the
1063 * workspace.
1064 */
1065 ndigit = ndigits - 1;
1066 ret[ndigit] = '\0';
1067 do {
1068 iszero = 1;
1069 carry = 0;
1070 for (i = 0; i < (int)x[0]; i++) {
1071 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1072 workspace[i] = (BignumInt) (carry / 10);
1073 if (workspace[i])
1074 iszero = 0;
1075 carry %= 10;
1076 }
1077 ret[--ndigit] = (char) (carry + '0');
1078 } while (!iszero);
1079
1080 /*
1081 * There's a chance we've fallen short of the start of the
1082 * string. Correct if so.
1083 */
1084 if (ndigit > 0)
1085 memmove(ret, ret + ndigit, ndigits - ndigit);
1086
1087 /*
1088 * Done.
1089 */
1090 sfree(workspace);
1091 return ret;
1092 }