Unify GET_32BIT()/PUT_32BIT() et al from numerous source files into misc.h.
[u/mdw/putty] / sshrsa.c
1 /*
2 * RSA implementation for PuTTY.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9
10 #include "ssh.h"
11 #include "misc.h"
12
13 int makekey(unsigned char *data, int len, struct RSAKey *result,
14 unsigned char **keystr, int order)
15 {
16 unsigned char *p = data;
17 int i, n;
18
19 if (len < 4)
20 return -1;
21
22 if (result) {
23 result->bits = 0;
24 for (i = 0; i < 4; i++)
25 result->bits = (result->bits << 8) + *p++;
26 } else
27 p += 4;
28
29 len -= 4;
30
31 /*
32 * order=0 means exponent then modulus (the keys sent by the
33 * server). order=1 means modulus then exponent (the keys
34 * stored in a keyfile).
35 */
36
37 if (order == 0) {
38 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
39 if (n < 0) return -1;
40 p += n;
41 len -= n;
42 }
43
44 n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
45 if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
46 if (result)
47 result->bytes = n - 2;
48 if (keystr)
49 *keystr = p + 2;
50 p += n;
51 len -= n;
52
53 if (order == 1) {
54 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
55 if (n < 0) return -1;
56 p += n;
57 len -= n;
58 }
59 return p - data;
60 }
61
62 int makeprivate(unsigned char *data, int len, struct RSAKey *result)
63 {
64 return ssh1_read_bignum(data, len, &result->private_exponent);
65 }
66
67 int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
68 {
69 Bignum b1, b2;
70 int i;
71 unsigned char *p;
72
73 if (key->bytes < length + 4)
74 return 0; /* RSA key too short! */
75
76 memmove(data + key->bytes - length, data, length);
77 data[0] = 0;
78 data[1] = 2;
79
80 for (i = 2; i < key->bytes - length - 1; i++) {
81 do {
82 data[i] = random_byte();
83 } while (data[i] == 0);
84 }
85 data[key->bytes - length - 1] = 0;
86
87 b1 = bignum_from_bytes(data, key->bytes);
88
89 b2 = modpow(b1, key->exponent, key->modulus);
90
91 p = data;
92 for (i = key->bytes; i--;) {
93 *p++ = bignum_byte(b2, i);
94 }
95
96 freebn(b1);
97 freebn(b2);
98
99 return 1;
100 }
101
102 static void sha512_mpint(SHA512_State * s, Bignum b)
103 {
104 unsigned char lenbuf[4];
105 int len;
106 len = (bignum_bitcount(b) + 8) / 8;
107 PUT_32BIT(lenbuf, len);
108 SHA512_Bytes(s, lenbuf, 4);
109 while (len-- > 0) {
110 lenbuf[0] = bignum_byte(b, len);
111 SHA512_Bytes(s, lenbuf, 1);
112 }
113 memset(lenbuf, 0, sizeof(lenbuf));
114 }
115
116 /*
117 * This function is a wrapper on modpow(). It has the same effect
118 * as modpow(), but employs RSA blinding to protect against timing
119 * attacks.
120 */
121 static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
122 {
123 Bignum random, random_encrypted, random_inverse;
124 Bignum input_blinded, ret_blinded;
125 Bignum ret;
126
127 SHA512_State ss;
128 unsigned char digest512[64];
129 int digestused = lenof(digest512);
130 int hashseq = 0;
131
132 /*
133 * Start by inventing a random number chosen uniformly from the
134 * range 2..modulus-1. (We do this by preparing a random number
135 * of the right length and retrying if it's greater than the
136 * modulus, to prevent any potential Bleichenbacher-like
137 * attacks making use of the uneven distribution within the
138 * range that would arise from just reducing our number mod n.
139 * There are timing implications to the potential retries, of
140 * course, but all they tell you is the modulus, which you
141 * already knew.)
142 *
143 * To preserve determinism and avoid Pageant needing to share
144 * the random number pool, we actually generate this `random'
145 * number by hashing stuff with the private key.
146 */
147 while (1) {
148 int bits, byte, bitsleft, v;
149 random = copybn(key->modulus);
150 /*
151 * Find the topmost set bit. (This function will return its
152 * index plus one.) Then we'll set all bits from that one
153 * downwards randomly.
154 */
155 bits = bignum_bitcount(random);
156 byte = 0;
157 bitsleft = 0;
158 while (bits--) {
159 if (bitsleft <= 0) {
160 bitsleft = 8;
161 /*
162 * Conceptually the following few lines are equivalent to
163 * byte = random_byte();
164 */
165 if (digestused >= lenof(digest512)) {
166 unsigned char seqbuf[4];
167 PUT_32BIT(seqbuf, hashseq);
168 SHA512_Init(&ss);
169 SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
170 SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
171 sha512_mpint(&ss, key->private_exponent);
172 SHA512_Final(&ss, digest512);
173 hashseq++;
174
175 /*
176 * Now hash that digest plus the signature
177 * input.
178 */
179 SHA512_Init(&ss);
180 SHA512_Bytes(&ss, digest512, sizeof(digest512));
181 sha512_mpint(&ss, input);
182 SHA512_Final(&ss, digest512);
183
184 digestused = 0;
185 }
186 byte = digest512[digestused++];
187 }
188 v = byte & 1;
189 byte >>= 1;
190 bitsleft--;
191 bignum_set_bit(random, bits, v);
192 }
193
194 /*
195 * Now check that this number is strictly greater than
196 * zero, and strictly less than modulus.
197 */
198 if (bignum_cmp(random, Zero) <= 0 ||
199 bignum_cmp(random, key->modulus) >= 0) {
200 freebn(random);
201 continue;
202 } else {
203 break;
204 }
205 }
206
207 /*
208 * RSA blinding relies on the fact that (xy)^d mod n is equal
209 * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
210 * y and y^d; then we multiply x by y, raise to the power d mod
211 * n as usual, and divide by y^d to recover x^d. Thus an
212 * attacker can't correlate the timing of the modpow with the
213 * input, because they don't know anything about the number
214 * that was input to the actual modpow.
215 *
216 * The clever bit is that we don't have to do a huge modpow to
217 * get y and y^d; we will use the number we just invented as
218 * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
219 * from it, which is much faster to do.
220 */
221 random_encrypted = modpow(random, key->exponent, key->modulus);
222 random_inverse = modinv(random, key->modulus);
223 input_blinded = modmul(input, random_encrypted, key->modulus);
224 ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
225 ret = modmul(ret_blinded, random_inverse, key->modulus);
226
227 freebn(ret_blinded);
228 freebn(input_blinded);
229 freebn(random_inverse);
230 freebn(random_encrypted);
231 freebn(random);
232
233 return ret;
234 }
235
236 Bignum rsadecrypt(Bignum input, struct RSAKey *key)
237 {
238 return rsa_privkey_op(input, key);
239 }
240
241 int rsastr_len(struct RSAKey *key)
242 {
243 Bignum md, ex;
244 int mdlen, exlen;
245
246 md = key->modulus;
247 ex = key->exponent;
248 mdlen = (bignum_bitcount(md) + 15) / 16;
249 exlen = (bignum_bitcount(ex) + 15) / 16;
250 return 4 * (mdlen + exlen) + 20;
251 }
252
253 void rsastr_fmt(char *str, struct RSAKey *key)
254 {
255 Bignum md, ex;
256 int len = 0, i, nibbles;
257 static const char hex[] = "0123456789abcdef";
258
259 md = key->modulus;
260 ex = key->exponent;
261
262 len += sprintf(str + len, "0x");
263
264 nibbles = (3 + bignum_bitcount(ex)) / 4;
265 if (nibbles < 1)
266 nibbles = 1;
267 for (i = nibbles; i--;)
268 str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
269
270 len += sprintf(str + len, ",0x");
271
272 nibbles = (3 + bignum_bitcount(md)) / 4;
273 if (nibbles < 1)
274 nibbles = 1;
275 for (i = nibbles; i--;)
276 str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
277
278 str[len] = '\0';
279 }
280
281 /*
282 * Generate a fingerprint string for the key. Compatible with the
283 * OpenSSH fingerprint code.
284 */
285 void rsa_fingerprint(char *str, int len, struct RSAKey *key)
286 {
287 struct MD5Context md5c;
288 unsigned char digest[16];
289 char buffer[16 * 3 + 40];
290 int numlen, slen, i;
291
292 MD5Init(&md5c);
293 numlen = ssh1_bignum_length(key->modulus) - 2;
294 for (i = numlen; i--;) {
295 unsigned char c = bignum_byte(key->modulus, i);
296 MD5Update(&md5c, &c, 1);
297 }
298 numlen = ssh1_bignum_length(key->exponent) - 2;
299 for (i = numlen; i--;) {
300 unsigned char c = bignum_byte(key->exponent, i);
301 MD5Update(&md5c, &c, 1);
302 }
303 MD5Final(digest, &md5c);
304
305 sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
306 for (i = 0; i < 16; i++)
307 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
308 digest[i]);
309 strncpy(str, buffer, len);
310 str[len - 1] = '\0';
311 slen = strlen(str);
312 if (key->comment && slen < len - 1) {
313 str[slen] = ' ';
314 strncpy(str + slen + 1, key->comment, len - slen - 1);
315 str[len - 1] = '\0';
316 }
317 }
318
319 /*
320 * Verify that the public data in an RSA key matches the private
321 * data. We also check the private data itself: we ensure that p >
322 * q and that iqmp really is the inverse of q mod p.
323 */
324 int rsa_verify(struct RSAKey *key)
325 {
326 Bignum n, ed, pm1, qm1;
327 int cmp;
328
329 /* n must equal pq. */
330 n = bigmul(key->p, key->q);
331 cmp = bignum_cmp(n, key->modulus);
332 freebn(n);
333 if (cmp != 0)
334 return 0;
335
336 /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
337 pm1 = copybn(key->p);
338 decbn(pm1);
339 ed = modmul(key->exponent, key->private_exponent, pm1);
340 cmp = bignum_cmp(ed, One);
341 sfree(ed);
342 if (cmp != 0)
343 return 0;
344
345 qm1 = copybn(key->q);
346 decbn(qm1);
347 ed = modmul(key->exponent, key->private_exponent, qm1);
348 cmp = bignum_cmp(ed, One);
349 sfree(ed);
350 if (cmp != 0)
351 return 0;
352
353 /*
354 * Ensure p > q.
355 */
356 if (bignum_cmp(key->p, key->q) <= 0)
357 return 0;
358
359 /*
360 * Ensure iqmp * q is congruent to 1, modulo p.
361 */
362 n = modmul(key->iqmp, key->q, key->p);
363 cmp = bignum_cmp(n, One);
364 sfree(n);
365 if (cmp != 0)
366 return 0;
367
368 return 1;
369 }
370
371 /* Public key blob as used by Pageant: exponent before modulus. */
372 unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
373 {
374 int length, pos;
375 unsigned char *ret;
376
377 length = (ssh1_bignum_length(key->modulus) +
378 ssh1_bignum_length(key->exponent) + 4);
379 ret = snewn(length, unsigned char);
380
381 PUT_32BIT(ret, bignum_bitcount(key->modulus));
382 pos = 4;
383 pos += ssh1_write_bignum(ret + pos, key->exponent);
384 pos += ssh1_write_bignum(ret + pos, key->modulus);
385
386 *len = length;
387 return ret;
388 }
389
390 /* Given a public blob, determine its length. */
391 int rsa_public_blob_len(void *data, int maxlen)
392 {
393 unsigned char *p = (unsigned char *)data;
394 int n;
395
396 if (maxlen < 4)
397 return -1;
398 p += 4; /* length word */
399 maxlen -= 4;
400
401 n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */
402 if (n < 0)
403 return -1;
404 p += n;
405
406 n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */
407 if (n < 0)
408 return -1;
409 p += n;
410
411 return p - (unsigned char *)data;
412 }
413
414 void freersakey(struct RSAKey *key)
415 {
416 if (key->modulus)
417 freebn(key->modulus);
418 if (key->exponent)
419 freebn(key->exponent);
420 if (key->private_exponent)
421 freebn(key->private_exponent);
422 if (key->comment)
423 sfree(key->comment);
424 }
425
426 /* ----------------------------------------------------------------------
427 * Implementation of the ssh-rsa signing key type.
428 */
429
430 static void getstring(char **data, int *datalen, char **p, int *length)
431 {
432 *p = NULL;
433 if (*datalen < 4)
434 return;
435 *length = GET_32BIT(*data);
436 *datalen -= 4;
437 *data += 4;
438 if (*datalen < *length)
439 return;
440 *p = *data;
441 *data += *length;
442 *datalen -= *length;
443 }
444 static Bignum getmp(char **data, int *datalen)
445 {
446 char *p;
447 int length;
448 Bignum b;
449
450 getstring(data, datalen, &p, &length);
451 if (!p)
452 return NULL;
453 b = bignum_from_bytes((unsigned char *)p, length);
454 return b;
455 }
456
457 static void *rsa2_newkey(char *data, int len)
458 {
459 char *p;
460 int slen;
461 struct RSAKey *rsa;
462
463 rsa = snew(struct RSAKey);
464 if (!rsa)
465 return NULL;
466 getstring(&data, &len, &p, &slen);
467
468 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
469 sfree(rsa);
470 return NULL;
471 }
472 rsa->exponent = getmp(&data, &len);
473 rsa->modulus = getmp(&data, &len);
474 rsa->private_exponent = NULL;
475 rsa->comment = NULL;
476
477 return rsa;
478 }
479
480 static void rsa2_freekey(void *key)
481 {
482 struct RSAKey *rsa = (struct RSAKey *) key;
483 freersakey(rsa);
484 sfree(rsa);
485 }
486
487 static char *rsa2_fmtkey(void *key)
488 {
489 struct RSAKey *rsa = (struct RSAKey *) key;
490 char *p;
491 int len;
492
493 len = rsastr_len(rsa);
494 p = snewn(len, char);
495 rsastr_fmt(p, rsa);
496 return p;
497 }
498
499 static unsigned char *rsa2_public_blob(void *key, int *len)
500 {
501 struct RSAKey *rsa = (struct RSAKey *) key;
502 int elen, mlen, bloblen;
503 int i;
504 unsigned char *blob, *p;
505
506 elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
507 mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
508
509 /*
510 * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
511 * (three length fields, 12+7=19).
512 */
513 bloblen = 19 + elen + mlen;
514 blob = snewn(bloblen, unsigned char);
515 p = blob;
516 PUT_32BIT(p, 7);
517 p += 4;
518 memcpy(p, "ssh-rsa", 7);
519 p += 7;
520 PUT_32BIT(p, elen);
521 p += 4;
522 for (i = elen; i--;)
523 *p++ = bignum_byte(rsa->exponent, i);
524 PUT_32BIT(p, mlen);
525 p += 4;
526 for (i = mlen; i--;)
527 *p++ = bignum_byte(rsa->modulus, i);
528 assert(p == blob + bloblen);
529 *len = bloblen;
530 return blob;
531 }
532
533 static unsigned char *rsa2_private_blob(void *key, int *len)
534 {
535 struct RSAKey *rsa = (struct RSAKey *) key;
536 int dlen, plen, qlen, ulen, bloblen;
537 int i;
538 unsigned char *blob, *p;
539
540 dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
541 plen = (bignum_bitcount(rsa->p) + 8) / 8;
542 qlen = (bignum_bitcount(rsa->q) + 8) / 8;
543 ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
544
545 /*
546 * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
547 * sum of lengths.
548 */
549 bloblen = 16 + dlen + plen + qlen + ulen;
550 blob = snewn(bloblen, unsigned char);
551 p = blob;
552 PUT_32BIT(p, dlen);
553 p += 4;
554 for (i = dlen; i--;)
555 *p++ = bignum_byte(rsa->private_exponent, i);
556 PUT_32BIT(p, plen);
557 p += 4;
558 for (i = plen; i--;)
559 *p++ = bignum_byte(rsa->p, i);
560 PUT_32BIT(p, qlen);
561 p += 4;
562 for (i = qlen; i--;)
563 *p++ = bignum_byte(rsa->q, i);
564 PUT_32BIT(p, ulen);
565 p += 4;
566 for (i = ulen; i--;)
567 *p++ = bignum_byte(rsa->iqmp, i);
568 assert(p == blob + bloblen);
569 *len = bloblen;
570 return blob;
571 }
572
573 static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
574 unsigned char *priv_blob, int priv_len)
575 {
576 struct RSAKey *rsa;
577 char *pb = (char *) priv_blob;
578
579 rsa = rsa2_newkey((char *) pub_blob, pub_len);
580 rsa->private_exponent = getmp(&pb, &priv_len);
581 rsa->p = getmp(&pb, &priv_len);
582 rsa->q = getmp(&pb, &priv_len);
583 rsa->iqmp = getmp(&pb, &priv_len);
584
585 if (!rsa_verify(rsa)) {
586 rsa2_freekey(rsa);
587 return NULL;
588 }
589
590 return rsa;
591 }
592
593 static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
594 {
595 char **b = (char **) blob;
596 struct RSAKey *rsa;
597
598 rsa = snew(struct RSAKey);
599 if (!rsa)
600 return NULL;
601 rsa->comment = NULL;
602
603 rsa->modulus = getmp(b, len);
604 rsa->exponent = getmp(b, len);
605 rsa->private_exponent = getmp(b, len);
606 rsa->iqmp = getmp(b, len);
607 rsa->p = getmp(b, len);
608 rsa->q = getmp(b, len);
609
610 if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
611 !rsa->iqmp || !rsa->p || !rsa->q) {
612 sfree(rsa->modulus);
613 sfree(rsa->exponent);
614 sfree(rsa->private_exponent);
615 sfree(rsa->iqmp);
616 sfree(rsa->p);
617 sfree(rsa->q);
618 sfree(rsa);
619 return NULL;
620 }
621
622 return rsa;
623 }
624
625 static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
626 {
627 struct RSAKey *rsa = (struct RSAKey *) key;
628 int bloblen, i;
629
630 bloblen =
631 ssh2_bignum_length(rsa->modulus) +
632 ssh2_bignum_length(rsa->exponent) +
633 ssh2_bignum_length(rsa->private_exponent) +
634 ssh2_bignum_length(rsa->iqmp) +
635 ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
636
637 if (bloblen > len)
638 return bloblen;
639
640 bloblen = 0;
641 #define ENC(x) \
642 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
643 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
644 ENC(rsa->modulus);
645 ENC(rsa->exponent);
646 ENC(rsa->private_exponent);
647 ENC(rsa->iqmp);
648 ENC(rsa->p);
649 ENC(rsa->q);
650
651 return bloblen;
652 }
653
654 static int rsa2_pubkey_bits(void *blob, int len)
655 {
656 struct RSAKey *rsa;
657 int ret;
658
659 rsa = rsa2_newkey((char *) blob, len);
660 ret = bignum_bitcount(rsa->modulus);
661 rsa2_freekey(rsa);
662
663 return ret;
664 }
665
666 static char *rsa2_fingerprint(void *key)
667 {
668 struct RSAKey *rsa = (struct RSAKey *) key;
669 struct MD5Context md5c;
670 unsigned char digest[16], lenbuf[4];
671 char buffer[16 * 3 + 40];
672 char *ret;
673 int numlen, i;
674
675 MD5Init(&md5c);
676 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
677
678 #define ADD_BIGNUM(bignum) \
679 numlen = (bignum_bitcount(bignum)+8)/8; \
680 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
681 for (i = numlen; i-- ;) { \
682 unsigned char c = bignum_byte(bignum, i); \
683 MD5Update(&md5c, &c, 1); \
684 }
685 ADD_BIGNUM(rsa->exponent);
686 ADD_BIGNUM(rsa->modulus);
687 #undef ADD_BIGNUM
688
689 MD5Final(digest, &md5c);
690
691 sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
692 for (i = 0; i < 16; i++)
693 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
694 digest[i]);
695 ret = snewn(strlen(buffer) + 1, char);
696 if (ret)
697 strcpy(ret, buffer);
698 return ret;
699 }
700
701 /*
702 * This is the magic ASN.1/DER prefix that goes in the decoded
703 * signature, between the string of FFs and the actual SHA hash
704 * value. The meaning of it is:
705 *
706 * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
707 *
708 * 30 21 -- a constructed SEQUENCE of length 0x21
709 * 30 09 -- a constructed sub-SEQUENCE of length 9
710 * 06 05 -- an object identifier, length 5
711 * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
712 * (the 1,3 comes from 0x2B = 43 = 40*1+3)
713 * 05 00 -- NULL
714 * 04 14 -- a primitive OCTET STRING of length 0x14
715 * [0x14 bytes of hash data follows]
716 *
717 * The object id in the middle there is listed as `id-sha1' in
718 * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
719 * ASN module for PKCS #1) and its expanded form is as follows:
720 *
721 * id-sha1 OBJECT IDENTIFIER ::= {
722 * iso(1) identified-organization(3) oiw(14) secsig(3)
723 * algorithms(2) 26 }
724 */
725 static const unsigned char asn1_weird_stuff[] = {
726 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
727 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
728 };
729
730 #define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
731
732 static int rsa2_verifysig(void *key, char *sig, int siglen,
733 char *data, int datalen)
734 {
735 struct RSAKey *rsa = (struct RSAKey *) key;
736 Bignum in, out;
737 char *p;
738 int slen;
739 int bytes, i, j, ret;
740 unsigned char hash[20];
741
742 getstring(&sig, &siglen, &p, &slen);
743 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
744 return 0;
745 }
746 in = getmp(&sig, &siglen);
747 out = modpow(in, rsa->exponent, rsa->modulus);
748 freebn(in);
749
750 ret = 1;
751
752 bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
753 /* Top (partial) byte should be zero. */
754 if (bignum_byte(out, bytes - 1) != 0)
755 ret = 0;
756 /* First whole byte should be 1. */
757 if (bignum_byte(out, bytes - 2) != 1)
758 ret = 0;
759 /* Most of the rest should be FF. */
760 for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
761 if (bignum_byte(out, i) != 0xFF)
762 ret = 0;
763 }
764 /* Then we expect to see the asn1_weird_stuff. */
765 for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
766 if (bignum_byte(out, i) != asn1_weird_stuff[j])
767 ret = 0;
768 }
769 /* Finally, we expect to see the SHA-1 hash of the signed data. */
770 SHA_Simple(data, datalen, hash);
771 for (i = 19, j = 0; i >= 0; i--, j++) {
772 if (bignum_byte(out, i) != hash[j])
773 ret = 0;
774 }
775 freebn(out);
776
777 return ret;
778 }
779
780 static unsigned char *rsa2_sign(void *key, char *data, int datalen,
781 int *siglen)
782 {
783 struct RSAKey *rsa = (struct RSAKey *) key;
784 unsigned char *bytes;
785 int nbytes;
786 unsigned char hash[20];
787 Bignum in, out;
788 int i, j;
789
790 SHA_Simple(data, datalen, hash);
791
792 nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
793 assert(1 <= nbytes - 20 - ASN1_LEN);
794 bytes = snewn(nbytes, unsigned char);
795
796 bytes[0] = 1;
797 for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
798 bytes[i] = 0xFF;
799 for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
800 bytes[i] = asn1_weird_stuff[j];
801 for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
802 bytes[i] = hash[j];
803
804 in = bignum_from_bytes(bytes, nbytes);
805 sfree(bytes);
806
807 out = rsa_privkey_op(in, rsa);
808 freebn(in);
809
810 nbytes = (bignum_bitcount(out) + 7) / 8;
811 bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
812 PUT_32BIT(bytes, 7);
813 memcpy(bytes + 4, "ssh-rsa", 7);
814 PUT_32BIT(bytes + 4 + 7, nbytes);
815 for (i = 0; i < nbytes; i++)
816 bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
817 freebn(out);
818
819 *siglen = 4 + 7 + 4 + nbytes;
820 return bytes;
821 }
822
823 const struct ssh_signkey ssh_rsa = {
824 rsa2_newkey,
825 rsa2_freekey,
826 rsa2_fmtkey,
827 rsa2_public_blob,
828 rsa2_private_blob,
829 rsa2_createkey,
830 rsa2_openssh_createkey,
831 rsa2_openssh_fmtkey,
832 rsa2_pubkey_bits,
833 rsa2_fingerprint,
834 rsa2_verifysig,
835 rsa2_sign,
836 "ssh-rsa",
837 "rsa2"
838 };