Reinstate a piece of code accidentally removed in r9214, where Windows
[u/mdw/putty] / sshdss.c
1 /*
2 * Digital Signature Standard implementation for PuTTY.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8
9 #include "ssh.h"
10 #include "misc.h"
11
12 static void sha_mpint(SHA_State * s, Bignum b)
13 {
14 unsigned char lenbuf[4];
15 int len;
16 len = (bignum_bitcount(b) + 8) / 8;
17 PUT_32BIT(lenbuf, len);
18 SHA_Bytes(s, lenbuf, 4);
19 while (len-- > 0) {
20 lenbuf[0] = bignum_byte(b, len);
21 SHA_Bytes(s, lenbuf, 1);
22 }
23 smemclr(lenbuf, sizeof(lenbuf));
24 }
25
26 static void sha512_mpint(SHA512_State * s, Bignum b)
27 {
28 unsigned char lenbuf[4];
29 int len;
30 len = (bignum_bitcount(b) + 8) / 8;
31 PUT_32BIT(lenbuf, len);
32 SHA512_Bytes(s, lenbuf, 4);
33 while (len-- > 0) {
34 lenbuf[0] = bignum_byte(b, len);
35 SHA512_Bytes(s, lenbuf, 1);
36 }
37 smemclr(lenbuf, sizeof(lenbuf));
38 }
39
40 static void getstring(char **data, int *datalen, char **p, int *length)
41 {
42 *p = NULL;
43 if (*datalen < 4)
44 return;
45 *length = toint(GET_32BIT(*data));
46 if (*length < 0)
47 return;
48 *datalen -= 4;
49 *data += 4;
50 if (*datalen < *length)
51 return;
52 *p = *data;
53 *data += *length;
54 *datalen -= *length;
55 }
56 static Bignum getmp(char **data, int *datalen)
57 {
58 char *p;
59 int length;
60 Bignum b;
61
62 getstring(data, datalen, &p, &length);
63 if (!p)
64 return NULL;
65 if (p[0] & 0x80)
66 return NULL; /* negative mp */
67 b = bignum_from_bytes((unsigned char *)p, length);
68 return b;
69 }
70
71 static Bignum get160(char **data, int *datalen)
72 {
73 Bignum b;
74
75 if (*datalen < 20)
76 return NULL;
77
78 b = bignum_from_bytes((unsigned char *)*data, 20);
79 *data += 20;
80 *datalen -= 20;
81
82 return b;
83 }
84
85 static void *dss_newkey(char *data, int len)
86 {
87 char *p;
88 int slen;
89 struct dss_key *dss;
90
91 dss = snew(struct dss_key);
92 if (!dss)
93 return NULL;
94 getstring(&data, &len, &p, &slen);
95
96 #ifdef DEBUG_DSS
97 {
98 int i;
99 printf("key:");
100 for (i = 0; i < len; i++)
101 printf(" %02x", (unsigned char) (data[i]));
102 printf("\n");
103 }
104 #endif
105
106 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
107 sfree(dss);
108 return NULL;
109 }
110 dss->p = getmp(&data, &len);
111 dss->q = getmp(&data, &len);
112 dss->g = getmp(&data, &len);
113 dss->y = getmp(&data, &len);
114
115 return dss;
116 }
117
118 static void dss_freekey(void *key)
119 {
120 struct dss_key *dss = (struct dss_key *) key;
121 freebn(dss->p);
122 freebn(dss->q);
123 freebn(dss->g);
124 freebn(dss->y);
125 sfree(dss);
126 }
127
128 static char *dss_fmtkey(void *key)
129 {
130 struct dss_key *dss = (struct dss_key *) key;
131 char *p;
132 int len, i, pos, nibbles;
133 static const char hex[] = "0123456789abcdef";
134 if (!dss->p)
135 return NULL;
136 len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
137 len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
138 len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
139 len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
140 len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
141 p = snewn(len, char);
142 if (!p)
143 return NULL;
144
145 pos = 0;
146 pos += sprintf(p + pos, "0x");
147 nibbles = (3 + bignum_bitcount(dss->p)) / 4;
148 if (nibbles < 1)
149 nibbles = 1;
150 for (i = nibbles; i--;)
151 p[pos++] =
152 hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
153 pos += sprintf(p + pos, ",0x");
154 nibbles = (3 + bignum_bitcount(dss->q)) / 4;
155 if (nibbles < 1)
156 nibbles = 1;
157 for (i = nibbles; i--;)
158 p[pos++] =
159 hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
160 pos += sprintf(p + pos, ",0x");
161 nibbles = (3 + bignum_bitcount(dss->g)) / 4;
162 if (nibbles < 1)
163 nibbles = 1;
164 for (i = nibbles; i--;)
165 p[pos++] =
166 hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
167 pos += sprintf(p + pos, ",0x");
168 nibbles = (3 + bignum_bitcount(dss->y)) / 4;
169 if (nibbles < 1)
170 nibbles = 1;
171 for (i = nibbles; i--;)
172 p[pos++] =
173 hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
174 p[pos] = '\0';
175 return p;
176 }
177
178 static char *dss_fingerprint(void *key)
179 {
180 struct dss_key *dss = (struct dss_key *) key;
181 struct MD5Context md5c;
182 unsigned char digest[16], lenbuf[4];
183 char buffer[16 * 3 + 40];
184 char *ret;
185 int numlen, i;
186
187 MD5Init(&md5c);
188 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);
189
190 #define ADD_BIGNUM(bignum) \
191 numlen = (bignum_bitcount(bignum)+8)/8; \
192 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
193 for (i = numlen; i-- ;) { \
194 unsigned char c = bignum_byte(bignum, i); \
195 MD5Update(&md5c, &c, 1); \
196 }
197 ADD_BIGNUM(dss->p);
198 ADD_BIGNUM(dss->q);
199 ADD_BIGNUM(dss->g);
200 ADD_BIGNUM(dss->y);
201 #undef ADD_BIGNUM
202
203 MD5Final(digest, &md5c);
204
205 sprintf(buffer, "ssh-dss %d ", bignum_bitcount(dss->p));
206 for (i = 0; i < 16; i++)
207 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
208 digest[i]);
209 ret = snewn(strlen(buffer) + 1, char);
210 if (ret)
211 strcpy(ret, buffer);
212 return ret;
213 }
214
215 static int dss_verifysig(void *key, char *sig, int siglen,
216 char *data, int datalen)
217 {
218 struct dss_key *dss = (struct dss_key *) key;
219 char *p;
220 int slen;
221 char hash[20];
222 Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
223 int ret;
224
225 if (!dss->p)
226 return 0;
227
228 #ifdef DEBUG_DSS
229 {
230 int i;
231 printf("sig:");
232 for (i = 0; i < siglen; i++)
233 printf(" %02x", (unsigned char) (sig[i]));
234 printf("\n");
235 }
236 #endif
237 /*
238 * Commercial SSH (2.0.13) and OpenSSH disagree over the format
239 * of a DSA signature. OpenSSH is in line with RFC 4253:
240 * it uses a string "ssh-dss", followed by a 40-byte string
241 * containing two 160-bit integers end-to-end. Commercial SSH
242 * can't be bothered with the header bit, and considers a DSA
243 * signature blob to be _just_ the 40-byte string containing
244 * the two 160-bit integers. We tell them apart by measuring
245 * the length: length 40 means the commercial-SSH bug, anything
246 * else is assumed to be RFC-compliant.
247 */
248 if (siglen != 40) { /* bug not present; read admin fields */
249 getstring(&sig, &siglen, &p, &slen);
250 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
251 return 0;
252 }
253 sig += 4, siglen -= 4; /* skip yet another length field */
254 }
255 r = get160(&sig, &siglen);
256 s = get160(&sig, &siglen);
257 if (!r || !s)
258 return 0;
259
260 /*
261 * Step 1. w <- s^-1 mod q.
262 */
263 w = modinv(s, dss->q);
264
265 /*
266 * Step 2. u1 <- SHA(message) * w mod q.
267 */
268 SHA_Simple(data, datalen, (unsigned char *)hash);
269 p = hash;
270 slen = 20;
271 sha = get160(&p, &slen);
272 u1 = modmul(sha, w, dss->q);
273
274 /*
275 * Step 3. u2 <- r * w mod q.
276 */
277 u2 = modmul(r, w, dss->q);
278
279 /*
280 * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
281 */
282 gu1p = modpow(dss->g, u1, dss->p);
283 yu2p = modpow(dss->y, u2, dss->p);
284 gu1yu2p = modmul(gu1p, yu2p, dss->p);
285 v = modmul(gu1yu2p, One, dss->q);
286
287 /*
288 * Step 5. v should now be equal to r.
289 */
290
291 ret = !bignum_cmp(v, r);
292
293 freebn(w);
294 freebn(sha);
295 freebn(u1);
296 freebn(u2);
297 freebn(gu1p);
298 freebn(yu2p);
299 freebn(gu1yu2p);
300 freebn(v);
301 freebn(r);
302 freebn(s);
303
304 return ret;
305 }
306
307 static unsigned char *dss_public_blob(void *key, int *len)
308 {
309 struct dss_key *dss = (struct dss_key *) key;
310 int plen, qlen, glen, ylen, bloblen;
311 int i;
312 unsigned char *blob, *p;
313
314 plen = (bignum_bitcount(dss->p) + 8) / 8;
315 qlen = (bignum_bitcount(dss->q) + 8) / 8;
316 glen = (bignum_bitcount(dss->g) + 8) / 8;
317 ylen = (bignum_bitcount(dss->y) + 8) / 8;
318
319 /*
320 * string "ssh-dss", mpint p, mpint q, mpint g, mpint y. Total
321 * 27 + sum of lengths. (five length fields, 20+7=27).
322 */
323 bloblen = 27 + plen + qlen + glen + ylen;
324 blob = snewn(bloblen, unsigned char);
325 p = blob;
326 PUT_32BIT(p, 7);
327 p += 4;
328 memcpy(p, "ssh-dss", 7);
329 p += 7;
330 PUT_32BIT(p, plen);
331 p += 4;
332 for (i = plen; i--;)
333 *p++ = bignum_byte(dss->p, i);
334 PUT_32BIT(p, qlen);
335 p += 4;
336 for (i = qlen; i--;)
337 *p++ = bignum_byte(dss->q, i);
338 PUT_32BIT(p, glen);
339 p += 4;
340 for (i = glen; i--;)
341 *p++ = bignum_byte(dss->g, i);
342 PUT_32BIT(p, ylen);
343 p += 4;
344 for (i = ylen; i--;)
345 *p++ = bignum_byte(dss->y, i);
346 assert(p == blob + bloblen);
347 *len = bloblen;
348 return blob;
349 }
350
351 static unsigned char *dss_private_blob(void *key, int *len)
352 {
353 struct dss_key *dss = (struct dss_key *) key;
354 int xlen, bloblen;
355 int i;
356 unsigned char *blob, *p;
357
358 xlen = (bignum_bitcount(dss->x) + 8) / 8;
359
360 /*
361 * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
362 */
363 bloblen = 4 + xlen;
364 blob = snewn(bloblen, unsigned char);
365 p = blob;
366 PUT_32BIT(p, xlen);
367 p += 4;
368 for (i = xlen; i--;)
369 *p++ = bignum_byte(dss->x, i);
370 assert(p == blob + bloblen);
371 *len = bloblen;
372 return blob;
373 }
374
375 static void *dss_createkey(unsigned char *pub_blob, int pub_len,
376 unsigned char *priv_blob, int priv_len)
377 {
378 struct dss_key *dss;
379 char *pb = (char *) priv_blob;
380 char *hash;
381 int hashlen;
382 SHA_State s;
383 unsigned char digest[20];
384 Bignum ytest;
385
386 dss = dss_newkey((char *) pub_blob, pub_len);
387 dss->x = getmp(&pb, &priv_len);
388
389 /*
390 * Check the obsolete hash in the old DSS key format.
391 */
392 hashlen = -1;
393 getstring(&pb, &priv_len, &hash, &hashlen);
394 if (hashlen == 20) {
395 SHA_Init(&s);
396 sha_mpint(&s, dss->p);
397 sha_mpint(&s, dss->q);
398 sha_mpint(&s, dss->g);
399 SHA_Final(&s, digest);
400 if (0 != memcmp(hash, digest, 20)) {
401 dss_freekey(dss);
402 return NULL;
403 }
404 }
405
406 /*
407 * Now ensure g^x mod p really is y.
408 */
409 ytest = modpow(dss->g, dss->x, dss->p);
410 if (0 != bignum_cmp(ytest, dss->y)) {
411 dss_freekey(dss);
412 freebn(ytest);
413 return NULL;
414 }
415 freebn(ytest);
416
417 return dss;
418 }
419
420 static void *dss_openssh_createkey(unsigned char **blob, int *len)
421 {
422 char **b = (char **) blob;
423 struct dss_key *dss;
424
425 dss = snew(struct dss_key);
426 if (!dss)
427 return NULL;
428
429 dss->p = getmp(b, len);
430 dss->q = getmp(b, len);
431 dss->g = getmp(b, len);
432 dss->y = getmp(b, len);
433 dss->x = getmp(b, len);
434
435 if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {
436 freebn(dss->p);
437 freebn(dss->q);
438 freebn(dss->g);
439 freebn(dss->y);
440 freebn(dss->x);
441 sfree(dss);
442 return NULL;
443 }
444
445 return dss;
446 }
447
448 static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
449 {
450 struct dss_key *dss = (struct dss_key *) key;
451 int bloblen, i;
452
453 bloblen =
454 ssh2_bignum_length(dss->p) +
455 ssh2_bignum_length(dss->q) +
456 ssh2_bignum_length(dss->g) +
457 ssh2_bignum_length(dss->y) +
458 ssh2_bignum_length(dss->x);
459
460 if (bloblen > len)
461 return bloblen;
462
463 bloblen = 0;
464 #define ENC(x) \
465 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
466 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
467 ENC(dss->p);
468 ENC(dss->q);
469 ENC(dss->g);
470 ENC(dss->y);
471 ENC(dss->x);
472
473 return bloblen;
474 }
475
476 static int dss_pubkey_bits(void *blob, int len)
477 {
478 struct dss_key *dss;
479 int ret;
480
481 dss = dss_newkey((char *) blob, len);
482 ret = bignum_bitcount(dss->p);
483 dss_freekey(dss);
484
485 return ret;
486 }
487
488 static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
489 {
490 /*
491 * The basic DSS signing algorithm is:
492 *
493 * - invent a random k between 1 and q-1 (exclusive).
494 * - Compute r = (g^k mod p) mod q.
495 * - Compute s = k^-1 * (hash + x*r) mod q.
496 *
497 * This has the dangerous properties that:
498 *
499 * - if an attacker in possession of the public key _and_ the
500 * signature (for example, the host you just authenticated
501 * to) can guess your k, he can reverse the computation of s
502 * and work out x = r^-1 * (s*k - hash) mod q. That is, he
503 * can deduce the private half of your key, and masquerade
504 * as you for as long as the key is still valid.
505 *
506 * - since r is a function purely of k and the public key, if
507 * the attacker only has a _range of possibilities_ for k
508 * it's easy for him to work through them all and check each
509 * one against r; he'll never be unsure of whether he's got
510 * the right one.
511 *
512 * - if you ever sign two different hashes with the same k, it
513 * will be immediately obvious because the two signatures
514 * will have the same r, and moreover an attacker in
515 * possession of both signatures (and the public key of
516 * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
517 * and from there deduce x as before.
518 *
519 * - the Bleichenbacher attack on DSA makes use of methods of
520 * generating k which are significantly non-uniformly
521 * distributed; in particular, generating a 160-bit random
522 * number and reducing it mod q is right out.
523 *
524 * For this reason we must be pretty careful about how we
525 * generate our k. Since this code runs on Windows, with no
526 * particularly good system entropy sources, we can't trust our
527 * RNG itself to produce properly unpredictable data. Hence, we
528 * use a totally different scheme instead.
529 *
530 * What we do is to take a SHA-512 (_big_) hash of the private
531 * key x, and then feed this into another SHA-512 hash that
532 * also includes the message hash being signed. That is:
533 *
534 * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
535 *
536 * This number is 512 bits long, so reducing it mod q won't be
537 * noticeably non-uniform. So
538 *
539 * k = proto_k mod q
540 *
541 * This has the interesting property that it's _deterministic_:
542 * signing the same hash twice with the same key yields the
543 * same signature.
544 *
545 * Despite this determinism, it's still not predictable to an
546 * attacker, because in order to repeat the SHA-512
547 * construction that created it, the attacker would have to
548 * know the private key value x - and by assumption he doesn't,
549 * because if he knew that he wouldn't be attacking k!
550 *
551 * (This trick doesn't, _per se_, protect against reuse of k.
552 * Reuse of k is left to chance; all it does is prevent
553 * _excessively high_ chances of reuse of k due to entropy
554 * problems.)
555 *
556 * Thanks to Colin Plumb for the general idea of using x to
557 * ensure k is hard to guess, and to the Cambridge University
558 * Computer Security Group for helping to argue out all the
559 * fine details.
560 */
561 struct dss_key *dss = (struct dss_key *) key;
562 SHA512_State ss;
563 unsigned char digest[20], digest512[64];
564 Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
565 unsigned char *bytes;
566 int nbytes, i;
567
568 SHA_Simple(data, datalen, digest);
569
570 /*
571 * Hash some identifying text plus x.
572 */
573 SHA512_Init(&ss);
574 SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
575 sha512_mpint(&ss, dss->x);
576 SHA512_Final(&ss, digest512);
577
578 /*
579 * Now hash that digest plus the message hash.
580 */
581 SHA512_Init(&ss);
582 SHA512_Bytes(&ss, digest512, sizeof(digest512));
583 SHA512_Bytes(&ss, digest, sizeof(digest));
584 SHA512_Final(&ss, digest512);
585
586 smemclr(&ss, sizeof(ss));
587
588 /*
589 * Now convert the result into a bignum, and reduce it mod q.
590 */
591 proto_k = bignum_from_bytes(digest512, 64);
592 k = bigmod(proto_k, dss->q);
593 freebn(proto_k);
594
595 smemclr(digest512, sizeof(digest512));
596
597 /*
598 * Now we have k, so just go ahead and compute the signature.
599 */
600 gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
601 r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
602 freebn(gkp);
603
604 hash = bignum_from_bytes(digest, 20);
605 kinv = modinv(k, dss->q); /* k^-1 mod q */
606 hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
607 s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
608 freebn(hxr);
609 freebn(kinv);
610 freebn(hash);
611
612 /*
613 * Signature blob is
614 *
615 * string "ssh-dss"
616 * string two 20-byte numbers r and s, end to end
617 *
618 * i.e. 4+7 + 4+40 bytes.
619 */
620 nbytes = 4 + 7 + 4 + 40;
621 bytes = snewn(nbytes, unsigned char);
622 PUT_32BIT(bytes, 7);
623 memcpy(bytes + 4, "ssh-dss", 7);
624 PUT_32BIT(bytes + 4 + 7, 40);
625 for (i = 0; i < 20; i++) {
626 bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
627 bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
628 }
629 freebn(r);
630 freebn(s);
631
632 *siglen = nbytes;
633 return bytes;
634 }
635
636 const struct ssh_signkey ssh_dss = {
637 dss_newkey,
638 dss_freekey,
639 dss_fmtkey,
640 dss_public_blob,
641 dss_private_blob,
642 dss_createkey,
643 dss_openssh_createkey,
644 dss_openssh_fmtkey,
645 dss_pubkey_bits,
646 dss_fingerprint,
647 dss_verifysig,
648 dss_sign,
649 "ssh-dss",
650 "dss"
651 };