Run entire source base through GNU indent to tidy up the varying
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8
9 #if 0 // use PuTTY main debugging for diagbn()
10 #include <windows.h>
11 #include "putty.h"
12 #define debugprint debug
13 #else
14 #define debugprint(x) printf x
15 #endif
16
17 #define BIGNUM_INTERNAL
18 typedef unsigned short *Bignum;
19
20 #include "ssh.h"
21
22 unsigned short bnZero[1] = { 0 };
23 unsigned short bnOne[2] = { 1, 1 };
24
25 /*
26 * The Bignum format is an array of `unsigned short'. The first
27 * element of the array counts the remaining elements. The
28 * remaining elements express the actual number, base 2^16, _least_
29 * significant digit first. (So it's trivial to extract the bit
30 * with value 2^n for any n.)
31 *
32 * All Bignums in this module are positive. Negative numbers must
33 * be dealt with outside it.
34 *
35 * INVARIANT: the most significant word of any Bignum must be
36 * nonzero.
37 */
38
39 Bignum Zero = bnZero, One = bnOne;
40
41 static Bignum newbn(int length)
42 {
43 Bignum b = smalloc((length + 1) * sizeof(unsigned short));
44 if (!b)
45 abort(); /* FIXME */
46 memset(b, 0, (length + 1) * sizeof(*b));
47 b[0] = length;
48 return b;
49 }
50
51 void bn_restore_invariant(Bignum b)
52 {
53 while (b[0] > 1 && b[b[0]] == 0)
54 b[0]--;
55 }
56
57 Bignum copybn(Bignum orig)
58 {
59 Bignum b = smalloc((orig[0] + 1) * sizeof(unsigned short));
60 if (!b)
61 abort(); /* FIXME */
62 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
63 return b;
64 }
65
66 void freebn(Bignum b)
67 {
68 /*
69 * Burn the evidence, just in case.
70 */
71 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
72 sfree(b);
73 }
74
75 Bignum bn_power_2(int n)
76 {
77 Bignum ret = newbn(n / 16 + 1);
78 bignum_set_bit(ret, n, 1);
79 return ret;
80 }
81
82 /*
83 * Compute c = a * b.
84 * Input is in the first len words of a and b.
85 * Result is returned in the first 2*len words of c.
86 */
87 static void internal_mul(unsigned short *a, unsigned short *b,
88 unsigned short *c, int len)
89 {
90 int i, j;
91 unsigned long ai, t;
92
93 for (j = 0; j < 2 * len; j++)
94 c[j] = 0;
95
96 for (i = len - 1; i >= 0; i--) {
97 ai = a[i];
98 t = 0;
99 for (j = len - 1; j >= 0; j--) {
100 t += ai * (unsigned long) b[j];
101 t += (unsigned long) c[i + j + 1];
102 c[i + j + 1] = (unsigned short) t;
103 t = t >> 16;
104 }
105 c[i] = (unsigned short) t;
106 }
107 }
108
109 static void internal_add_shifted(unsigned short *number,
110 unsigned n, int shift)
111 {
112 int word = 1 + (shift / 16);
113 int bshift = shift % 16;
114 unsigned long addend;
115
116 addend = n << bshift;
117
118 while (addend) {
119 addend += number[word];
120 number[word] = (unsigned short) addend & 0xFFFF;
121 addend >>= 16;
122 word++;
123 }
124 }
125
126 /*
127 * Compute a = a % m.
128 * Input in first alen words of a and first mlen words of m.
129 * Output in first alen words of a
130 * (of which first alen-mlen words will be zero).
131 * The MSW of m MUST have its high bit set.
132 * Quotient is accumulated in the `quotient' array, which is a Bignum
133 * rather than the internal bigendian format. Quotient parts are shifted
134 * left by `qshift' before adding into quot.
135 */
136 static void internal_mod(unsigned short *a, int alen,
137 unsigned short *m, int mlen,
138 unsigned short *quot, int qshift)
139 {
140 unsigned short m0, m1;
141 unsigned int h;
142 int i, k;
143
144 m0 = m[0];
145 if (mlen > 1)
146 m1 = m[1];
147 else
148 m1 = 0;
149
150 for (i = 0; i <= alen - mlen; i++) {
151 unsigned long t;
152 unsigned int q, r, c, ai1;
153
154 if (i == 0) {
155 h = 0;
156 } else {
157 h = a[i - 1];
158 a[i - 1] = 0;
159 }
160
161 if (i == alen - 1)
162 ai1 = 0;
163 else
164 ai1 = a[i + 1];
165
166 /* Find q = h:a[i] / m0 */
167 t = ((unsigned long) h << 16) + a[i];
168 q = t / m0;
169 r = t % m0;
170
171 /* Refine our estimate of q by looking at
172 h:a[i]:a[i+1] / m0:m1 */
173 t = (long) m1 *(long) q;
174 if (t > ((unsigned long) r << 16) + ai1) {
175 q--;
176 t -= m1;
177 r = (r + m0) & 0xffff; /* overflow? */
178 if (r >= (unsigned long) m0 &&
179 t > ((unsigned long) r << 16) + ai1) q--;
180 }
181
182 /* Subtract q * m from a[i...] */
183 c = 0;
184 for (k = mlen - 1; k >= 0; k--) {
185 t = (long) q *(long) m[k];
186 t += c;
187 c = t >> 16;
188 if ((unsigned short) t > a[i + k])
189 c++;
190 a[i + k] -= (unsigned short) t;
191 }
192
193 /* Add back m in case of borrow */
194 if (c != h) {
195 t = 0;
196 for (k = mlen - 1; k >= 0; k--) {
197 t += m[k];
198 t += a[i + k];
199 a[i + k] = (unsigned short) t;
200 t = t >> 16;
201 }
202 q--;
203 }
204 if (quot)
205 internal_add_shifted(quot, q, qshift + 16 * (alen - mlen - i));
206 }
207 }
208
209 /*
210 * Compute (base ^ exp) % mod.
211 * The base MUST be smaller than the modulus.
212 * The most significant word of mod MUST be non-zero.
213 * We assume that the result array is the same size as the mod array.
214 */
215 Bignum modpow(Bignum base, Bignum exp, Bignum mod)
216 {
217 unsigned short *a, *b, *n, *m;
218 int mshift;
219 int mlen, i, j;
220 Bignum result;
221
222 /* Allocate m of size mlen, copy mod to m */
223 /* We use big endian internally */
224 mlen = mod[0];
225 m = smalloc(mlen * sizeof(unsigned short));
226 for (j = 0; j < mlen; j++)
227 m[j] = mod[mod[0] - j];
228
229 /* Shift m left to make msb bit set */
230 for (mshift = 0; mshift < 15; mshift++)
231 if ((m[0] << mshift) & 0x8000)
232 break;
233 if (mshift) {
234 for (i = 0; i < mlen - 1; i++)
235 m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift));
236 m[mlen - 1] = m[mlen - 1] << mshift;
237 }
238
239 /* Allocate n of size mlen, copy base to n */
240 n = smalloc(mlen * sizeof(unsigned short));
241 i = mlen - base[0];
242 for (j = 0; j < i; j++)
243 n[j] = 0;
244 for (j = 0; j < base[0]; j++)
245 n[i + j] = base[base[0] - j];
246
247 /* Allocate a and b of size 2*mlen. Set a = 1 */
248 a = smalloc(2 * mlen * sizeof(unsigned short));
249 b = smalloc(2 * mlen * sizeof(unsigned short));
250 for (i = 0; i < 2 * mlen; i++)
251 a[i] = 0;
252 a[2 * mlen - 1] = 1;
253
254 /* Skip leading zero bits of exp. */
255 i = 0;
256 j = 15;
257 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
258 j--;
259 if (j < 0) {
260 i++;
261 j = 15;
262 }
263 }
264
265 /* Main computation */
266 while (i < exp[0]) {
267 while (j >= 0) {
268 internal_mul(a + mlen, a + mlen, b, mlen);
269 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
270 if ((exp[exp[0] - i] & (1 << j)) != 0) {
271 internal_mul(b + mlen, n, a, mlen);
272 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
273 } else {
274 unsigned short *t;
275 t = a;
276 a = b;
277 b = t;
278 }
279 j--;
280 }
281 i++;
282 j = 15;
283 }
284
285 /* Fixup result in case the modulus was shifted */
286 if (mshift) {
287 for (i = mlen - 1; i < 2 * mlen - 1; i++)
288 a[i] = (a[i] << mshift) | (a[i + 1] >> (16 - mshift));
289 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
290 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
291 for (i = 2 * mlen - 1; i >= mlen; i--)
292 a[i] = (a[i] >> mshift) | (a[i - 1] << (16 - mshift));
293 }
294
295 /* Copy result to buffer */
296 result = newbn(mod[0]);
297 for (i = 0; i < mlen; i++)
298 result[result[0] - i] = a[i + mlen];
299 while (result[0] > 1 && result[result[0]] == 0)
300 result[0]--;
301
302 /* Free temporary arrays */
303 for (i = 0; i < 2 * mlen; i++)
304 a[i] = 0;
305 sfree(a);
306 for (i = 0; i < 2 * mlen; i++)
307 b[i] = 0;
308 sfree(b);
309 for (i = 0; i < mlen; i++)
310 m[i] = 0;
311 sfree(m);
312 for (i = 0; i < mlen; i++)
313 n[i] = 0;
314 sfree(n);
315
316 return result;
317 }
318
319 /*
320 * Compute (p * q) % mod.
321 * The most significant word of mod MUST be non-zero.
322 * We assume that the result array is the same size as the mod array.
323 */
324 Bignum modmul(Bignum p, Bignum q, Bignum mod)
325 {
326 unsigned short *a, *n, *m, *o;
327 int mshift;
328 int pqlen, mlen, rlen, i, j;
329 Bignum result;
330
331 /* Allocate m of size mlen, copy mod to m */
332 /* We use big endian internally */
333 mlen = mod[0];
334 m = smalloc(mlen * sizeof(unsigned short));
335 for (j = 0; j < mlen; j++)
336 m[j] = mod[mod[0] - j];
337
338 /* Shift m left to make msb bit set */
339 for (mshift = 0; mshift < 15; mshift++)
340 if ((m[0] << mshift) & 0x8000)
341 break;
342 if (mshift) {
343 for (i = 0; i < mlen - 1; i++)
344 m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift));
345 m[mlen - 1] = m[mlen - 1] << mshift;
346 }
347
348 pqlen = (p[0] > q[0] ? p[0] : q[0]);
349
350 /* Allocate n of size pqlen, copy p to n */
351 n = smalloc(pqlen * sizeof(unsigned short));
352 i = pqlen - p[0];
353 for (j = 0; j < i; j++)
354 n[j] = 0;
355 for (j = 0; j < p[0]; j++)
356 n[i + j] = p[p[0] - j];
357
358 /* Allocate o of size pqlen, copy q to o */
359 o = smalloc(pqlen * sizeof(unsigned short));
360 i = pqlen - q[0];
361 for (j = 0; j < i; j++)
362 o[j] = 0;
363 for (j = 0; j < q[0]; j++)
364 o[i + j] = q[q[0] - j];
365
366 /* Allocate a of size 2*pqlen for result */
367 a = smalloc(2 * pqlen * sizeof(unsigned short));
368
369 /* Main computation */
370 internal_mul(n, o, a, pqlen);
371 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
372
373 /* Fixup result in case the modulus was shifted */
374 if (mshift) {
375 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
376 a[i] = (a[i] << mshift) | (a[i + 1] >> (16 - mshift));
377 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
378 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
379 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
380 a[i] = (a[i] >> mshift) | (a[i - 1] << (16 - mshift));
381 }
382
383 /* Copy result to buffer */
384 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
385 result = newbn(rlen);
386 for (i = 0; i < rlen; i++)
387 result[result[0] - i] = a[i + 2 * pqlen - rlen];
388 while (result[0] > 1 && result[result[0]] == 0)
389 result[0]--;
390
391 /* Free temporary arrays */
392 for (i = 0; i < 2 * pqlen; i++)
393 a[i] = 0;
394 sfree(a);
395 for (i = 0; i < mlen; i++)
396 m[i] = 0;
397 sfree(m);
398 for (i = 0; i < pqlen; i++)
399 n[i] = 0;
400 sfree(n);
401 for (i = 0; i < pqlen; i++)
402 o[i] = 0;
403 sfree(o);
404
405 return result;
406 }
407
408 /*
409 * Compute p % mod.
410 * The most significant word of mod MUST be non-zero.
411 * We assume that the result array is the same size as the mod array.
412 * We optionally write out a quotient.
413 */
414 void bigmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
415 {
416 unsigned short *n, *m;
417 int mshift;
418 int plen, mlen, i, j;
419
420 /* Allocate m of size mlen, copy mod to m */
421 /* We use big endian internally */
422 mlen = mod[0];
423 m = smalloc(mlen * sizeof(unsigned short));
424 for (j = 0; j < mlen; j++)
425 m[j] = mod[mod[0] - j];
426
427 /* Shift m left to make msb bit set */
428 for (mshift = 0; mshift < 15; mshift++)
429 if ((m[0] << mshift) & 0x8000)
430 break;
431 if (mshift) {
432 for (i = 0; i < mlen - 1; i++)
433 m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift));
434 m[mlen - 1] = m[mlen - 1] << mshift;
435 }
436
437 plen = p[0];
438 /* Ensure plen > mlen */
439 if (plen <= mlen)
440 plen = mlen + 1;
441
442 /* Allocate n of size plen, copy p to n */
443 n = smalloc(plen * sizeof(unsigned short));
444 for (j = 0; j < plen; j++)
445 n[j] = 0;
446 for (j = 1; j <= p[0]; j++)
447 n[plen - j] = p[j];
448
449 /* Main computation */
450 internal_mod(n, plen, m, mlen, quotient, mshift);
451
452 /* Fixup result in case the modulus was shifted */
453 if (mshift) {
454 for (i = plen - mlen - 1; i < plen - 1; i++)
455 n[i] = (n[i] << mshift) | (n[i + 1] >> (16 - mshift));
456 n[plen - 1] = n[plen - 1] << mshift;
457 internal_mod(n, plen, m, mlen, quotient, 0);
458 for (i = plen - 1; i >= plen - mlen; i--)
459 n[i] = (n[i] >> mshift) | (n[i - 1] << (16 - mshift));
460 }
461
462 /* Copy result to buffer */
463 for (i = 1; i <= result[0]; i++) {
464 int j = plen - i;
465 result[i] = j >= 0 ? n[j] : 0;
466 }
467
468 /* Free temporary arrays */
469 for (i = 0; i < mlen; i++)
470 m[i] = 0;
471 sfree(m);
472 for (i = 0; i < plen; i++)
473 n[i] = 0;
474 sfree(n);
475 }
476
477 /*
478 * Decrement a number.
479 */
480 void decbn(Bignum bn)
481 {
482 int i = 1;
483 while (i < bn[0] && bn[i] == 0)
484 bn[i++] = 0xFFFF;
485 bn[i]--;
486 }
487
488 Bignum bignum_from_bytes(unsigned char *data, int nbytes)
489 {
490 Bignum result;
491 int w, i;
492
493 w = (nbytes + 1) / 2; /* bytes -> words */
494
495 result = newbn(w);
496 for (i = 1; i <= w; i++)
497 result[i] = 0;
498 for (i = nbytes; i--;) {
499 unsigned char byte = *data++;
500 if (i & 1)
501 result[1 + i / 2] |= byte << 8;
502 else
503 result[1 + i / 2] |= byte;
504 }
505
506 while (result[0] > 1 && result[result[0]] == 0)
507 result[0]--;
508 return result;
509 }
510
511 /*
512 * Read an ssh1-format bignum from a data buffer. Return the number
513 * of bytes consumed.
514 */
515 int ssh1_read_bignum(unsigned char *data, Bignum * result)
516 {
517 unsigned char *p = data;
518 int i;
519 int w, b;
520
521 w = 0;
522 for (i = 0; i < 2; i++)
523 w = (w << 8) + *p++;
524 b = (w + 7) / 8; /* bits -> bytes */
525
526 if (!result) /* just return length */
527 return b + 2;
528
529 *result = bignum_from_bytes(p, b);
530
531 return p + b - data;
532 }
533
534 /*
535 * Return the bit count of a bignum, for ssh1 encoding.
536 */
537 int bignum_bitcount(Bignum bn)
538 {
539 int bitcount = bn[0] * 16 - 1;
540 while (bitcount >= 0
541 && (bn[bitcount / 16 + 1] >> (bitcount % 16)) == 0) bitcount--;
542 return bitcount + 1;
543 }
544
545 /*
546 * Return the byte length of a bignum when ssh1 encoded.
547 */
548 int ssh1_bignum_length(Bignum bn)
549 {
550 return 2 + (bignum_bitcount(bn) + 7) / 8;
551 }
552
553 /*
554 * Return the byte length of a bignum when ssh2 encoded.
555 */
556 int ssh2_bignum_length(Bignum bn)
557 {
558 return 4 + (bignum_bitcount(bn) + 8) / 8;
559 }
560
561 /*
562 * Return a byte from a bignum; 0 is least significant, etc.
563 */
564 int bignum_byte(Bignum bn, int i)
565 {
566 if (i >= 2 * bn[0])
567 return 0; /* beyond the end */
568 else if (i & 1)
569 return (bn[i / 2 + 1] >> 8) & 0xFF;
570 else
571 return (bn[i / 2 + 1]) & 0xFF;
572 }
573
574 /*
575 * Return a bit from a bignum; 0 is least significant, etc.
576 */
577 int bignum_bit(Bignum bn, int i)
578 {
579 if (i >= 16 * bn[0])
580 return 0; /* beyond the end */
581 else
582 return (bn[i / 16 + 1] >> (i % 16)) & 1;
583 }
584
585 /*
586 * Set a bit in a bignum; 0 is least significant, etc.
587 */
588 void bignum_set_bit(Bignum bn, int bitnum, int value)
589 {
590 if (bitnum >= 16 * bn[0])
591 abort(); /* beyond the end */
592 else {
593 int v = bitnum / 16 + 1;
594 int mask = 1 << (bitnum % 16);
595 if (value)
596 bn[v] |= mask;
597 else
598 bn[v] &= ~mask;
599 }
600 }
601
602 /*
603 * Write a ssh1-format bignum into a buffer. It is assumed the
604 * buffer is big enough. Returns the number of bytes used.
605 */
606 int ssh1_write_bignum(void *data, Bignum bn)
607 {
608 unsigned char *p = data;
609 int len = ssh1_bignum_length(bn);
610 int i;
611 int bitc = bignum_bitcount(bn);
612
613 *p++ = (bitc >> 8) & 0xFF;
614 *p++ = (bitc) & 0xFF;
615 for (i = len - 2; i--;)
616 *p++ = bignum_byte(bn, i);
617 return len;
618 }
619
620 /*
621 * Compare two bignums. Returns like strcmp.
622 */
623 int bignum_cmp(Bignum a, Bignum b)
624 {
625 int amax = a[0], bmax = b[0];
626 int i = (amax > bmax ? amax : bmax);
627 while (i) {
628 unsigned short aval = (i > amax ? 0 : a[i]);
629 unsigned short bval = (i > bmax ? 0 : b[i]);
630 if (aval < bval)
631 return -1;
632 if (aval > bval)
633 return +1;
634 i--;
635 }
636 return 0;
637 }
638
639 /*
640 * Right-shift one bignum to form another.
641 */
642 Bignum bignum_rshift(Bignum a, int shift)
643 {
644 Bignum ret;
645 int i, shiftw, shiftb, shiftbb, bits;
646 unsigned short ai, ai1;
647
648 bits = bignum_bitcount(a) - shift;
649 ret = newbn((bits + 15) / 16);
650
651 if (ret) {
652 shiftw = shift / 16;
653 shiftb = shift % 16;
654 shiftbb = 16 - shiftb;
655
656 ai1 = a[shiftw + 1];
657 for (i = 1; i <= ret[0]; i++) {
658 ai = ai1;
659 ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0);
660 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & 0xFFFF;
661 }
662 }
663
664 return ret;
665 }
666
667 /*
668 * Non-modular multiplication and addition.
669 */
670 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
671 {
672 int alen = a[0], blen = b[0];
673 int mlen = (alen > blen ? alen : blen);
674 int rlen, i, maxspot;
675 unsigned short *workspace;
676 Bignum ret;
677
678 /* mlen space for a, mlen space for b, 2*mlen for result */
679 workspace = smalloc(mlen * 4 * sizeof(unsigned short));
680 for (i = 0; i < mlen; i++) {
681 workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0);
682 workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0);
683 }
684
685 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
686 workspace + 2 * mlen, mlen);
687
688 /* now just copy the result back */
689 rlen = alen + blen + 1;
690 if (addend && rlen <= addend[0])
691 rlen = addend[0] + 1;
692 ret = newbn(rlen);
693 maxspot = 0;
694 for (i = 1; i <= ret[0]; i++) {
695 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
696 if (ret[i] != 0)
697 maxspot = i;
698 }
699 ret[0] = maxspot;
700
701 /* now add in the addend, if any */
702 if (addend) {
703 unsigned long carry = 0;
704 for (i = 1; i <= rlen; i++) {
705 carry += (i <= ret[0] ? ret[i] : 0);
706 carry += (i <= addend[0] ? addend[i] : 0);
707 ret[i] = (unsigned short) carry & 0xFFFF;
708 carry >>= 16;
709 if (ret[i] != 0 && i > maxspot)
710 maxspot = i;
711 }
712 }
713 ret[0] = maxspot;
714
715 return ret;
716 }
717
718 /*
719 * Non-modular multiplication.
720 */
721 Bignum bigmul(Bignum a, Bignum b)
722 {
723 return bigmuladd(a, b, NULL);
724 }
725
726 /*
727 * Create a bignum which is the bitmask covering another one. That
728 * is, the smallest integer which is >= N and is also one less than
729 * a power of two.
730 */
731 Bignum bignum_bitmask(Bignum n)
732 {
733 Bignum ret = copybn(n);
734 int i;
735 unsigned short j;
736
737 i = ret[0];
738 while (n[i] == 0 && i > 0)
739 i--;
740 if (i <= 0)
741 return ret; /* input was zero */
742 j = 1;
743 while (j < n[i])
744 j = 2 * j + 1;
745 ret[i] = j;
746 while (--i > 0)
747 ret[i] = 0xFFFF;
748 return ret;
749 }
750
751 /*
752 * Convert a (max 16-bit) short into a bignum.
753 */
754 Bignum bignum_from_short(unsigned short n)
755 {
756 Bignum ret;
757
758 ret = newbn(2);
759 ret[1] = n & 0xFFFF;
760 ret[2] = (n >> 16) & 0xFFFF;
761 ret[0] = (ret[2] ? 2 : 1);
762 return ret;
763 }
764
765 /*
766 * Add a long to a bignum.
767 */
768 Bignum bignum_add_long(Bignum number, unsigned long addend)
769 {
770 Bignum ret = newbn(number[0] + 1);
771 int i, maxspot = 0;
772 unsigned long carry = 0;
773
774 for (i = 1; i <= ret[0]; i++) {
775 carry += addend & 0xFFFF;
776 carry += (i <= number[0] ? number[i] : 0);
777 addend >>= 16;
778 ret[i] = (unsigned short) carry & 0xFFFF;
779 carry >>= 16;
780 if (ret[i] != 0)
781 maxspot = i;
782 }
783 ret[0] = maxspot;
784 return ret;
785 }
786
787 /*
788 * Compute the residue of a bignum, modulo a (max 16-bit) short.
789 */
790 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
791 {
792 unsigned long mod, r;
793 int i;
794
795 r = 0;
796 mod = modulus;
797 for (i = number[0]; i > 0; i--)
798 r = (r * 65536 + number[i]) % mod;
799 return (unsigned short) r;
800 }
801
802 void diagbn(char *prefix, Bignum md)
803 {
804 int i, nibbles, morenibbles;
805 static const char hex[] = "0123456789ABCDEF";
806
807 debugprint(("%s0x", prefix ? prefix : ""));
808
809 nibbles = (3 + bignum_bitcount(md)) / 4;
810 if (nibbles < 1)
811 nibbles = 1;
812 morenibbles = 4 * md[0] - nibbles;
813 for (i = 0; i < morenibbles; i++)
814 debugprint(("-"));
815 for (i = nibbles; i--;)
816 debugprint(
817 ("%c",
818 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
819
820 if (prefix)
821 debugprint(("\n"));
822 }
823
824 /*
825 * Greatest common divisor.
826 */
827 Bignum biggcd(Bignum av, Bignum bv)
828 {
829 Bignum a = copybn(av);
830 Bignum b = copybn(bv);
831
832 diagbn("a = ", a);
833 diagbn("b = ", b);
834 while (bignum_cmp(b, Zero) != 0) {
835 Bignum t = newbn(b[0]);
836 bigmod(a, b, t, NULL);
837 diagbn("t = ", t);
838 while (t[0] > 1 && t[t[0]] == 0)
839 t[0]--;
840 freebn(a);
841 a = b;
842 b = t;
843 }
844
845 freebn(b);
846 return a;
847 }
848
849 /*
850 * Modular inverse, using Euclid's extended algorithm.
851 */
852 Bignum modinv(Bignum number, Bignum modulus)
853 {
854 Bignum a = copybn(modulus);
855 Bignum b = copybn(number);
856 Bignum xp = copybn(Zero);
857 Bignum x = copybn(One);
858 int sign = +1;
859
860 while (bignum_cmp(b, One) != 0) {
861 Bignum t = newbn(b[0]);
862 Bignum q = newbn(a[0]);
863 bigmod(a, b, t, q);
864 while (t[0] > 1 && t[t[0]] == 0)
865 t[0]--;
866 freebn(a);
867 a = b;
868 b = t;
869 t = xp;
870 xp = x;
871 x = bigmuladd(q, xp, t);
872 sign = -sign;
873 freebn(t);
874 }
875
876 freebn(b);
877 freebn(a);
878 freebn(xp);
879
880 /* now we know that sign * x == 1, and that x < modulus */
881 if (sign < 0) {
882 /* set a new x to be modulus - x */
883 Bignum newx = newbn(modulus[0]);
884 unsigned short carry = 0;
885 int maxspot = 1;
886 int i;
887
888 for (i = 1; i <= newx[0]; i++) {
889 unsigned short aword = (i <= modulus[0] ? modulus[i] : 0);
890 unsigned short bword = (i <= x[0] ? x[i] : 0);
891 newx[i] = aword - bword - carry;
892 bword = ~bword;
893 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
894 if (newx[i] != 0)
895 maxspot = i;
896 }
897 newx[0] = maxspot;
898 freebn(x);
899 x = newx;
900 }
901
902 /* and return. */
903 return x;
904 }
905
906 /*
907 * Render a bignum into decimal. Return a malloced string holding
908 * the decimal representation.
909 */
910 char *bignum_decimal(Bignum x)
911 {
912 int ndigits, ndigit;
913 int i, iszero;
914 unsigned long carry;
915 char *ret;
916 unsigned short *workspace;
917
918 /*
919 * First, estimate the number of digits. Since log(10)/log(2)
920 * is just greater than 93/28 (the joys of continued fraction
921 * approximations...) we know that for every 93 bits, we need
922 * at most 28 digits. This will tell us how much to malloc.
923 *
924 * Formally: if x has i bits, that means x is strictly less
925 * than 2^i. Since 2 is less than 10^(28/93), this is less than
926 * 10^(28i/93). We need an integer power of ten, so we must
927 * round up (rounding down might make it less than x again).
928 * Therefore if we multiply the bit count by 28/93, rounding
929 * up, we will have enough digits.
930 */
931 i = bignum_bitcount(x);
932 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
933 ndigits++; /* allow for trailing \0 */
934 ret = smalloc(ndigits);
935
936 /*
937 * Now allocate some workspace to hold the binary form as we
938 * repeatedly divide it by ten. Initialise this to the
939 * big-endian form of the number.
940 */
941 workspace = smalloc(sizeof(unsigned short) * x[0]);
942 for (i = 0; i < x[0]; i++)
943 workspace[i] = x[x[0] - i];
944
945 /*
946 * Next, write the decimal number starting with the last digit.
947 * We use ordinary short division, dividing 10 into the
948 * workspace.
949 */
950 ndigit = ndigits - 1;
951 ret[ndigit] = '\0';
952 do {
953 iszero = 1;
954 carry = 0;
955 for (i = 0; i < x[0]; i++) {
956 carry = (carry << 16) + workspace[i];
957 workspace[i] = (unsigned short) (carry / 10);
958 if (workspace[i])
959 iszero = 0;
960 carry %= 10;
961 }
962 ret[--ndigit] = (char) (carry + '0');
963 } while (!iszero);
964
965 /*
966 * There's a chance we've fallen short of the start of the
967 * string. Correct if so.
968 */
969 if (ndigit > 0)
970 memmove(ret, ret + ndigit, ndigits - ndigit);
971
972 /*
973 * Done.
974 */
975 return ret;
976 }