Loose end from timing shakeup: sshrand.c is now a client of
[u/mdw/putty] / sshrand.c
1 /*
2 * cryptographic random number generator for PuTTY's ssh client
3 */
4
5 #include "putty.h"
6 #include "ssh.h"
7
8 /* Collect environmental noise every 5 minutes */
9 #define NOISE_REGULAR_INTERVAL (5*60*TICKSPERSEC)
10
11 void noise_get_heavy(void (*func) (void *, int));
12 void noise_get_light(void (*func) (void *, int));
13
14 /*
15 * `pool' itself is a pool of random data which we actually use: we
16 * return bytes from `pool', at position `poolpos', until `poolpos'
17 * reaches the end of the pool. At this point we generate more
18 * random data, by adding noise, stirring well, and resetting
19 * `poolpos' to point to just past the beginning of the pool (not
20 * _the_ beginning, since otherwise we'd give away the whole
21 * contents of our pool, and attackers would just have to guess the
22 * next lot of noise).
23 *
24 * `incomingb' buffers acquired noise data, until it gets full, at
25 * which point the acquired noise is SHA'ed into `incoming' and
26 * `incomingb' is cleared. The noise in `incoming' is used as part
27 * of the noise for each stirring of the pool, in addition to local
28 * time, process listings, and other such stuff.
29 */
30
31 #define HASHINPUT 64 /* 64 bytes SHA input */
32 #define HASHSIZE 20 /* 160 bits SHA output */
33 #define POOLSIZE 1200 /* size of random pool */
34
35 struct RandPool {
36 unsigned char pool[POOLSIZE];
37 int poolpos;
38
39 unsigned char incoming[HASHSIZE];
40
41 unsigned char incomingb[HASHINPUT];
42 int incomingpos;
43 };
44
45 static struct RandPool pool;
46 int random_active = 0;
47 long next_noise_collection;
48
49 static void random_stir(void)
50 {
51 word32 block[HASHINPUT / sizeof(word32)];
52 word32 digest[HASHSIZE / sizeof(word32)];
53 int i, j, k;
54
55 noise_get_light(random_add_noise);
56
57 SHATransform((word32 *) pool.incoming, (word32 *) pool.incomingb);
58 pool.incomingpos = 0;
59
60 /*
61 * Chunks of this code are blatantly endianness-dependent, but
62 * as it's all random bits anyway, WHO CARES?
63 */
64 memcpy(digest, pool.incoming, sizeof(digest));
65
66 /*
67 * Make two passes over the pool.
68 */
69 for (i = 0; i < 2; i++) {
70
71 /*
72 * We operate SHA in CFB mode, repeatedly adding the same
73 * block of data to the digest. But we're also fiddling
74 * with the digest-so-far, so this shouldn't be Bad or
75 * anything.
76 */
77 memcpy(block, pool.pool, sizeof(block));
78
79 /*
80 * Each pass processes the pool backwards in blocks of
81 * HASHSIZE, just so that in general we get the output of
82 * SHA before the corresponding input, in the hope that
83 * things will be that much less predictable that way
84 * round, when we subsequently return bytes ...
85 */
86 for (j = POOLSIZE; (j -= HASHSIZE) >= 0;) {
87 /*
88 * XOR the bit of the pool we're processing into the
89 * digest.
90 */
91
92 for (k = 0; k < sizeof(digest) / sizeof(*digest); k++)
93 digest[k] ^= ((word32 *) (pool.pool + j))[k];
94
95 /*
96 * Munge our unrevealed first block of the pool into
97 * it.
98 */
99 SHATransform(digest, block);
100
101 /*
102 * Stick the result back into the pool.
103 */
104
105 for (k = 0; k < sizeof(digest) / sizeof(*digest); k++)
106 ((word32 *) (pool.pool + j))[k] = digest[k];
107 }
108 }
109
110 /*
111 * Might as well save this value back into `incoming', just so
112 * there'll be some extra bizarreness there.
113 */
114 SHATransform(digest, block);
115 memcpy(pool.incoming, digest, sizeof(digest));
116
117 pool.poolpos = sizeof(pool.incoming);
118 }
119
120 void random_add_noise(void *noise, int length)
121 {
122 unsigned char *p = noise;
123 int i;
124
125 if (!random_active)
126 return;
127
128 /*
129 * This function processes HASHINPUT bytes into only HASHSIZE
130 * bytes, so _if_ we were getting incredibly high entropy
131 * sources then we would be throwing away valuable stuff.
132 */
133 while (length >= (HASHINPUT - pool.incomingpos)) {
134 memcpy(pool.incomingb + pool.incomingpos, p,
135 HASHINPUT - pool.incomingpos);
136 p += HASHINPUT - pool.incomingpos;
137 length -= HASHINPUT - pool.incomingpos;
138 SHATransform((word32 *) pool.incoming, (word32 *) pool.incomingb);
139 for (i = 0; i < HASHSIZE; i++) {
140 pool.pool[pool.poolpos++] ^= pool.incomingb[i];
141 if (pool.poolpos >= POOLSIZE)
142 pool.poolpos = 0;
143 }
144 if (pool.poolpos < HASHSIZE)
145 random_stir();
146
147 pool.incomingpos = 0;
148 }
149
150 memcpy(pool.incomingb + pool.incomingpos, p, length);
151 pool.incomingpos += length;
152 }
153
154 void random_add_heavynoise(void *noise, int length)
155 {
156 unsigned char *p = noise;
157 int i;
158
159 while (length >= POOLSIZE) {
160 for (i = 0; i < POOLSIZE; i++)
161 pool.pool[i] ^= *p++;
162 random_stir();
163 length -= POOLSIZE;
164 }
165
166 for (i = 0; i < length; i++)
167 pool.pool[i] ^= *p++;
168 random_stir();
169 }
170
171 static void random_add_heavynoise_bitbybit(void *noise, int length)
172 {
173 unsigned char *p = noise;
174 int i;
175
176 while (length >= POOLSIZE - pool.poolpos) {
177 for (i = 0; i < POOLSIZE - pool.poolpos; i++)
178 pool.pool[pool.poolpos + i] ^= *p++;
179 random_stir();
180 length -= POOLSIZE - pool.poolpos;
181 pool.poolpos = 0;
182 }
183
184 for (i = 0; i < length; i++)
185 pool.pool[i] ^= *p++;
186 pool.poolpos = i;
187 }
188
189 static void random_timer(void *ctx, long now)
190 {
191 if (random_active > 0 && now - next_noise_collection >= 0) {
192 noise_regular();
193 next_noise_collection =
194 schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool);
195 }
196 }
197
198 void random_ref(void)
199 {
200 if (!random_active) {
201 memset(&pool, 0, sizeof(pool)); /* just to start with */
202
203 noise_get_heavy(random_add_heavynoise_bitbybit);
204 random_stir();
205
206 next_noise_collection =
207 schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool);
208 }
209
210 random_active++;
211 }
212
213 void random_unref(void)
214 {
215 random_active--;
216 }
217
218 int random_byte(void)
219 {
220 if (pool.poolpos >= POOLSIZE)
221 random_stir();
222
223 return pool.pool[pool.poolpos++];
224 }
225
226 void random_get_savedata(void **data, int *len)
227 {
228 void *buf = snewn(POOLSIZE / 2, char);
229 random_stir();
230 memcpy(buf, pool.pool + pool.poolpos, POOLSIZE / 2);
231 *len = POOLSIZE / 2;
232 *data = buf;
233 random_stir();
234 }