Introduced wrapper macros snew(), snewn() and sresize() for the
[u/mdw/putty] / unix / uxnet.c
1 /*
2 * Unix networking abstraction.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/ioctl.h>
14 #include <arpa/inet.h>
15 #include <netinet/in.h>
16 #include <netinet/tcp.h>
17 #include <netdb.h>
18
19 #define DEFINE_PLUG_METHOD_MACROS
20 #include "putty.h"
21 #include "network.h"
22 #include "tree234.h"
23
24 #define ipv4_is_loopback(addr) (inet_netof(addr) == IN_LOOPBACKNET)
25
26 struct Socket_tag {
27 struct socket_function_table *fn;
28 /* the above variable absolutely *must* be the first in this structure */
29 char *error;
30 int s;
31 Plug plug;
32 void *private_ptr;
33 bufchain output_data;
34 int connected;
35 int writable;
36 int frozen; /* this causes readability notifications to be ignored */
37 int frozen_readable; /* this means we missed at least one readability
38 * notification while we were frozen */
39 int localhost_only; /* for listening sockets */
40 char oobdata[1];
41 int sending_oob;
42 int oobpending; /* is there OOB data available to read? */
43 int oobinline;
44 int pending_error; /* in case send() returns error */
45 int listener;
46 };
47
48 /*
49 * We used to typedef struct Socket_tag *Socket.
50 *
51 * Since we have made the networking abstraction slightly more
52 * abstract, Socket no longer means a tcp socket (it could mean
53 * an ssl socket). So now we must use Actual_Socket when we know
54 * we are talking about a tcp socket.
55 */
56 typedef struct Socket_tag *Actual_Socket;
57
58 struct SockAddr_tag {
59 char *error;
60 /*
61 * Which address family this address belongs to. AF_INET for
62 * IPv4; AF_INET6 for IPv6; AF_UNSPEC indicates that name
63 * resolution has not been done and a simple host name is held
64 * in this SockAddr structure.
65 */
66 int family;
67 unsigned long address; /* Address IPv4 style. */
68 #ifdef IPV6
69 struct addrinfo *ai; /* Address IPv6 style. */
70 #endif
71 char hostname[512]; /* Store an unresolved host name. */
72 };
73
74 static tree234 *sktree;
75
76 static int cmpfortree(void *av, void *bv)
77 {
78 Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
79 int as = a->s, bs = b->s;
80 if (as < bs)
81 return -1;
82 if (as > bs)
83 return +1;
84 return 0;
85 }
86
87 static int cmpforsearch(void *av, void *bv)
88 {
89 Actual_Socket b = (Actual_Socket) bv;
90 int as = (int) av, bs = b->s;
91 if (as < bs)
92 return -1;
93 if (as > bs)
94 return +1;
95 return 0;
96 }
97
98 void sk_init(void)
99 {
100 sktree = newtree234(cmpfortree);
101 }
102
103 void sk_cleanup(void)
104 {
105 Actual_Socket s;
106 int i;
107
108 if (sktree) {
109 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
110 close(s->s);
111 }
112 }
113 }
114
115 char *error_string(int error)
116 {
117 return strerror(error);
118 }
119
120 SockAddr sk_namelookup(const char *host, char **canonicalname)
121 {
122 SockAddr ret = snew(struct SockAddr_tag);
123 unsigned long a;
124 struct hostent *h = NULL;
125 char realhost[8192];
126
127 /* Clear the structure and default to IPv4. */
128 memset(ret, 0, sizeof(struct SockAddr_tag));
129 ret->family = 0; /* We set this one when we have resolved the host. */
130 *realhost = '\0';
131 ret->error = NULL;
132
133 if ((a = inet_addr(host)) == (unsigned long) INADDR_NONE) {
134 #ifdef IPV6
135 if (getaddrinfo(host, NULL, NULL, &ret->ai) == 0) {
136 ret->family = ret->ai->ai_family;
137 } else
138 #endif
139 {
140 /*
141 * Otherwise use the IPv4-only gethostbyname... (NOTE:
142 * we don't use gethostbyname as a fallback!)
143 */
144 if (ret->family == 0) {
145 /*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
146 if ( (h = gethostbyname(host)) )
147 ret->family = AF_INET;
148 }
149 if (ret->family == 0) {
150 ret->error = (h_errno == HOST_NOT_FOUND ||
151 h_errno == NO_DATA ||
152 h_errno == NO_ADDRESS ? "Host does not exist" :
153 h_errno == TRY_AGAIN ?
154 "Temporary name service failure" :
155 "gethostbyname: unknown error");
156 return ret;
157 }
158 }
159
160 #ifdef IPV6
161 /* If we got an address info use that... */
162 if (ret->ai) {
163
164 /* Are we in IPv4 fallback mode? */
165 /* We put the IPv4 address into the a variable so we can further-on use the IPv4 code... */
166 if (ret->family == AF_INET)
167 memcpy(&a,
168 (char *) &((struct sockaddr_in *) ret->ai->
169 ai_addr)->sin_addr, sizeof(a));
170
171 /* Now let's find that canonicalname... */
172 if (getnameinfo((struct sockaddr *) ret->ai->ai_addr,
173 ret->family ==
174 AF_INET ? sizeof(struct sockaddr_in) :
175 sizeof(struct sockaddr_in6), realhost,
176 sizeof(realhost), NULL, 0, 0) != 0) {
177 strncpy(realhost, host, sizeof(realhost));
178 }
179 }
180 /* We used the IPv4-only gethostbyname()... */
181 else
182 #endif
183 {
184 memcpy(&a, h->h_addr, sizeof(a));
185 /* This way we are always sure the h->h_name is valid :) */
186 strncpy(realhost, h->h_name, sizeof(realhost));
187 }
188 } else {
189 /*
190 * This must be a numeric IPv4 address because it caused a
191 * success return from inet_addr.
192 */
193 ret->family = AF_INET;
194 strncpy(realhost, host, sizeof(realhost));
195 }
196 ret->address = ntohl(a);
197 realhost[lenof(realhost)-1] = '\0';
198 *canonicalname = snewn(1+strlen(realhost), char);
199 strcpy(*canonicalname, realhost);
200 return ret;
201 }
202
203 SockAddr sk_nonamelookup(const char *host)
204 {
205 SockAddr ret = snew(struct SockAddr_tag);
206 ret->error = NULL;
207 ret->family = AF_UNSPEC;
208 strncpy(ret->hostname, host, lenof(ret->hostname));
209 ret->hostname[lenof(ret->hostname)-1] = '\0';
210 return ret;
211 }
212
213 void sk_getaddr(SockAddr addr, char *buf, int buflen)
214 {
215 #ifdef IPV6
216 if (addr->family == AF_INET6) {
217 FIXME; /* I don't know how to get a text form of an IPv6 address. */
218 } else
219 #endif
220 if (addr->family == AF_INET) {
221 struct in_addr a;
222 a.s_addr = htonl(addr->address);
223 strncpy(buf, inet_ntoa(a), buflen);
224 buf[buflen-1] = '\0';
225 } else {
226 assert(addr->family == AF_UNSPEC);
227 strncpy(buf, addr->hostname, buflen);
228 buf[buflen-1] = '\0';
229 }
230 }
231
232 int sk_hostname_is_local(char *name)
233 {
234 return !strcmp(name, "localhost");
235 }
236
237 int sk_address_is_local(SockAddr addr)
238 {
239 #ifdef IPV6
240 if (addr->family == AF_INET6) {
241 FIXME; /* someone who can compile for IPV6 had better do this bit */
242 } else
243 #endif
244 if (addr->family == AF_INET) {
245 struct in_addr a;
246 a.s_addr = htonl(addr->address);
247 return ipv4_is_loopback(a);
248 } else {
249 assert(addr->family == AF_UNSPEC);
250 return 0; /* we don't know; assume not */
251 }
252 }
253
254 int sk_addrtype(SockAddr addr)
255 {
256 return (addr->family == AF_INET ? ADDRTYPE_IPV4 :
257 #ifdef IPV6
258 addr->family == AF_INET6 ? ADDRTYPE_IPV6 :
259 #endif
260 ADDRTYPE_NAME);
261 }
262
263 void sk_addrcopy(SockAddr addr, char *buf)
264 {
265 assert(addr->family != AF_UNSPEC);
266 #ifdef IPV6
267 if (addr->family == AF_INET6) {
268 memcpy(buf, (char*) addr->ai, 16);
269 } else
270 #endif
271 if (addr->family == AF_INET) {
272 struct in_addr a;
273 a.s_addr = htonl(addr->address);
274 memcpy(buf, (char*) &a.s_addr, 4);
275 }
276 }
277
278 void sk_addr_free(SockAddr addr)
279 {
280 sfree(addr);
281 }
282
283 static Plug sk_tcp_plug(Socket sock, Plug p)
284 {
285 Actual_Socket s = (Actual_Socket) sock;
286 Plug ret = s->plug;
287 if (p)
288 s->plug = p;
289 return ret;
290 }
291
292 static void sk_tcp_flush(Socket s)
293 {
294 /*
295 * We send data to the socket as soon as we can anyway,
296 * so we don't need to do anything here. :-)
297 */
298 }
299
300 static void sk_tcp_close(Socket s);
301 static int sk_tcp_write(Socket s, const char *data, int len);
302 static int sk_tcp_write_oob(Socket s, const char *data, int len);
303 static void sk_tcp_set_private_ptr(Socket s, void *ptr);
304 static void *sk_tcp_get_private_ptr(Socket s);
305 static void sk_tcp_set_frozen(Socket s, int is_frozen);
306 static char *sk_tcp_socket_error(Socket s);
307
308 static struct socket_function_table tcp_fn_table = {
309 sk_tcp_plug,
310 sk_tcp_close,
311 sk_tcp_write,
312 sk_tcp_write_oob,
313 sk_tcp_flush,
314 sk_tcp_set_private_ptr,
315 sk_tcp_get_private_ptr,
316 sk_tcp_set_frozen,
317 sk_tcp_socket_error
318 };
319
320 Socket sk_register(void *sock, Plug plug)
321 {
322 Actual_Socket ret;
323
324 /*
325 * Create Socket structure.
326 */
327 ret = snew(struct Socket_tag);
328 ret->fn = &tcp_fn_table;
329 ret->error = NULL;
330 ret->plug = plug;
331 bufchain_init(&ret->output_data);
332 ret->writable = 1; /* to start with */
333 ret->sending_oob = 0;
334 ret->frozen = 1;
335 ret->frozen_readable = 0;
336 ret->localhost_only = 0; /* unused, but best init anyway */
337 ret->pending_error = 0;
338 ret->oobpending = FALSE;
339 ret->listener = 0;
340
341 ret->s = (int)sock;
342
343 if (ret->s < 0) {
344 ret->error = error_string(errno);
345 return (Socket) ret;
346 }
347
348 ret->oobinline = 0;
349
350 add234(sktree, ret);
351
352 return (Socket) ret;
353 }
354
355 Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
356 int nodelay, Plug plug)
357 {
358 int s;
359 #ifdef IPV6
360 struct sockaddr_in6 a6;
361 #endif
362 struct sockaddr_in a;
363 int err;
364 Actual_Socket ret;
365 short localport;
366
367 /*
368 * Create Socket structure.
369 */
370 ret = snew(struct Socket_tag);
371 ret->fn = &tcp_fn_table;
372 ret->error = NULL;
373 ret->plug = plug;
374 bufchain_init(&ret->output_data);
375 ret->connected = 0; /* to start with */
376 ret->writable = 0; /* to start with */
377 ret->sending_oob = 0;
378 ret->frozen = 0;
379 ret->frozen_readable = 0;
380 ret->localhost_only = 0; /* unused, but best init anyway */
381 ret->pending_error = 0;
382 ret->oobpending = FALSE;
383 ret->listener = 0;
384
385 /*
386 * Open socket.
387 */
388 assert(addr->family != AF_UNSPEC);
389 s = socket(addr->family, SOCK_STREAM, 0);
390 ret->s = s;
391
392 if (s < 0) {
393 ret->error = error_string(errno);
394 return (Socket) ret;
395 }
396
397 ret->oobinline = oobinline;
398 if (oobinline) {
399 int b = TRUE;
400 setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
401 }
402
403 if (nodelay) {
404 int b = TRUE;
405 setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
406 }
407
408 /*
409 * Bind to local address.
410 */
411 if (privport)
412 localport = 1023; /* count from 1023 downwards */
413 else
414 localport = 0; /* just use port 0 (ie kernel picks) */
415
416 /* Loop round trying to bind */
417 while (1) {
418 int retcode;
419
420 #ifdef IPV6
421 if (addr->family == AF_INET6) {
422 memset(&a6, 0, sizeof(a6));
423 a6.sin6_family = AF_INET6;
424 /*a6.sin6_addr = in6addr_any; *//* == 0 */
425 a6.sin6_port = htons(localport);
426 } else
427 #endif
428 {
429 a.sin_family = AF_INET;
430 a.sin_addr.s_addr = htonl(INADDR_ANY);
431 a.sin_port = htons(localport);
432 }
433 #ifdef IPV6
434 retcode = bind(s, (addr->family == AF_INET6 ?
435 (struct sockaddr *) &a6 :
436 (struct sockaddr *) &a),
437 (addr->family ==
438 AF_INET6 ? sizeof(a6) : sizeof(a)));
439 #else
440 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
441 #endif
442 if (retcode >= 0) {
443 err = 0;
444 break; /* done */
445 } else {
446 err = errno;
447 if (err != EADDRINUSE) /* failed, for a bad reason */
448 break;
449 }
450
451 if (localport == 0)
452 break; /* we're only looping once */
453 localport--;
454 if (localport == 0)
455 break; /* we might have got to the end */
456 }
457
458 if (err) {
459 ret->error = error_string(err);
460 return (Socket) ret;
461 }
462
463 /*
464 * Connect to remote address.
465 */
466 #ifdef IPV6
467 if (addr->family == AF_INET6) {
468 memset(&a, 0, sizeof(a));
469 a6.sin6_family = AF_INET6;
470 a6.sin6_port = htons((short) port);
471 a6.sin6_addr =
472 ((struct sockaddr_in6 *) addr->ai->ai_addr)->sin6_addr;
473 } else
474 #endif
475 {
476 a.sin_family = AF_INET;
477 a.sin_addr.s_addr = htonl(addr->address);
478 a.sin_port = htons((short) port);
479 }
480
481 {
482 int i = 1;
483 ioctl(s, FIONBIO, &i);
484 }
485
486 if ((
487 #ifdef IPV6
488 connect(s, ((addr->family == AF_INET6) ?
489 (struct sockaddr *) &a6 : (struct sockaddr *) &a),
490 (addr->family == AF_INET6) ? sizeof(a6) : sizeof(a))
491 #else
492 connect(s, (struct sockaddr *) &a, sizeof(a))
493 #endif
494 ) < 0) {
495 if ( errno != EINPROGRESS ) {
496 ret->error = error_string(errno);
497 return (Socket) ret;
498 }
499 } else {
500 /*
501 * If we _don't_ get EWOULDBLOCK, the connect has completed
502 * and we should set the socket as connected and writable.
503 */
504 ret->connected = 1;
505 ret->writable = 1;
506 }
507
508 add234(sktree, ret);
509
510 return (Socket) ret;
511 }
512
513 Socket sk_newlistener(char *srcaddr, int port, Plug plug, int local_host_only)
514 {
515 int s;
516 #ifdef IPV6
517 struct sockaddr_in6 a6;
518 #endif
519 struct sockaddr_in a;
520 int err;
521 Actual_Socket ret;
522 int retcode;
523 int on = 1;
524
525 /*
526 * Create Socket structure.
527 */
528 ret = snew(struct Socket_tag);
529 ret->fn = &tcp_fn_table;
530 ret->error = NULL;
531 ret->plug = plug;
532 bufchain_init(&ret->output_data);
533 ret->writable = 0; /* to start with */
534 ret->sending_oob = 0;
535 ret->frozen = 0;
536 ret->frozen_readable = 0;
537 ret->localhost_only = local_host_only;
538 ret->pending_error = 0;
539 ret->oobpending = FALSE;
540 ret->listener = 1;
541
542 /*
543 * Open socket.
544 */
545 s = socket(AF_INET, SOCK_STREAM, 0);
546 ret->s = s;
547
548 if (s < 0) {
549 ret->error = error_string(errno);
550 return (Socket) ret;
551 }
552
553 ret->oobinline = 0;
554
555 setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
556
557 #ifdef IPV6
558 if (addr->family == AF_INET6) {
559 memset(&a6, 0, sizeof(a6));
560 a6.sin6_family = AF_INET6;
561 /* FIXME: srcaddr is ignored for IPv6, because I (SGT) don't
562 * know how to do it. :-) */
563 if (local_host_only)
564 a6.sin6_addr = in6addr_loopback;
565 else
566 a6.sin6_addr = in6addr_any;
567 a6.sin6_port = htons(port);
568 } else
569 #endif
570 {
571 int got_addr = 0;
572 a.sin_family = AF_INET;
573
574 /*
575 * Bind to source address. First try an explicitly
576 * specified one...
577 */
578 if (srcaddr) {
579 a.sin_addr.s_addr = inet_addr(srcaddr);
580 if (a.sin_addr.s_addr != INADDR_NONE) {
581 /* Override localhost_only with specified listen addr. */
582 ret->localhost_only = ipv4_is_loopback(a.sin_addr);
583 got_addr = 1;
584 }
585 }
586
587 /*
588 * ... and failing that, go with one of the standard ones.
589 */
590 if (!got_addr) {
591 if (local_host_only)
592 a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
593 else
594 a.sin_addr.s_addr = htonl(INADDR_ANY);
595 }
596
597 a.sin_port = htons((short)port);
598 }
599 #ifdef IPV6
600 retcode = bind(s, (addr->family == AF_INET6 ?
601 (struct sockaddr *) &a6 :
602 (struct sockaddr *) &a),
603 (addr->family ==
604 AF_INET6 ? sizeof(a6) : sizeof(a)));
605 #else
606 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
607 #endif
608 if (retcode >= 0) {
609 err = 0;
610 } else {
611 err = errno;
612 }
613
614 if (err) {
615 ret->error = error_string(err);
616 return (Socket) ret;
617 }
618
619
620 if (listen(s, SOMAXCONN) < 0) {
621 close(s);
622 ret->error = error_string(errno);
623 return (Socket) ret;
624 }
625
626 add234(sktree, ret);
627
628 return (Socket) ret;
629 }
630
631 static void sk_tcp_close(Socket sock)
632 {
633 Actual_Socket s = (Actual_Socket) sock;
634
635 del234(sktree, s);
636 close(s->s);
637 sfree(s);
638 }
639
640 int sk_getxdmdata(void *sock, unsigned long *ip, int *port)
641 {
642 Actual_Socket s = (Actual_Socket) sock;
643 struct sockaddr_in addr;
644 socklen_t addrlen;
645
646 /*
647 * We must check that this socket really _is_ an Actual_Socket.
648 */
649 if (s->fn != &tcp_fn_table)
650 return 0; /* failure */
651
652 /*
653 * If we ever implement connecting to a local X server through
654 * a Unix socket, we return 0xFFFFFFFF for the IP address and
655 * our current pid for the port. Bizarre, but such is life.
656 */
657
658 addrlen = sizeof(addr);
659 if (getsockname(s->s, (struct sockaddr *)&addr, &addrlen) < 0 ||
660 addr.sin_family != AF_INET)
661 return 0;
662
663 *ip = ntohl(addr.sin_addr.s_addr);
664 *port = ntohs(addr.sin_port);
665
666 return 1;
667 }
668
669 /*
670 * The function which tries to send on a socket once it's deemed
671 * writable.
672 */
673 void try_send(Actual_Socket s)
674 {
675 while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
676 int nsent;
677 int err;
678 void *data;
679 int len, urgentflag;
680
681 if (s->sending_oob) {
682 urgentflag = MSG_OOB;
683 len = s->sending_oob;
684 data = &s->oobdata;
685 } else {
686 urgentflag = 0;
687 bufchain_prefix(&s->output_data, &data, &len);
688 }
689 nsent = send(s->s, data, len, urgentflag);
690 noise_ultralight(nsent);
691 if (nsent <= 0) {
692 err = (nsent < 0 ? errno : 0);
693 if (err == EWOULDBLOCK) {
694 /*
695 * Perfectly normal: we've sent all we can for the moment.
696 */
697 s->writable = FALSE;
698 return;
699 } else if (nsent == 0 ||
700 err == ECONNABORTED || err == ECONNRESET) {
701 /*
702 * If send() returns CONNABORTED or CONNRESET, we
703 * unfortunately can't just call plug_closing(),
704 * because it's quite likely that we're currently
705 * _in_ a call from the code we'd be calling back
706 * to, so we'd have to make half the SSH code
707 * reentrant. Instead we flag a pending error on
708 * the socket, to be dealt with (by calling
709 * plug_closing()) at some suitable future moment.
710 */
711 s->pending_error = err;
712 return;
713 } else {
714 /* We're inside the Unix frontend here, so we know
715 * that the frontend handle is unnecessary. */
716 logevent(NULL, error_string(err));
717 fatalbox("%s", error_string(err));
718 }
719 } else {
720 if (s->sending_oob) {
721 if (nsent < len) {
722 memmove(s->oobdata, s->oobdata+nsent, len-nsent);
723 s->sending_oob = len - nsent;
724 } else {
725 s->sending_oob = 0;
726 }
727 } else {
728 bufchain_consume(&s->output_data, nsent);
729 }
730 }
731 }
732 }
733
734 static int sk_tcp_write(Socket sock, const char *buf, int len)
735 {
736 Actual_Socket s = (Actual_Socket) sock;
737
738 /*
739 * Add the data to the buffer list on the socket.
740 */
741 bufchain_add(&s->output_data, buf, len);
742
743 /*
744 * Now try sending from the start of the buffer list.
745 */
746 if (s->writable)
747 try_send(s);
748
749 return bufchain_size(&s->output_data);
750 }
751
752 static int sk_tcp_write_oob(Socket sock, const char *buf, int len)
753 {
754 Actual_Socket s = (Actual_Socket) sock;
755
756 /*
757 * Replace the buffer list on the socket with the data.
758 */
759 bufchain_clear(&s->output_data);
760 assert(len <= sizeof(s->oobdata));
761 memcpy(s->oobdata, buf, len);
762 s->sending_oob = len;
763
764 /*
765 * Now try sending from the start of the buffer list.
766 */
767 if (s->writable)
768 try_send(s);
769
770 return s->sending_oob;
771 }
772
773 int select_result(int fd, int event)
774 {
775 int ret;
776 int err;
777 char buf[20480]; /* nice big buffer for plenty of speed */
778 Actual_Socket s;
779 u_long atmark;
780
781 /* Find the Socket structure */
782 s = find234(sktree, (void *) fd, cmpforsearch);
783 if (!s)
784 return 1; /* boggle */
785
786 noise_ultralight(event);
787
788 switch (event) {
789 case 4: /* exceptional */
790 if (!s->oobinline) {
791 /*
792 * On a non-oobinline socket, this indicates that we
793 * can immediately perform an OOB read and get back OOB
794 * data, which we will send to the back end with
795 * type==2 (urgent data).
796 */
797 ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
798 noise_ultralight(ret);
799 if (ret <= 0) {
800 char *str = (ret == 0 ? "Internal networking trouble" :
801 error_string(errno));
802 /* We're inside the Unix frontend here, so we know
803 * that the frontend handle is unnecessary. */
804 logevent(NULL, str);
805 fatalbox("%s", str);
806 } else {
807 return plug_receive(s->plug, 2, buf, ret);
808 }
809 break;
810 }
811
812 /*
813 * If we reach here, this is an oobinline socket, which
814 * means we should set s->oobpending and then deal with it
815 * when we get called for the readability event (which
816 * should also occur).
817 */
818 s->oobpending = TRUE;
819 break;
820 case 1: /* readable; also acceptance */
821 if (s->listener) {
822 /*
823 * On a listening socket, the readability event means a
824 * connection is ready to be accepted.
825 */
826 struct sockaddr_in isa;
827 int addrlen = sizeof(struct sockaddr_in);
828 int t; /* socket of connection */
829
830 memset(&isa, 0, sizeof(struct sockaddr_in));
831 err = 0;
832 t = accept(s->s,(struct sockaddr *)&isa,&addrlen);
833 if (t < 0) {
834 break;
835 }
836
837 if (s->localhost_only && !ipv4_is_loopback(isa.sin_addr)) {
838 close(t); /* someone let nonlocal through?! */
839 } else if (plug_accepting(s->plug, (void*)t)) {
840 close(t); /* denied or error */
841 }
842 break;
843 }
844
845 /*
846 * If we reach here, this is not a listening socket, so
847 * readability really means readability.
848 */
849
850 /* In the case the socket is still frozen, we don't even bother */
851 if (s->frozen) {
852 s->frozen_readable = 1;
853 break;
854 }
855
856 /*
857 * We have received data on the socket. For an oobinline
858 * socket, this might be data _before_ an urgent pointer,
859 * in which case we send it to the back end with type==1
860 * (data prior to urgent).
861 */
862 if (s->oobinline && s->oobpending) {
863 atmark = 1;
864 if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
865 s->oobpending = FALSE; /* clear this indicator */
866 } else
867 atmark = 1;
868
869 ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
870 noise_ultralight(ret);
871 if (ret < 0) {
872 if (errno == EWOULDBLOCK) {
873 break;
874 }
875 }
876 if (ret < 0) {
877 return plug_closing(s->plug, error_string(errno), errno, 0);
878 } else if (0 == ret) {
879 return plug_closing(s->plug, NULL, 0, 0);
880 } else {
881 return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
882 }
883 break;
884 case 2: /* writable */
885 if (!s->connected) {
886 /*
887 * select() reports a socket as _writable_ when an
888 * asynchronous connection is completed.
889 */
890 s->connected = s->writable = 1;
891 break;
892 } else {
893 int bufsize_before, bufsize_after;
894 s->writable = 1;
895 bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
896 try_send(s);
897 bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
898 if (bufsize_after < bufsize_before)
899 plug_sent(s->plug, bufsize_after);
900 }
901 break;
902 }
903
904 return 1;
905 }
906
907 /*
908 * Deal with socket errors detected in try_send().
909 */
910 void net_pending_errors(void)
911 {
912 int i;
913 Actual_Socket s;
914
915 /*
916 * This might be a fiddly business, because it's just possible
917 * that handling a pending error on one socket might cause
918 * others to be closed. (I can't think of any reason this might
919 * happen in current SSH implementation, but to maintain
920 * generality of this network layer I'll assume the worst.)
921 *
922 * So what we'll do is search the socket list for _one_ socket
923 * with a pending error, and then handle it, and then search
924 * the list again _from the beginning_. Repeat until we make a
925 * pass with no socket errors present. That way we are
926 * protected against the socket list changing under our feet.
927 */
928
929 do {
930 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
931 if (s->pending_error) {
932 /*
933 * An error has occurred on this socket. Pass it to the
934 * plug.
935 */
936 plug_closing(s->plug, error_string(s->pending_error),
937 s->pending_error, 0);
938 break;
939 }
940 }
941 } while (s);
942 }
943
944 /*
945 * Each socket abstraction contains a `void *' private field in
946 * which the client can keep state.
947 */
948 static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
949 {
950 Actual_Socket s = (Actual_Socket) sock;
951 s->private_ptr = ptr;
952 }
953
954 static void *sk_tcp_get_private_ptr(Socket sock)
955 {
956 Actual_Socket s = (Actual_Socket) sock;
957 return s->private_ptr;
958 }
959
960 /*
961 * Special error values are returned from sk_namelookup and sk_new
962 * if there's a problem. These functions extract an error message,
963 * or return NULL if there's no problem.
964 */
965 char *sk_addr_error(SockAddr addr)
966 {
967 return addr->error;
968 }
969 static char *sk_tcp_socket_error(Socket sock)
970 {
971 Actual_Socket s = (Actual_Socket) sock;
972 return s->error;
973 }
974
975 static void sk_tcp_set_frozen(Socket sock, int is_frozen)
976 {
977 Actual_Socket s = (Actual_Socket) sock;
978 if (s->frozen == is_frozen)
979 return;
980 s->frozen = is_frozen;
981 if (!is_frozen && s->frozen_readable) {
982 char c;
983 recv(s->s, &c, 1, MSG_PEEK);
984 }
985 s->frozen_readable = 0;
986 }
987
988 /*
989 * For Unix select()-based frontends: enumerate all sockets
990 * currently active, and state whether we currently wish to receive
991 * select events on them for reading, writing and exceptional
992 * status.
993 */
994 static void set_rwx(Actual_Socket s, int *rwx)
995 {
996 int val = 0;
997 if (!s->connected)
998 val |= 2; /* write == connect */
999 if (s->connected && !s->frozen)
1000 val |= 1 | 4; /* read, except */
1001 if (bufchain_size(&s->output_data))
1002 val |= 2; /* write */
1003 if (s->listener)
1004 val |= 1; /* read == accept */
1005 *rwx = val;
1006 }
1007
1008 int first_socket(int *state, int *rwx)
1009 {
1010 Actual_Socket s;
1011 *state = 0;
1012 s = index234(sktree, (*state)++);
1013 if (s)
1014 set_rwx(s, rwx);
1015 return s ? s->s : -1;
1016 }
1017
1018 int next_socket(int *state, int *rwx)
1019 {
1020 Actual_Socket s = index234(sktree, (*state)++);
1021 if (s)
1022 set_rwx(s, rwx);
1023 return s ? s->s : -1;
1024 }
1025
1026 int net_service_lookup(char *service)
1027 {
1028 struct servent *se;
1029 se = getservbyname(service, NULL);
1030 if (se != NULL)
1031 return ntohs(se->s_port);
1032 else
1033 return 0;
1034 }