Add some appropriate bignum typedefs for generic 64-bit systems,
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Compute c = a * b.
164 * Input is in the first len words of a and b.
165 * Result is returned in the first 2*len words of c.
166 */
167 static void internal_mul(BignumInt *a, BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i, j;
171 BignumDblInt t;
172
173 for (j = 0; j < 2 * len; j++)
174 c[j] = 0;
175
176 for (i = len - 1; i >= 0; i--) {
177 t = 0;
178 for (j = len - 1; j >= 0; j--) {
179 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
180 t += (BignumDblInt) c[i + j + 1];
181 c[i + j + 1] = (BignumInt) t;
182 t = t >> BIGNUM_INT_BITS;
183 }
184 c[i] = (BignumInt) t;
185 }
186 }
187
188 static void internal_add_shifted(BignumInt *number,
189 unsigned n, int shift)
190 {
191 int word = 1 + (shift / BIGNUM_INT_BITS);
192 int bshift = shift % BIGNUM_INT_BITS;
193 BignumDblInt addend;
194
195 addend = (BignumDblInt)n << bshift;
196
197 while (addend) {
198 addend += number[word];
199 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
200 addend >>= BIGNUM_INT_BITS;
201 word++;
202 }
203 }
204
205 /*
206 * Compute a = a % m.
207 * Input in first alen words of a and first mlen words of m.
208 * Output in first alen words of a
209 * (of which first alen-mlen words will be zero).
210 * The MSW of m MUST have its high bit set.
211 * Quotient is accumulated in the `quotient' array, which is a Bignum
212 * rather than the internal bigendian format. Quotient parts are shifted
213 * left by `qshift' before adding into quot.
214 */
215 static void internal_mod(BignumInt *a, int alen,
216 BignumInt *m, int mlen,
217 BignumInt *quot, int qshift)
218 {
219 BignumInt m0, m1;
220 unsigned int h;
221 int i, k;
222
223 m0 = m[0];
224 if (mlen > 1)
225 m1 = m[1];
226 else
227 m1 = 0;
228
229 for (i = 0; i <= alen - mlen; i++) {
230 BignumDblInt t;
231 unsigned int q, r, c, ai1;
232
233 if (i == 0) {
234 h = 0;
235 } else {
236 h = a[i - 1];
237 a[i - 1] = 0;
238 }
239
240 if (i == alen - 1)
241 ai1 = 0;
242 else
243 ai1 = a[i + 1];
244
245 /* Find q = h:a[i] / m0 */
246 if (h >= m0) {
247 /*
248 * Special case.
249 *
250 * To illustrate it, suppose a BignumInt is 8 bits, and
251 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
252 * our initial division will be 0xA123 / 0xA1, which
253 * will give a quotient of 0x100 and a divide overflow.
254 * However, the invariants in this division algorithm
255 * are not violated, since the full number A1:23:... is
256 * _less_ than the quotient prefix A1:B2:... and so the
257 * following correction loop would have sorted it out.
258 *
259 * In this situation we set q to be the largest
260 * quotient we _can_ stomach (0xFF, of course).
261 */
262 q = BIGNUM_INT_MASK;
263 } else {
264 /* Macro doesn't want an array subscript expression passed
265 * into it (see definition), so use a temporary. */
266 BignumInt tmplo = a[i];
267 DIVMOD_WORD(q, r, h, tmplo, m0);
268
269 /* Refine our estimate of q by looking at
270 h:a[i]:a[i+1] / m0:m1 */
271 t = MUL_WORD(m1, q);
272 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
273 q--;
274 t -= m1;
275 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
276 if (r >= (BignumDblInt) m0 &&
277 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
278 }
279 }
280
281 /* Subtract q * m from a[i...] */
282 c = 0;
283 for (k = mlen - 1; k >= 0; k--) {
284 t = MUL_WORD(q, m[k]);
285 t += c;
286 c = (unsigned)(t >> BIGNUM_INT_BITS);
287 if ((BignumInt) t > a[i + k])
288 c++;
289 a[i + k] -= (BignumInt) t;
290 }
291
292 /* Add back m in case of borrow */
293 if (c != h) {
294 t = 0;
295 for (k = mlen - 1; k >= 0; k--) {
296 t += m[k];
297 t += a[i + k];
298 a[i + k] = (BignumInt) t;
299 t = t >> BIGNUM_INT_BITS;
300 }
301 q--;
302 }
303 if (quot)
304 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
305 }
306 }
307
308 /*
309 * Compute (base ^ exp) % mod.
310 */
311 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
312 {
313 BignumInt *a, *b, *n, *m;
314 int mshift;
315 int mlen, i, j;
316 Bignum base, result;
317
318 /*
319 * The most significant word of mod needs to be non-zero. It
320 * should already be, but let's make sure.
321 */
322 assert(mod[mod[0]] != 0);
323
324 /*
325 * Make sure the base is smaller than the modulus, by reducing
326 * it modulo the modulus if not.
327 */
328 base = bigmod(base_in, mod);
329
330 /* Allocate m of size mlen, copy mod to m */
331 /* We use big endian internally */
332 mlen = mod[0];
333 m = snewn(mlen, BignumInt);
334 for (j = 0; j < mlen; j++)
335 m[j] = mod[mod[0] - j];
336
337 /* Shift m left to make msb bit set */
338 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
339 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
340 break;
341 if (mshift) {
342 for (i = 0; i < mlen - 1; i++)
343 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
344 m[mlen - 1] = m[mlen - 1] << mshift;
345 }
346
347 /* Allocate n of size mlen, copy base to n */
348 n = snewn(mlen, BignumInt);
349 i = mlen - base[0];
350 for (j = 0; j < i; j++)
351 n[j] = 0;
352 for (j = 0; j < (int)base[0]; j++)
353 n[i + j] = base[base[0] - j];
354
355 /* Allocate a and b of size 2*mlen. Set a = 1 */
356 a = snewn(2 * mlen, BignumInt);
357 b = snewn(2 * mlen, BignumInt);
358 for (i = 0; i < 2 * mlen; i++)
359 a[i] = 0;
360 a[2 * mlen - 1] = 1;
361
362 /* Skip leading zero bits of exp. */
363 i = 0;
364 j = BIGNUM_INT_BITS-1;
365 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
366 j--;
367 if (j < 0) {
368 i++;
369 j = BIGNUM_INT_BITS-1;
370 }
371 }
372
373 /* Main computation */
374 while (i < (int)exp[0]) {
375 while (j >= 0) {
376 internal_mul(a + mlen, a + mlen, b, mlen);
377 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
378 if ((exp[exp[0] - i] & (1 << j)) != 0) {
379 internal_mul(b + mlen, n, a, mlen);
380 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
381 } else {
382 BignumInt *t;
383 t = a;
384 a = b;
385 b = t;
386 }
387 j--;
388 }
389 i++;
390 j = BIGNUM_INT_BITS-1;
391 }
392
393 /* Fixup result in case the modulus was shifted */
394 if (mshift) {
395 for (i = mlen - 1; i < 2 * mlen - 1; i++)
396 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
397 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
398 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
399 for (i = 2 * mlen - 1; i >= mlen; i--)
400 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
401 }
402
403 /* Copy result to buffer */
404 result = newbn(mod[0]);
405 for (i = 0; i < mlen; i++)
406 result[result[0] - i] = a[i + mlen];
407 while (result[0] > 1 && result[result[0]] == 0)
408 result[0]--;
409
410 /* Free temporary arrays */
411 for (i = 0; i < 2 * mlen; i++)
412 a[i] = 0;
413 sfree(a);
414 for (i = 0; i < 2 * mlen; i++)
415 b[i] = 0;
416 sfree(b);
417 for (i = 0; i < mlen; i++)
418 m[i] = 0;
419 sfree(m);
420 for (i = 0; i < mlen; i++)
421 n[i] = 0;
422 sfree(n);
423
424 freebn(base);
425
426 return result;
427 }
428
429 /*
430 * Compute (p * q) % mod.
431 * The most significant word of mod MUST be non-zero.
432 * We assume that the result array is the same size as the mod array.
433 */
434 Bignum modmul(Bignum p, Bignum q, Bignum mod)
435 {
436 BignumInt *a, *n, *m, *o;
437 int mshift;
438 int pqlen, mlen, rlen, i, j;
439 Bignum result;
440
441 /* Allocate m of size mlen, copy mod to m */
442 /* We use big endian internally */
443 mlen = mod[0];
444 m = snewn(mlen, BignumInt);
445 for (j = 0; j < mlen; j++)
446 m[j] = mod[mod[0] - j];
447
448 /* Shift m left to make msb bit set */
449 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
450 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
451 break;
452 if (mshift) {
453 for (i = 0; i < mlen - 1; i++)
454 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
455 m[mlen - 1] = m[mlen - 1] << mshift;
456 }
457
458 pqlen = (p[0] > q[0] ? p[0] : q[0]);
459
460 /* Allocate n of size pqlen, copy p to n */
461 n = snewn(pqlen, BignumInt);
462 i = pqlen - p[0];
463 for (j = 0; j < i; j++)
464 n[j] = 0;
465 for (j = 0; j < (int)p[0]; j++)
466 n[i + j] = p[p[0] - j];
467
468 /* Allocate o of size pqlen, copy q to o */
469 o = snewn(pqlen, BignumInt);
470 i = pqlen - q[0];
471 for (j = 0; j < i; j++)
472 o[j] = 0;
473 for (j = 0; j < (int)q[0]; j++)
474 o[i + j] = q[q[0] - j];
475
476 /* Allocate a of size 2*pqlen for result */
477 a = snewn(2 * pqlen, BignumInt);
478
479 /* Main computation */
480 internal_mul(n, o, a, pqlen);
481 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
482
483 /* Fixup result in case the modulus was shifted */
484 if (mshift) {
485 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
486 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
487 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
488 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
489 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
490 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
491 }
492
493 /* Copy result to buffer */
494 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
495 result = newbn(rlen);
496 for (i = 0; i < rlen; i++)
497 result[result[0] - i] = a[i + 2 * pqlen - rlen];
498 while (result[0] > 1 && result[result[0]] == 0)
499 result[0]--;
500
501 /* Free temporary arrays */
502 for (i = 0; i < 2 * pqlen; i++)
503 a[i] = 0;
504 sfree(a);
505 for (i = 0; i < mlen; i++)
506 m[i] = 0;
507 sfree(m);
508 for (i = 0; i < pqlen; i++)
509 n[i] = 0;
510 sfree(n);
511 for (i = 0; i < pqlen; i++)
512 o[i] = 0;
513 sfree(o);
514
515 return result;
516 }
517
518 /*
519 * Compute p % mod.
520 * The most significant word of mod MUST be non-zero.
521 * We assume that the result array is the same size as the mod array.
522 * We optionally write out a quotient if `quotient' is non-NULL.
523 * We can avoid writing out the result if `result' is NULL.
524 */
525 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
526 {
527 BignumInt *n, *m;
528 int mshift;
529 int plen, mlen, i, j;
530
531 /* Allocate m of size mlen, copy mod to m */
532 /* We use big endian internally */
533 mlen = mod[0];
534 m = snewn(mlen, BignumInt);
535 for (j = 0; j < mlen; j++)
536 m[j] = mod[mod[0] - j];
537
538 /* Shift m left to make msb bit set */
539 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
540 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
541 break;
542 if (mshift) {
543 for (i = 0; i < mlen - 1; i++)
544 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
545 m[mlen - 1] = m[mlen - 1] << mshift;
546 }
547
548 plen = p[0];
549 /* Ensure plen > mlen */
550 if (plen <= mlen)
551 plen = mlen + 1;
552
553 /* Allocate n of size plen, copy p to n */
554 n = snewn(plen, BignumInt);
555 for (j = 0; j < plen; j++)
556 n[j] = 0;
557 for (j = 1; j <= (int)p[0]; j++)
558 n[plen - j] = p[j];
559
560 /* Main computation */
561 internal_mod(n, plen, m, mlen, quotient, mshift);
562
563 /* Fixup result in case the modulus was shifted */
564 if (mshift) {
565 for (i = plen - mlen - 1; i < plen - 1; i++)
566 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
567 n[plen - 1] = n[plen - 1] << mshift;
568 internal_mod(n, plen, m, mlen, quotient, 0);
569 for (i = plen - 1; i >= plen - mlen; i--)
570 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
571 }
572
573 /* Copy result to buffer */
574 if (result) {
575 for (i = 1; i <= (int)result[0]; i++) {
576 int j = plen - i;
577 result[i] = j >= 0 ? n[j] : 0;
578 }
579 }
580
581 /* Free temporary arrays */
582 for (i = 0; i < mlen; i++)
583 m[i] = 0;
584 sfree(m);
585 for (i = 0; i < plen; i++)
586 n[i] = 0;
587 sfree(n);
588 }
589
590 /*
591 * Decrement a number.
592 */
593 void decbn(Bignum bn)
594 {
595 int i = 1;
596 while (i < (int)bn[0] && bn[i] == 0)
597 bn[i++] = BIGNUM_INT_MASK;
598 bn[i]--;
599 }
600
601 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
602 {
603 Bignum result;
604 int w, i;
605
606 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
607
608 result = newbn(w);
609 for (i = 1; i <= w; i++)
610 result[i] = 0;
611 for (i = nbytes; i--;) {
612 unsigned char byte = *data++;
613 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
614 }
615
616 while (result[0] > 1 && result[result[0]] == 0)
617 result[0]--;
618 return result;
619 }
620
621 /*
622 * Read an SSH-1-format bignum from a data buffer. Return the number
623 * of bytes consumed, or -1 if there wasn't enough data.
624 */
625 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
626 {
627 const unsigned char *p = data;
628 int i;
629 int w, b;
630
631 if (len < 2)
632 return -1;
633
634 w = 0;
635 for (i = 0; i < 2; i++)
636 w = (w << 8) + *p++;
637 b = (w + 7) / 8; /* bits -> bytes */
638
639 if (len < b+2)
640 return -1;
641
642 if (!result) /* just return length */
643 return b + 2;
644
645 *result = bignum_from_bytes(p, b);
646
647 return p + b - data;
648 }
649
650 /*
651 * Return the bit count of a bignum, for SSH-1 encoding.
652 */
653 int bignum_bitcount(Bignum bn)
654 {
655 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
656 while (bitcount >= 0
657 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
658 return bitcount + 1;
659 }
660
661 /*
662 * Return the byte length of a bignum when SSH-1 encoded.
663 */
664 int ssh1_bignum_length(Bignum bn)
665 {
666 return 2 + (bignum_bitcount(bn) + 7) / 8;
667 }
668
669 /*
670 * Return the byte length of a bignum when SSH-2 encoded.
671 */
672 int ssh2_bignum_length(Bignum bn)
673 {
674 return 4 + (bignum_bitcount(bn) + 8) / 8;
675 }
676
677 /*
678 * Return a byte from a bignum; 0 is least significant, etc.
679 */
680 int bignum_byte(Bignum bn, int i)
681 {
682 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
683 return 0; /* beyond the end */
684 else
685 return (bn[i / BIGNUM_INT_BYTES + 1] >>
686 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
687 }
688
689 /*
690 * Return a bit from a bignum; 0 is least significant, etc.
691 */
692 int bignum_bit(Bignum bn, int i)
693 {
694 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
695 return 0; /* beyond the end */
696 else
697 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
698 }
699
700 /*
701 * Set a bit in a bignum; 0 is least significant, etc.
702 */
703 void bignum_set_bit(Bignum bn, int bitnum, int value)
704 {
705 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
706 abort(); /* beyond the end */
707 else {
708 int v = bitnum / BIGNUM_INT_BITS + 1;
709 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
710 if (value)
711 bn[v] |= mask;
712 else
713 bn[v] &= ~mask;
714 }
715 }
716
717 /*
718 * Write a SSH-1-format bignum into a buffer. It is assumed the
719 * buffer is big enough. Returns the number of bytes used.
720 */
721 int ssh1_write_bignum(void *data, Bignum bn)
722 {
723 unsigned char *p = data;
724 int len = ssh1_bignum_length(bn);
725 int i;
726 int bitc = bignum_bitcount(bn);
727
728 *p++ = (bitc >> 8) & 0xFF;
729 *p++ = (bitc) & 0xFF;
730 for (i = len - 2; i--;)
731 *p++ = bignum_byte(bn, i);
732 return len;
733 }
734
735 /*
736 * Compare two bignums. Returns like strcmp.
737 */
738 int bignum_cmp(Bignum a, Bignum b)
739 {
740 int amax = a[0], bmax = b[0];
741 int i = (amax > bmax ? amax : bmax);
742 while (i) {
743 BignumInt aval = (i > amax ? 0 : a[i]);
744 BignumInt bval = (i > bmax ? 0 : b[i]);
745 if (aval < bval)
746 return -1;
747 if (aval > bval)
748 return +1;
749 i--;
750 }
751 return 0;
752 }
753
754 /*
755 * Right-shift one bignum to form another.
756 */
757 Bignum bignum_rshift(Bignum a, int shift)
758 {
759 Bignum ret;
760 int i, shiftw, shiftb, shiftbb, bits;
761 BignumInt ai, ai1;
762
763 bits = bignum_bitcount(a) - shift;
764 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
765
766 if (ret) {
767 shiftw = shift / BIGNUM_INT_BITS;
768 shiftb = shift % BIGNUM_INT_BITS;
769 shiftbb = BIGNUM_INT_BITS - shiftb;
770
771 ai1 = a[shiftw + 1];
772 for (i = 1; i <= (int)ret[0]; i++) {
773 ai = ai1;
774 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
775 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
776 }
777 }
778
779 return ret;
780 }
781
782 /*
783 * Non-modular multiplication and addition.
784 */
785 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
786 {
787 int alen = a[0], blen = b[0];
788 int mlen = (alen > blen ? alen : blen);
789 int rlen, i, maxspot;
790 BignumInt *workspace;
791 Bignum ret;
792
793 /* mlen space for a, mlen space for b, 2*mlen for result */
794 workspace = snewn(mlen * 4, BignumInt);
795 for (i = 0; i < mlen; i++) {
796 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
797 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
798 }
799
800 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
801 workspace + 2 * mlen, mlen);
802
803 /* now just copy the result back */
804 rlen = alen + blen + 1;
805 if (addend && rlen <= (int)addend[0])
806 rlen = addend[0] + 1;
807 ret = newbn(rlen);
808 maxspot = 0;
809 for (i = 1; i <= (int)ret[0]; i++) {
810 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
811 if (ret[i] != 0)
812 maxspot = i;
813 }
814 ret[0] = maxspot;
815
816 /* now add in the addend, if any */
817 if (addend) {
818 BignumDblInt carry = 0;
819 for (i = 1; i <= rlen; i++) {
820 carry += (i <= (int)ret[0] ? ret[i] : 0);
821 carry += (i <= (int)addend[0] ? addend[i] : 0);
822 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
823 carry >>= BIGNUM_INT_BITS;
824 if (ret[i] != 0 && i > maxspot)
825 maxspot = i;
826 }
827 }
828 ret[0] = maxspot;
829
830 sfree(workspace);
831 return ret;
832 }
833
834 /*
835 * Non-modular multiplication.
836 */
837 Bignum bigmul(Bignum a, Bignum b)
838 {
839 return bigmuladd(a, b, NULL);
840 }
841
842 /*
843 * Create a bignum which is the bitmask covering another one. That
844 * is, the smallest integer which is >= N and is also one less than
845 * a power of two.
846 */
847 Bignum bignum_bitmask(Bignum n)
848 {
849 Bignum ret = copybn(n);
850 int i;
851 BignumInt j;
852
853 i = ret[0];
854 while (n[i] == 0 && i > 0)
855 i--;
856 if (i <= 0)
857 return ret; /* input was zero */
858 j = 1;
859 while (j < n[i])
860 j = 2 * j + 1;
861 ret[i] = j;
862 while (--i > 0)
863 ret[i] = BIGNUM_INT_MASK;
864 return ret;
865 }
866
867 /*
868 * Convert a (max 32-bit) long into a bignum.
869 */
870 Bignum bignum_from_long(unsigned long nn)
871 {
872 Bignum ret;
873 BignumDblInt n = nn;
874
875 ret = newbn(3);
876 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
877 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
878 ret[3] = 0;
879 ret[0] = (ret[2] ? 2 : 1);
880 return ret;
881 }
882
883 /*
884 * Add a long to a bignum.
885 */
886 Bignum bignum_add_long(Bignum number, unsigned long addendx)
887 {
888 Bignum ret = newbn(number[0] + 1);
889 int i, maxspot = 0;
890 BignumDblInt carry = 0, addend = addendx;
891
892 for (i = 1; i <= (int)ret[0]; i++) {
893 carry += addend & BIGNUM_INT_MASK;
894 carry += (i <= (int)number[0] ? number[i] : 0);
895 addend >>= BIGNUM_INT_BITS;
896 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
897 carry >>= BIGNUM_INT_BITS;
898 if (ret[i] != 0)
899 maxspot = i;
900 }
901 ret[0] = maxspot;
902 return ret;
903 }
904
905 /*
906 * Compute the residue of a bignum, modulo a (max 16-bit) short.
907 */
908 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
909 {
910 BignumDblInt mod, r;
911 int i;
912
913 r = 0;
914 mod = modulus;
915 for (i = number[0]; i > 0; i--)
916 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
917 return (unsigned short) r;
918 }
919
920 #ifdef DEBUG
921 void diagbn(char *prefix, Bignum md)
922 {
923 int i, nibbles, morenibbles;
924 static const char hex[] = "0123456789ABCDEF";
925
926 debug(("%s0x", prefix ? prefix : ""));
927
928 nibbles = (3 + bignum_bitcount(md)) / 4;
929 if (nibbles < 1)
930 nibbles = 1;
931 morenibbles = 4 * md[0] - nibbles;
932 for (i = 0; i < morenibbles; i++)
933 debug(("-"));
934 for (i = nibbles; i--;)
935 debug(("%c",
936 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
937
938 if (prefix)
939 debug(("\n"));
940 }
941 #endif
942
943 /*
944 * Simple division.
945 */
946 Bignum bigdiv(Bignum a, Bignum b)
947 {
948 Bignum q = newbn(a[0]);
949 bigdivmod(a, b, NULL, q);
950 return q;
951 }
952
953 /*
954 * Simple remainder.
955 */
956 Bignum bigmod(Bignum a, Bignum b)
957 {
958 Bignum r = newbn(b[0]);
959 bigdivmod(a, b, r, NULL);
960 return r;
961 }
962
963 /*
964 * Greatest common divisor.
965 */
966 Bignum biggcd(Bignum av, Bignum bv)
967 {
968 Bignum a = copybn(av);
969 Bignum b = copybn(bv);
970
971 while (bignum_cmp(b, Zero) != 0) {
972 Bignum t = newbn(b[0]);
973 bigdivmod(a, b, t, NULL);
974 while (t[0] > 1 && t[t[0]] == 0)
975 t[0]--;
976 freebn(a);
977 a = b;
978 b = t;
979 }
980
981 freebn(b);
982 return a;
983 }
984
985 /*
986 * Modular inverse, using Euclid's extended algorithm.
987 */
988 Bignum modinv(Bignum number, Bignum modulus)
989 {
990 Bignum a = copybn(modulus);
991 Bignum b = copybn(number);
992 Bignum xp = copybn(Zero);
993 Bignum x = copybn(One);
994 int sign = +1;
995
996 while (bignum_cmp(b, One) != 0) {
997 Bignum t = newbn(b[0]);
998 Bignum q = newbn(a[0]);
999 bigdivmod(a, b, t, q);
1000 while (t[0] > 1 && t[t[0]] == 0)
1001 t[0]--;
1002 freebn(a);
1003 a = b;
1004 b = t;
1005 t = xp;
1006 xp = x;
1007 x = bigmuladd(q, xp, t);
1008 sign = -sign;
1009 freebn(t);
1010 freebn(q);
1011 }
1012
1013 freebn(b);
1014 freebn(a);
1015 freebn(xp);
1016
1017 /* now we know that sign * x == 1, and that x < modulus */
1018 if (sign < 0) {
1019 /* set a new x to be modulus - x */
1020 Bignum newx = newbn(modulus[0]);
1021 BignumInt carry = 0;
1022 int maxspot = 1;
1023 int i;
1024
1025 for (i = 1; i <= (int)newx[0]; i++) {
1026 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1027 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1028 newx[i] = aword - bword - carry;
1029 bword = ~bword;
1030 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1031 if (newx[i] != 0)
1032 maxspot = i;
1033 }
1034 newx[0] = maxspot;
1035 freebn(x);
1036 x = newx;
1037 }
1038
1039 /* and return. */
1040 return x;
1041 }
1042
1043 /*
1044 * Render a bignum into decimal. Return a malloced string holding
1045 * the decimal representation.
1046 */
1047 char *bignum_decimal(Bignum x)
1048 {
1049 int ndigits, ndigit;
1050 int i, iszero;
1051 BignumDblInt carry;
1052 char *ret;
1053 BignumInt *workspace;
1054
1055 /*
1056 * First, estimate the number of digits. Since log(10)/log(2)
1057 * is just greater than 93/28 (the joys of continued fraction
1058 * approximations...) we know that for every 93 bits, we need
1059 * at most 28 digits. This will tell us how much to malloc.
1060 *
1061 * Formally: if x has i bits, that means x is strictly less
1062 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1063 * 10^(28i/93). We need an integer power of ten, so we must
1064 * round up (rounding down might make it less than x again).
1065 * Therefore if we multiply the bit count by 28/93, rounding
1066 * up, we will have enough digits.
1067 *
1068 * i=0 (i.e., x=0) is an irritating special case.
1069 */
1070 i = bignum_bitcount(x);
1071 if (!i)
1072 ndigits = 1; /* x = 0 */
1073 else
1074 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1075 ndigits++; /* allow for trailing \0 */
1076 ret = snewn(ndigits, char);
1077
1078 /*
1079 * Now allocate some workspace to hold the binary form as we
1080 * repeatedly divide it by ten. Initialise this to the
1081 * big-endian form of the number.
1082 */
1083 workspace = snewn(x[0], BignumInt);
1084 for (i = 0; i < (int)x[0]; i++)
1085 workspace[i] = x[x[0] - i];
1086
1087 /*
1088 * Next, write the decimal number starting with the last digit.
1089 * We use ordinary short division, dividing 10 into the
1090 * workspace.
1091 */
1092 ndigit = ndigits - 1;
1093 ret[ndigit] = '\0';
1094 do {
1095 iszero = 1;
1096 carry = 0;
1097 for (i = 0; i < (int)x[0]; i++) {
1098 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1099 workspace[i] = (BignumInt) (carry / 10);
1100 if (workspace[i])
1101 iszero = 0;
1102 carry %= 10;
1103 }
1104 ret[--ndigit] = (char) (carry + '0');
1105 } while (!iszero);
1106
1107 /*
1108 * There's a chance we've fallen short of the start of the
1109 * string. Correct if so.
1110 */
1111 if (ndigit > 0)
1112 memmove(ret, ret + ndigit, ndigits - ndigit);
1113
1114 /*
1115 * Done.
1116 */
1117 sfree(workspace);
1118 return ret;
1119 }