Added a command-line key generation tool. Currently builds and runs
[u/mdw/putty] / sshdss.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4
5 #include "ssh.h"
6 #include "misc.h"
7
8 #define GET_32BIT(cp) \
9 (((unsigned long)(unsigned char)(cp)[0] << 24) | \
10 ((unsigned long)(unsigned char)(cp)[1] << 16) | \
11 ((unsigned long)(unsigned char)(cp)[2] << 8) | \
12 ((unsigned long)(unsigned char)(cp)[3]))
13
14 #define PUT_32BIT(cp, value) { \
15 (cp)[0] = (unsigned char)((value) >> 24); \
16 (cp)[1] = (unsigned char)((value) >> 16); \
17 (cp)[2] = (unsigned char)((value) >> 8); \
18 (cp)[3] = (unsigned char)(value); }
19
20 static void sha_mpint(SHA_State * s, Bignum b)
21 {
22 unsigned char lenbuf[4];
23 int len;
24 len = (bignum_bitcount(b) + 8) / 8;
25 PUT_32BIT(lenbuf, len);
26 SHA_Bytes(s, lenbuf, 4);
27 while (len-- > 0) {
28 lenbuf[0] = bignum_byte(b, len);
29 SHA_Bytes(s, lenbuf, 1);
30 }
31 memset(lenbuf, 0, sizeof(lenbuf));
32 }
33
34 static void sha512_mpint(SHA512_State * s, Bignum b)
35 {
36 unsigned char lenbuf[4];
37 int len;
38 len = (bignum_bitcount(b) + 8) / 8;
39 PUT_32BIT(lenbuf, len);
40 SHA512_Bytes(s, lenbuf, 4);
41 while (len-- > 0) {
42 lenbuf[0] = bignum_byte(b, len);
43 SHA512_Bytes(s, lenbuf, 1);
44 }
45 memset(lenbuf, 0, sizeof(lenbuf));
46 }
47
48 static void getstring(char **data, int *datalen, char **p, int *length)
49 {
50 *p = NULL;
51 if (*datalen < 4)
52 return;
53 *length = GET_32BIT(*data);
54 *datalen -= 4;
55 *data += 4;
56 if (*datalen < *length)
57 return;
58 *p = *data;
59 *data += *length;
60 *datalen -= *length;
61 }
62 static Bignum getmp(char **data, int *datalen)
63 {
64 char *p;
65 int length;
66 Bignum b;
67
68 getstring(data, datalen, &p, &length);
69 if (!p)
70 return NULL;
71 if (p[0] & 0x80)
72 return NULL; /* negative mp */
73 b = bignum_from_bytes((unsigned char *)p, length);
74 return b;
75 }
76
77 static Bignum get160(char **data, int *datalen)
78 {
79 Bignum b;
80
81 b = bignum_from_bytes((unsigned char *)*data, 20);
82 *data += 20;
83 *datalen -= 20;
84
85 return b;
86 }
87
88 static void *dss_newkey(char *data, int len)
89 {
90 char *p;
91 int slen;
92 struct dss_key *dss;
93
94 dss = snew(struct dss_key);
95 if (!dss)
96 return NULL;
97 getstring(&data, &len, &p, &slen);
98
99 #ifdef DEBUG_DSS
100 {
101 int i;
102 printf("key:");
103 for (i = 0; i < len; i++)
104 printf(" %02x", (unsigned char) (data[i]));
105 printf("\n");
106 }
107 #endif
108
109 if (!p || memcmp(p, "ssh-dss", 7)) {
110 sfree(dss);
111 return NULL;
112 }
113 dss->p = getmp(&data, &len);
114 dss->q = getmp(&data, &len);
115 dss->g = getmp(&data, &len);
116 dss->y = getmp(&data, &len);
117
118 return dss;
119 }
120
121 static void dss_freekey(void *key)
122 {
123 struct dss_key *dss = (struct dss_key *) key;
124 freebn(dss->p);
125 freebn(dss->q);
126 freebn(dss->g);
127 freebn(dss->y);
128 sfree(dss);
129 }
130
131 static char *dss_fmtkey(void *key)
132 {
133 struct dss_key *dss = (struct dss_key *) key;
134 char *p;
135 int len, i, pos, nibbles;
136 static const char hex[] = "0123456789abcdef";
137 if (!dss->p)
138 return NULL;
139 len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
140 len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
141 len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
142 len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
143 len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
144 p = snewn(len, char);
145 if (!p)
146 return NULL;
147
148 pos = 0;
149 pos += sprintf(p + pos, "0x");
150 nibbles = (3 + bignum_bitcount(dss->p)) / 4;
151 if (nibbles < 1)
152 nibbles = 1;
153 for (i = nibbles; i--;)
154 p[pos++] =
155 hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
156 pos += sprintf(p + pos, ",0x");
157 nibbles = (3 + bignum_bitcount(dss->q)) / 4;
158 if (nibbles < 1)
159 nibbles = 1;
160 for (i = nibbles; i--;)
161 p[pos++] =
162 hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
163 pos += sprintf(p + pos, ",0x");
164 nibbles = (3 + bignum_bitcount(dss->g)) / 4;
165 if (nibbles < 1)
166 nibbles = 1;
167 for (i = nibbles; i--;)
168 p[pos++] =
169 hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
170 pos += sprintf(p + pos, ",0x");
171 nibbles = (3 + bignum_bitcount(dss->y)) / 4;
172 if (nibbles < 1)
173 nibbles = 1;
174 for (i = nibbles; i--;)
175 p[pos++] =
176 hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
177 p[pos] = '\0';
178 return p;
179 }
180
181 static char *dss_fingerprint(void *key)
182 {
183 struct dss_key *dss = (struct dss_key *) key;
184 struct MD5Context md5c;
185 unsigned char digest[16], lenbuf[4];
186 char buffer[16 * 3 + 40];
187 char *ret;
188 int numlen, i;
189
190 MD5Init(&md5c);
191 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);
192
193 #define ADD_BIGNUM(bignum) \
194 numlen = (bignum_bitcount(bignum)+8)/8; \
195 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
196 for (i = numlen; i-- ;) { \
197 unsigned char c = bignum_byte(bignum, i); \
198 MD5Update(&md5c, &c, 1); \
199 }
200 ADD_BIGNUM(dss->p);
201 ADD_BIGNUM(dss->q);
202 ADD_BIGNUM(dss->g);
203 ADD_BIGNUM(dss->y);
204 #undef ADD_BIGNUM
205
206 MD5Final(digest, &md5c);
207
208 sprintf(buffer, "ssh-dss %d ", bignum_bitcount(dss->p));
209 for (i = 0; i < 16; i++)
210 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
211 digest[i]);
212 ret = snewn(strlen(buffer) + 1, char);
213 if (ret)
214 strcpy(ret, buffer);
215 return ret;
216 }
217
218 static int dss_verifysig(void *key, char *sig, int siglen,
219 char *data, int datalen)
220 {
221 struct dss_key *dss = (struct dss_key *) key;
222 char *p;
223 int slen;
224 char hash[20];
225 Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
226 int ret;
227
228 if (!dss->p)
229 return 0;
230
231 #ifdef DEBUG_DSS
232 {
233 int i;
234 printf("sig:");
235 for (i = 0; i < siglen; i++)
236 printf(" %02x", (unsigned char) (sig[i]));
237 printf("\n");
238 }
239 #endif
240 /*
241 * Commercial SSH (2.0.13) and OpenSSH disagree over the format
242 * of a DSA signature. OpenSSH is in line with the IETF drafts:
243 * it uses a string "ssh-dss", followed by a 40-byte string
244 * containing two 160-bit integers end-to-end. Commercial SSH
245 * can't be bothered with the header bit, and considers a DSA
246 * signature blob to be _just_ the 40-byte string containing
247 * the two 160-bit integers. We tell them apart by measuring
248 * the length: length 40 means the commercial-SSH bug, anything
249 * else is assumed to be IETF-compliant.
250 */
251 if (siglen != 40) { /* bug not present; read admin fields */
252 getstring(&sig, &siglen, &p, &slen);
253 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
254 return 0;
255 }
256 sig += 4, siglen -= 4; /* skip yet another length field */
257 }
258 r = get160(&sig, &siglen);
259 s = get160(&sig, &siglen);
260 if (!r || !s)
261 return 0;
262
263 /*
264 * Step 1. w <- s^-1 mod q.
265 */
266 w = modinv(s, dss->q);
267
268 /*
269 * Step 2. u1 <- SHA(message) * w mod q.
270 */
271 SHA_Simple(data, datalen, (unsigned char *)hash);
272 p = hash;
273 slen = 20;
274 sha = get160(&p, &slen);
275 u1 = modmul(sha, w, dss->q);
276
277 /*
278 * Step 3. u2 <- r * w mod q.
279 */
280 u2 = modmul(r, w, dss->q);
281
282 /*
283 * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
284 */
285 gu1p = modpow(dss->g, u1, dss->p);
286 yu2p = modpow(dss->y, u2, dss->p);
287 gu1yu2p = modmul(gu1p, yu2p, dss->p);
288 v = modmul(gu1yu2p, One, dss->q);
289
290 /*
291 * Step 5. v should now be equal to r.
292 */
293
294 ret = !bignum_cmp(v, r);
295
296 freebn(w);
297 freebn(sha);
298 freebn(gu1p);
299 freebn(yu2p);
300 freebn(gu1yu2p);
301 freebn(v);
302 freebn(r);
303 freebn(s);
304
305 return ret;
306 }
307
308 static unsigned char *dss_public_blob(void *key, int *len)
309 {
310 struct dss_key *dss = (struct dss_key *) key;
311 int plen, qlen, glen, ylen, bloblen;
312 int i;
313 unsigned char *blob, *p;
314
315 plen = (bignum_bitcount(dss->p) + 8) / 8;
316 qlen = (bignum_bitcount(dss->q) + 8) / 8;
317 glen = (bignum_bitcount(dss->g) + 8) / 8;
318 ylen = (bignum_bitcount(dss->y) + 8) / 8;
319
320 /*
321 * string "ssh-dss", mpint p, mpint q, mpint g, mpint y. Total
322 * 27 + sum of lengths. (five length fields, 20+7=27).
323 */
324 bloblen = 27 + plen + qlen + glen + ylen;
325 blob = snewn(bloblen, unsigned char);
326 p = blob;
327 PUT_32BIT(p, 7);
328 p += 4;
329 memcpy(p, "ssh-dss", 7);
330 p += 7;
331 PUT_32BIT(p, plen);
332 p += 4;
333 for (i = plen; i--;)
334 *p++ = bignum_byte(dss->p, i);
335 PUT_32BIT(p, qlen);
336 p += 4;
337 for (i = qlen; i--;)
338 *p++ = bignum_byte(dss->q, i);
339 PUT_32BIT(p, glen);
340 p += 4;
341 for (i = glen; i--;)
342 *p++ = bignum_byte(dss->g, i);
343 PUT_32BIT(p, ylen);
344 p += 4;
345 for (i = ylen; i--;)
346 *p++ = bignum_byte(dss->y, i);
347 assert(p == blob + bloblen);
348 *len = bloblen;
349 return blob;
350 }
351
352 static unsigned char *dss_private_blob(void *key, int *len)
353 {
354 struct dss_key *dss = (struct dss_key *) key;
355 int xlen, bloblen;
356 int i;
357 unsigned char *blob, *p;
358
359 xlen = (bignum_bitcount(dss->x) + 8) / 8;
360
361 /*
362 * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
363 */
364 bloblen = 4 + xlen;
365 blob = snewn(bloblen, unsigned char);
366 p = blob;
367 PUT_32BIT(p, xlen);
368 p += 4;
369 for (i = xlen; i--;)
370 *p++ = bignum_byte(dss->x, i);
371 assert(p == blob + bloblen);
372 *len = bloblen;
373 return blob;
374 }
375
376 static void *dss_createkey(unsigned char *pub_blob, int pub_len,
377 unsigned char *priv_blob, int priv_len)
378 {
379 struct dss_key *dss;
380 char *pb = (char *) priv_blob;
381 char *hash;
382 int hashlen;
383 SHA_State s;
384 unsigned char digest[20];
385 Bignum ytest;
386
387 dss = dss_newkey((char *) pub_blob, pub_len);
388 dss->x = getmp(&pb, &priv_len);
389
390 /*
391 * Check the obsolete hash in the old DSS key format.
392 */
393 hashlen = -1;
394 getstring(&pb, &priv_len, &hash, &hashlen);
395 if (hashlen == 20) {
396 SHA_Init(&s);
397 sha_mpint(&s, dss->p);
398 sha_mpint(&s, dss->q);
399 sha_mpint(&s, dss->g);
400 SHA_Final(&s, digest);
401 if (0 != memcmp(hash, digest, 20)) {
402 dss_freekey(dss);
403 return NULL;
404 }
405 }
406
407 /*
408 * Now ensure g^x mod p really is y.
409 */
410 ytest = modpow(dss->g, dss->x, dss->p);
411 if (0 != bignum_cmp(ytest, dss->y)) {
412 dss_freekey(dss);
413 return NULL;
414 }
415 freebn(ytest);
416
417 return dss;
418 }
419
420 static void *dss_openssh_createkey(unsigned char **blob, int *len)
421 {
422 char **b = (char **) blob;
423 struct dss_key *dss;
424
425 dss = snew(struct dss_key);
426 if (!dss)
427 return NULL;
428
429 dss->p = getmp(b, len);
430 dss->q = getmp(b, len);
431 dss->g = getmp(b, len);
432 dss->y = getmp(b, len);
433 dss->x = getmp(b, len);
434
435 if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {
436 sfree(dss->p);
437 sfree(dss->q);
438 sfree(dss->g);
439 sfree(dss->y);
440 sfree(dss->x);
441 sfree(dss);
442 return NULL;
443 }
444
445 return dss;
446 }
447
448 static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
449 {
450 struct dss_key *dss = (struct dss_key *) key;
451 int bloblen, i;
452
453 bloblen =
454 ssh2_bignum_length(dss->p) +
455 ssh2_bignum_length(dss->q) +
456 ssh2_bignum_length(dss->g) +
457 ssh2_bignum_length(dss->y) +
458 ssh2_bignum_length(dss->x);
459
460 if (bloblen > len)
461 return bloblen;
462
463 bloblen = 0;
464 #define ENC(x) \
465 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
466 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
467 ENC(dss->p);
468 ENC(dss->q);
469 ENC(dss->g);
470 ENC(dss->y);
471 ENC(dss->x);
472
473 return bloblen;
474 }
475
476 static int dss_pubkey_bits(void *blob, int len)
477 {
478 struct dss_key *dss;
479 int ret;
480
481 dss = dss_newkey((char *) blob, len);
482 ret = bignum_bitcount(dss->p);
483 dss_freekey(dss);
484
485 return ret;
486 }
487
488 static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
489 {
490 /*
491 * The basic DSS signing algorithm is:
492 *
493 * - invent a random k between 1 and q-1 (exclusive).
494 * - Compute r = (g^k mod p) mod q.
495 * - Compute s = k^-1 * (hash + x*r) mod q.
496 *
497 * This has the dangerous properties that:
498 *
499 * - if an attacker in possession of the public key _and_ the
500 * signature (for example, the host you just authenticated
501 * to) can guess your k, he can reverse the computation of s
502 * and work out x = r^-1 * (s*k - hash) mod q. That is, he
503 * can deduce the private half of your key, and masquerade
504 * as you for as long as the key is still valid.
505 *
506 * - since r is a function purely of k and the public key, if
507 * the attacker only has a _range of possibilities_ for k
508 * it's easy for him to work through them all and check each
509 * one against r; he'll never be unsure of whether he's got
510 * the right one.
511 *
512 * - if you ever sign two different hashes with the same k, it
513 * will be immediately obvious because the two signatures
514 * will have the same r, and moreover an attacker in
515 * possession of both signatures (and the public key of
516 * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
517 * and from there deduce x as before.
518 *
519 * - the Bleichenbacher attack on DSA makes use of methods of
520 * generating k which are significantly non-uniformly
521 * distributed; in particular, generating a 160-bit random
522 * number and reducing it mod q is right out.
523 *
524 * For this reason we must be pretty careful about how we
525 * generate our k. Since this code runs on Windows, with no
526 * particularly good system entropy sources, we can't trust our
527 * RNG itself to produce properly unpredictable data. Hence, we
528 * use a totally different scheme instead.
529 *
530 * What we do is to take a SHA-512 (_big_) hash of the private
531 * key x, and then feed this into another SHA-512 hash that
532 * also includes the message hash being signed. That is:
533 *
534 * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
535 *
536 * This number is 512 bits long, so reducing it mod q won't be
537 * noticeably non-uniform. So
538 *
539 * k = proto_k mod q
540 *
541 * This has the interesting property that it's _deterministic_:
542 * signing the same hash twice with the same key yields the
543 * same signature.
544 *
545 * Despite this determinism, it's still not predictable to an
546 * attacker, because in order to repeat the SHA-512
547 * construction that created it, the attacker would have to
548 * know the private key value x - and by assumption he doesn't,
549 * because if he knew that he wouldn't be attacking k!
550 *
551 * (This trick doesn't, _per se_, protect against reuse of k.
552 * Reuse of k is left to chance; all it does is prevent
553 * _excessively high_ chances of reuse of k due to entropy
554 * problems.)
555 *
556 * Thanks to Colin Plumb for the general idea of using x to
557 * ensure k is hard to guess, and to the Cambridge University
558 * Computer Security Group for helping to argue out all the
559 * fine details.
560 */
561 struct dss_key *dss = (struct dss_key *) key;
562 SHA512_State ss;
563 unsigned char digest[20], digest512[64];
564 Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
565 unsigned char *bytes;
566 int nbytes, i;
567
568 SHA_Simple(data, datalen, digest);
569
570 /*
571 * Hash some identifying text plus x.
572 */
573 SHA512_Init(&ss);
574 SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
575 sha512_mpint(&ss, dss->x);
576 SHA512_Final(&ss, digest512);
577
578 /*
579 * Now hash that digest plus the message hash.
580 */
581 SHA512_Init(&ss);
582 SHA512_Bytes(&ss, digest512, sizeof(digest512));
583 SHA512_Bytes(&ss, digest, sizeof(digest));
584 SHA512_Final(&ss, digest512);
585
586 memset(&ss, 0, sizeof(ss));
587
588 /*
589 * Now convert the result into a bignum, and reduce it mod q.
590 */
591 proto_k = bignum_from_bytes(digest512, 64);
592 k = bigmod(proto_k, dss->q);
593 freebn(proto_k);
594
595 memset(digest512, 0, sizeof(digest512));
596
597 /*
598 * Now we have k, so just go ahead and compute the signature.
599 */
600 gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
601 r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
602 freebn(gkp);
603
604 hash = bignum_from_bytes(digest, 20);
605 kinv = modinv(k, dss->q); /* k^-1 mod q */
606 hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
607 s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
608 freebn(hxr);
609 freebn(kinv);
610 freebn(hash);
611
612 /*
613 * Signature blob is
614 *
615 * string "ssh-dss"
616 * string two 20-byte numbers r and s, end to end
617 *
618 * i.e. 4+7 + 4+40 bytes.
619 */
620 nbytes = 4 + 7 + 4 + 40;
621 bytes = snewn(nbytes, unsigned char);
622 PUT_32BIT(bytes, 7);
623 memcpy(bytes + 4, "ssh-dss", 7);
624 PUT_32BIT(bytes + 4 + 7, 40);
625 for (i = 0; i < 20; i++) {
626 bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
627 bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
628 }
629 freebn(r);
630 freebn(s);
631
632 *siglen = nbytes;
633 return bytes;
634 }
635
636 const struct ssh_signkey ssh_dss = {
637 dss_newkey,
638 dss_freekey,
639 dss_fmtkey,
640 dss_public_blob,
641 dss_private_blob,
642 dss_createkey,
643 dss_openssh_createkey,
644 dss_openssh_fmtkey,
645 dss_pubkey_bits,
646 dss_fingerprint,
647 dss_verifysig,
648 dss_sign,
649 "ssh-dss",
650 "dss"
651 };