Fix an array-size bug in modmul, and add some tests for it.
[u/mdw/putty] / testdata / bignum.py
1 # Generate test cases for a bignum implementation.
2
3 import sys
4
5 # integer square roots
6 def sqrt(n):
7 d = long(n)
8 a = 0L
9 # b must start off as a power of 4 at least as large as n
10 ndigits = len(hex(long(n)))
11 b = 1L << (ndigits*4)
12 while 1:
13 a = a >> 1
14 di = 2*a + b
15 if di <= d:
16 d = d - di
17 a = a + b
18 b = b >> 2
19 if b == 0: break
20 return a
21
22 # continued fraction convergents of a rational
23 def confrac(n, d):
24 coeffs = [(1,0),(0,1)]
25 while d != 0:
26 i = n / d
27 n, d = d, n % d
28 coeffs.append((coeffs[-2][0]-i*coeffs[-1][0],
29 coeffs[-2][1]-i*coeffs[-1][1]))
30 return coeffs
31
32 def findprod(target, dir = +1, ratio=(1,1)):
33 # Return two numbers whose product is as close as we can get to
34 # 'target', with any deviation having the sign of 'dir', and in
35 # the same approximate ratio as 'ratio'.
36
37 r = sqrt(target * ratio[0] * ratio[1])
38 a = r / ratio[1]
39 b = r / ratio[0]
40 if a*b * dir < target * dir:
41 a = a + 1
42 b = b + 1
43 assert a*b * dir >= target * dir
44
45 best = (a,b,a*b)
46
47 while 1:
48 improved = 0
49 a, b = best[:2]
50
51 coeffs = confrac(a, b)
52 for c in coeffs:
53 # a*c[0]+b*c[1] is as close as we can get it to zero. So
54 # if we replace a and b with a+c[1] and b+c[0], then that
55 # will be added to our product, along with c[0]*c[1].
56 da, db = c[1], c[0]
57
58 # Flip signs as appropriate.
59 if (a+da) * (b+db) * dir < target * dir:
60 da, db = -da, -db
61
62 # Multiply up. We want to get as close as we can to a
63 # solution of the quadratic equation in n
64 #
65 # (a + n da) (b + n db) = target
66 # => n^2 da db + n (b da + a db) + (a b - target) = 0
67 A,B,C = da*db, b*da+a*db, a*b-target
68 discrim = B^2-4*A*C
69 if discrim > 0 and A != 0:
70 root = sqrt(discrim)
71 vals = []
72 vals.append((-B + root) / (2*A))
73 vals.append((-B - root) / (2*A))
74 if root * root != discrim:
75 root = root + 1
76 vals.append((-B + root) / (2*A))
77 vals.append((-B - root) / (2*A))
78
79 for n in vals:
80 ap = a + da*n
81 bp = b + db*n
82 pp = ap*bp
83 if pp * dir >= target * dir and pp * dir < best[2]*dir:
84 best = (ap, bp, pp)
85 improved = 1
86
87 if not improved:
88 break
89
90 return best
91
92 def hexstr(n):
93 s = hex(n)
94 if s[:2] == "0x": s = s[2:]
95 if s[-1:] == "L": s = s[:-1]
96 return s
97
98 # Tests of multiplication which exercise the propagation of the last
99 # carry to the very top of the number.
100 for i in range(1,4200):
101 a, b, p = findprod((1<<i)+1, +1, (i, i*i+1))
102 print "mul", hexstr(a), hexstr(b), hexstr(p)
103 a, b, p = findprod((1<<i)+1, +1, (i, i+1))
104 print "mul", hexstr(a), hexstr(b), hexstr(p)
105
106 # Simple tests of modmul.
107 for ai in range(20, 200, 60):
108 a = sqrt(3<<(2*ai-1))
109 for bi in range(20, 200, 60):
110 b = sqrt(5<<(2*bi-1))
111 for m in range(20, 600, 32):
112 m = sqrt(2**(m+1))
113 print "modmul", hexstr(a), hexstr(b), hexstr(m), hexstr((a*b) % m)
114
115 # Simple tests of modpow.
116 for i in range(64, 4097, 63):
117 modulus = sqrt(1<<(2*i-1)) | 1
118 base = sqrt(3*modulus*modulus) % modulus
119 expt = sqrt(modulus*modulus*2/5)
120 print "pow", hexstr(base), hexstr(expt), hexstr(modulus), hexstr(pow(base, expt, modulus))
121 if i <= 1024:
122 # Test even moduli, which can't be done by Montgomery.
123 modulus = modulus - 1
124 print "pow", hexstr(base), hexstr(expt), hexstr(modulus), hexstr(pow(base, expt, modulus))
125 print "pow", hexstr(i), hexstr(expt), hexstr(modulus), hexstr(pow(i, expt, modulus))