An MSVC version of the 16->32-bit bignum optimisation, derived from part of
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 #if defined __GNUC__ && defined __i386__
13 typedef unsigned long BignumInt;
14 typedef unsigned long long BignumDblInt;
15 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
16 #define BIGNUM_TOP_BIT 0x80000000UL
17 #define BIGNUM_INT_BITS 32
18 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
19 #define DIVMOD_WORD(q, r, hi, lo, w) \
20 __asm__("div %2" : \
21 "=d" (r), "=a" (q) : \
22 "r" (w), "d" (hi), "a" (lo))
23 #elif defined _MSC_VER && defined _M_IX86
24 typedef unsigned __int32 BignumInt;
25 typedef unsigned __int64 BignumDblInt;
26 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
27 #define BIGNUM_TOP_BIT 0x80000000UL
28 #define BIGNUM_INT_BITS 32
29 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
30 typedef struct {
31 unsigned __int32 quot;
32 unsigned __int32 remd;
33 } msvc_quorem;
34 static __declspec(naked) msvc_quorem __stdcall msvc_divmod(
35 unsigned __int32 hi,
36 unsigned __int32 lo,
37 unsigned __int32 w)
38 {
39 __asm {
40 mov edx, dword ptr [esp+4]
41 mov eax, dword ptr [esp+8]
42 div dword ptr [esp+12]
43 ret 12
44 };
45 }
46 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
47 const msvc_quorem qr = msvc_divmod((hi), (lo), (w)); \
48 (q) = qr.quot; (r) = qr.remd; \
49 } while (0)
50 #else
51 typedef unsigned short BignumInt;
52 typedef unsigned long BignumDblInt;
53 #define BIGNUM_INT_MASK 0xFFFFU
54 #define BIGNUM_TOP_BIT 0x8000U
55 #define BIGNUM_INT_BITS 16
56 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
57 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
58 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
59 q = n / w; \
60 r = n % w; \
61 } while (0)
62 #endif
63
64 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
65
66 #define BIGNUM_INTERNAL
67 typedef BignumInt *Bignum;
68
69 #include "ssh.h"
70
71 BignumInt bnZero[1] = { 0 };
72 BignumInt bnOne[2] = { 1, 1 };
73
74 /*
75 * The Bignum format is an array of `BignumInt'. The first
76 * element of the array counts the remaining elements. The
77 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
78 * significant digit first. (So it's trivial to extract the bit
79 * with value 2^n for any n.)
80 *
81 * All Bignums in this module are positive. Negative numbers must
82 * be dealt with outside it.
83 *
84 * INVARIANT: the most significant word of any Bignum must be
85 * nonzero.
86 */
87
88 Bignum Zero = bnZero, One = bnOne;
89
90 static Bignum newbn(int length)
91 {
92 Bignum b = snewn(length + 1, BignumInt);
93 if (!b)
94 abort(); /* FIXME */
95 memset(b, 0, (length + 1) * sizeof(*b));
96 b[0] = length;
97 return b;
98 }
99
100 void bn_restore_invariant(Bignum b)
101 {
102 while (b[0] > 1 && b[b[0]] == 0)
103 b[0]--;
104 }
105
106 Bignum copybn(Bignum orig)
107 {
108 Bignum b = snewn(orig[0] + 1, BignumInt);
109 if (!b)
110 abort(); /* FIXME */
111 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
112 return b;
113 }
114
115 void freebn(Bignum b)
116 {
117 /*
118 * Burn the evidence, just in case.
119 */
120 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
121 sfree(b);
122 }
123
124 Bignum bn_power_2(int n)
125 {
126 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
127 bignum_set_bit(ret, n, 1);
128 return ret;
129 }
130
131 /*
132 * Compute c = a * b.
133 * Input is in the first len words of a and b.
134 * Result is returned in the first 2*len words of c.
135 */
136 static void internal_mul(BignumInt *a, BignumInt *b,
137 BignumInt *c, int len)
138 {
139 int i, j;
140 BignumDblInt t;
141
142 for (j = 0; j < 2 * len; j++)
143 c[j] = 0;
144
145 for (i = len - 1; i >= 0; i--) {
146 t = 0;
147 for (j = len - 1; j >= 0; j--) {
148 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
149 t += (BignumDblInt) c[i + j + 1];
150 c[i + j + 1] = (BignumInt) t;
151 t = t >> BIGNUM_INT_BITS;
152 }
153 c[i] = (BignumInt) t;
154 }
155 }
156
157 static void internal_add_shifted(BignumInt *number,
158 unsigned n, int shift)
159 {
160 int word = 1 + (shift / BIGNUM_INT_BITS);
161 int bshift = shift % BIGNUM_INT_BITS;
162 BignumDblInt addend;
163
164 addend = (BignumDblInt)n << bshift;
165
166 while (addend) {
167 addend += number[word];
168 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
169 addend >>= BIGNUM_INT_BITS;
170 word++;
171 }
172 }
173
174 /*
175 * Compute a = a % m.
176 * Input in first alen words of a and first mlen words of m.
177 * Output in first alen words of a
178 * (of which first alen-mlen words will be zero).
179 * The MSW of m MUST have its high bit set.
180 * Quotient is accumulated in the `quotient' array, which is a Bignum
181 * rather than the internal bigendian format. Quotient parts are shifted
182 * left by `qshift' before adding into quot.
183 */
184 static void internal_mod(BignumInt *a, int alen,
185 BignumInt *m, int mlen,
186 BignumInt *quot, int qshift)
187 {
188 BignumInt m0, m1;
189 unsigned int h;
190 int i, k;
191
192 m0 = m[0];
193 if (mlen > 1)
194 m1 = m[1];
195 else
196 m1 = 0;
197
198 for (i = 0; i <= alen - mlen; i++) {
199 BignumDblInt t;
200 unsigned int q, r, c, ai1;
201
202 if (i == 0) {
203 h = 0;
204 } else {
205 h = a[i - 1];
206 a[i - 1] = 0;
207 }
208
209 if (i == alen - 1)
210 ai1 = 0;
211 else
212 ai1 = a[i + 1];
213
214 /* Find q = h:a[i] / m0 */
215 if (h >= m0) {
216 /*
217 * Special case.
218 *
219 * To illustrate it, suppose a BignumInt is 8 bits, and
220 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
221 * our initial division will be 0xA123 / 0xA1, which
222 * will give a quotient of 0x100 and a divide overflow.
223 * However, the invariants in this division algorithm
224 * are not violated, since the full number A1:23:... is
225 * _less_ than the quotient prefix A1:B2:... and so the
226 * following correction loop would have sorted it out.
227 *
228 * In this situation we set q to be the largest
229 * quotient we _can_ stomach (0xFF, of course).
230 */
231 q = BIGNUM_INT_MASK;
232 } else {
233 DIVMOD_WORD(q, r, h, a[i], m0);
234
235 /* Refine our estimate of q by looking at
236 h:a[i]:a[i+1] / m0:m1 */
237 t = MUL_WORD(m1, q);
238 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
239 q--;
240 t -= m1;
241 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
242 if (r >= (BignumDblInt) m0 &&
243 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
244 }
245 }
246
247 /* Subtract q * m from a[i...] */
248 c = 0;
249 for (k = mlen - 1; k >= 0; k--) {
250 t = MUL_WORD(q, m[k]);
251 t += c;
252 c = t >> BIGNUM_INT_BITS;
253 if ((BignumInt) t > a[i + k])
254 c++;
255 a[i + k] -= (BignumInt) t;
256 }
257
258 /* Add back m in case of borrow */
259 if (c != h) {
260 t = 0;
261 for (k = mlen - 1; k >= 0; k--) {
262 t += m[k];
263 t += a[i + k];
264 a[i + k] = (BignumInt) t;
265 t = t >> BIGNUM_INT_BITS;
266 }
267 q--;
268 }
269 if (quot)
270 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
271 }
272 }
273
274 /*
275 * Compute (base ^ exp) % mod.
276 */
277 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
278 {
279 BignumInt *a, *b, *n, *m;
280 int mshift;
281 int mlen, i, j;
282 Bignum base, result;
283
284 /*
285 * The most significant word of mod needs to be non-zero. It
286 * should already be, but let's make sure.
287 */
288 assert(mod[mod[0]] != 0);
289
290 /*
291 * Make sure the base is smaller than the modulus, by reducing
292 * it modulo the modulus if not.
293 */
294 base = bigmod(base_in, mod);
295
296 /* Allocate m of size mlen, copy mod to m */
297 /* We use big endian internally */
298 mlen = mod[0];
299 m = snewn(mlen, BignumInt);
300 for (j = 0; j < mlen; j++)
301 m[j] = mod[mod[0] - j];
302
303 /* Shift m left to make msb bit set */
304 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
305 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
306 break;
307 if (mshift) {
308 for (i = 0; i < mlen - 1; i++)
309 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
310 m[mlen - 1] = m[mlen - 1] << mshift;
311 }
312
313 /* Allocate n of size mlen, copy base to n */
314 n = snewn(mlen, BignumInt);
315 i = mlen - base[0];
316 for (j = 0; j < i; j++)
317 n[j] = 0;
318 for (j = 0; j < base[0]; j++)
319 n[i + j] = base[base[0] - j];
320
321 /* Allocate a and b of size 2*mlen. Set a = 1 */
322 a = snewn(2 * mlen, BignumInt);
323 b = snewn(2 * mlen, BignumInt);
324 for (i = 0; i < 2 * mlen; i++)
325 a[i] = 0;
326 a[2 * mlen - 1] = 1;
327
328 /* Skip leading zero bits of exp. */
329 i = 0;
330 j = BIGNUM_INT_BITS-1;
331 while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
332 j--;
333 if (j < 0) {
334 i++;
335 j = BIGNUM_INT_BITS-1;
336 }
337 }
338
339 /* Main computation */
340 while (i < exp[0]) {
341 while (j >= 0) {
342 internal_mul(a + mlen, a + mlen, b, mlen);
343 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
344 if ((exp[exp[0] - i] & (1 << j)) != 0) {
345 internal_mul(b + mlen, n, a, mlen);
346 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
347 } else {
348 BignumInt *t;
349 t = a;
350 a = b;
351 b = t;
352 }
353 j--;
354 }
355 i++;
356 j = BIGNUM_INT_BITS-1;
357 }
358
359 /* Fixup result in case the modulus was shifted */
360 if (mshift) {
361 for (i = mlen - 1; i < 2 * mlen - 1; i++)
362 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
363 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
364 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
365 for (i = 2 * mlen - 1; i >= mlen; i--)
366 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
367 }
368
369 /* Copy result to buffer */
370 result = newbn(mod[0]);
371 for (i = 0; i < mlen; i++)
372 result[result[0] - i] = a[i + mlen];
373 while (result[0] > 1 && result[result[0]] == 0)
374 result[0]--;
375
376 /* Free temporary arrays */
377 for (i = 0; i < 2 * mlen; i++)
378 a[i] = 0;
379 sfree(a);
380 for (i = 0; i < 2 * mlen; i++)
381 b[i] = 0;
382 sfree(b);
383 for (i = 0; i < mlen; i++)
384 m[i] = 0;
385 sfree(m);
386 for (i = 0; i < mlen; i++)
387 n[i] = 0;
388 sfree(n);
389
390 freebn(base);
391
392 return result;
393 }
394
395 /*
396 * Compute (p * q) % mod.
397 * The most significant word of mod MUST be non-zero.
398 * We assume that the result array is the same size as the mod array.
399 */
400 Bignum modmul(Bignum p, Bignum q, Bignum mod)
401 {
402 BignumInt *a, *n, *m, *o;
403 int mshift;
404 int pqlen, mlen, rlen, i, j;
405 Bignum result;
406
407 /* Allocate m of size mlen, copy mod to m */
408 /* We use big endian internally */
409 mlen = mod[0];
410 m = snewn(mlen, BignumInt);
411 for (j = 0; j < mlen; j++)
412 m[j] = mod[mod[0] - j];
413
414 /* Shift m left to make msb bit set */
415 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
416 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
417 break;
418 if (mshift) {
419 for (i = 0; i < mlen - 1; i++)
420 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
421 m[mlen - 1] = m[mlen - 1] << mshift;
422 }
423
424 pqlen = (p[0] > q[0] ? p[0] : q[0]);
425
426 /* Allocate n of size pqlen, copy p to n */
427 n = snewn(pqlen, BignumInt);
428 i = pqlen - p[0];
429 for (j = 0; j < i; j++)
430 n[j] = 0;
431 for (j = 0; j < p[0]; j++)
432 n[i + j] = p[p[0] - j];
433
434 /* Allocate o of size pqlen, copy q to o */
435 o = snewn(pqlen, BignumInt);
436 i = pqlen - q[0];
437 for (j = 0; j < i; j++)
438 o[j] = 0;
439 for (j = 0; j < q[0]; j++)
440 o[i + j] = q[q[0] - j];
441
442 /* Allocate a of size 2*pqlen for result */
443 a = snewn(2 * pqlen, BignumInt);
444
445 /* Main computation */
446 internal_mul(n, o, a, pqlen);
447 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
448
449 /* Fixup result in case the modulus was shifted */
450 if (mshift) {
451 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
452 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
453 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
454 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
455 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
456 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
457 }
458
459 /* Copy result to buffer */
460 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
461 result = newbn(rlen);
462 for (i = 0; i < rlen; i++)
463 result[result[0] - i] = a[i + 2 * pqlen - rlen];
464 while (result[0] > 1 && result[result[0]] == 0)
465 result[0]--;
466
467 /* Free temporary arrays */
468 for (i = 0; i < 2 * pqlen; i++)
469 a[i] = 0;
470 sfree(a);
471 for (i = 0; i < mlen; i++)
472 m[i] = 0;
473 sfree(m);
474 for (i = 0; i < pqlen; i++)
475 n[i] = 0;
476 sfree(n);
477 for (i = 0; i < pqlen; i++)
478 o[i] = 0;
479 sfree(o);
480
481 return result;
482 }
483
484 /*
485 * Compute p % mod.
486 * The most significant word of mod MUST be non-zero.
487 * We assume that the result array is the same size as the mod array.
488 * We optionally write out a quotient if `quotient' is non-NULL.
489 * We can avoid writing out the result if `result' is NULL.
490 */
491 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
492 {
493 BignumInt *n, *m;
494 int mshift;
495 int plen, mlen, i, j;
496
497 /* Allocate m of size mlen, copy mod to m */
498 /* We use big endian internally */
499 mlen = mod[0];
500 m = snewn(mlen, BignumInt);
501 for (j = 0; j < mlen; j++)
502 m[j] = mod[mod[0] - j];
503
504 /* Shift m left to make msb bit set */
505 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
506 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
507 break;
508 if (mshift) {
509 for (i = 0; i < mlen - 1; i++)
510 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
511 m[mlen - 1] = m[mlen - 1] << mshift;
512 }
513
514 plen = p[0];
515 /* Ensure plen > mlen */
516 if (plen <= mlen)
517 plen = mlen + 1;
518
519 /* Allocate n of size plen, copy p to n */
520 n = snewn(plen, BignumInt);
521 for (j = 0; j < plen; j++)
522 n[j] = 0;
523 for (j = 1; j <= p[0]; j++)
524 n[plen - j] = p[j];
525
526 /* Main computation */
527 internal_mod(n, plen, m, mlen, quotient, mshift);
528
529 /* Fixup result in case the modulus was shifted */
530 if (mshift) {
531 for (i = plen - mlen - 1; i < plen - 1; i++)
532 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
533 n[plen - 1] = n[plen - 1] << mshift;
534 internal_mod(n, plen, m, mlen, quotient, 0);
535 for (i = plen - 1; i >= plen - mlen; i--)
536 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
537 }
538
539 /* Copy result to buffer */
540 if (result) {
541 for (i = 1; i <= result[0]; i++) {
542 int j = plen - i;
543 result[i] = j >= 0 ? n[j] : 0;
544 }
545 }
546
547 /* Free temporary arrays */
548 for (i = 0; i < mlen; i++)
549 m[i] = 0;
550 sfree(m);
551 for (i = 0; i < plen; i++)
552 n[i] = 0;
553 sfree(n);
554 }
555
556 /*
557 * Decrement a number.
558 */
559 void decbn(Bignum bn)
560 {
561 int i = 1;
562 while (i < bn[0] && bn[i] == 0)
563 bn[i++] = BIGNUM_INT_MASK;
564 bn[i]--;
565 }
566
567 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
568 {
569 Bignum result;
570 int w, i;
571
572 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
573
574 result = newbn(w);
575 for (i = 1; i <= w; i++)
576 result[i] = 0;
577 for (i = nbytes; i--;) {
578 unsigned char byte = *data++;
579 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
580 }
581
582 while (result[0] > 1 && result[result[0]] == 0)
583 result[0]--;
584 return result;
585 }
586
587 /*
588 * Read an SSH-1-format bignum from a data buffer. Return the number
589 * of bytes consumed, or -1 if there wasn't enough data.
590 */
591 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
592 {
593 const unsigned char *p = data;
594 int i;
595 int w, b;
596
597 if (len < 2)
598 return -1;
599
600 w = 0;
601 for (i = 0; i < 2; i++)
602 w = (w << 8) + *p++;
603 b = (w + 7) / 8; /* bits -> bytes */
604
605 if (len < b+2)
606 return -1;
607
608 if (!result) /* just return length */
609 return b + 2;
610
611 *result = bignum_from_bytes(p, b);
612
613 return p + b - data;
614 }
615
616 /*
617 * Return the bit count of a bignum, for SSH-1 encoding.
618 */
619 int bignum_bitcount(Bignum bn)
620 {
621 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
622 while (bitcount >= 0
623 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
624 return bitcount + 1;
625 }
626
627 /*
628 * Return the byte length of a bignum when SSH-1 encoded.
629 */
630 int ssh1_bignum_length(Bignum bn)
631 {
632 return 2 + (bignum_bitcount(bn) + 7) / 8;
633 }
634
635 /*
636 * Return the byte length of a bignum when SSH-2 encoded.
637 */
638 int ssh2_bignum_length(Bignum bn)
639 {
640 return 4 + (bignum_bitcount(bn) + 8) / 8;
641 }
642
643 /*
644 * Return a byte from a bignum; 0 is least significant, etc.
645 */
646 int bignum_byte(Bignum bn, int i)
647 {
648 if (i >= BIGNUM_INT_BYTES * bn[0])
649 return 0; /* beyond the end */
650 else
651 return (bn[i / BIGNUM_INT_BYTES + 1] >>
652 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
653 }
654
655 /*
656 * Return a bit from a bignum; 0 is least significant, etc.
657 */
658 int bignum_bit(Bignum bn, int i)
659 {
660 if (i >= BIGNUM_INT_BITS * bn[0])
661 return 0; /* beyond the end */
662 else
663 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
664 }
665
666 /*
667 * Set a bit in a bignum; 0 is least significant, etc.
668 */
669 void bignum_set_bit(Bignum bn, int bitnum, int value)
670 {
671 if (bitnum >= BIGNUM_INT_BITS * bn[0])
672 abort(); /* beyond the end */
673 else {
674 int v = bitnum / BIGNUM_INT_BITS + 1;
675 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
676 if (value)
677 bn[v] |= mask;
678 else
679 bn[v] &= ~mask;
680 }
681 }
682
683 /*
684 * Write a SSH-1-format bignum into a buffer. It is assumed the
685 * buffer is big enough. Returns the number of bytes used.
686 */
687 int ssh1_write_bignum(void *data, Bignum bn)
688 {
689 unsigned char *p = data;
690 int len = ssh1_bignum_length(bn);
691 int i;
692 int bitc = bignum_bitcount(bn);
693
694 *p++ = (bitc >> 8) & 0xFF;
695 *p++ = (bitc) & 0xFF;
696 for (i = len - 2; i--;)
697 *p++ = bignum_byte(bn, i);
698 return len;
699 }
700
701 /*
702 * Compare two bignums. Returns like strcmp.
703 */
704 int bignum_cmp(Bignum a, Bignum b)
705 {
706 int amax = a[0], bmax = b[0];
707 int i = (amax > bmax ? amax : bmax);
708 while (i) {
709 BignumInt aval = (i > amax ? 0 : a[i]);
710 BignumInt bval = (i > bmax ? 0 : b[i]);
711 if (aval < bval)
712 return -1;
713 if (aval > bval)
714 return +1;
715 i--;
716 }
717 return 0;
718 }
719
720 /*
721 * Right-shift one bignum to form another.
722 */
723 Bignum bignum_rshift(Bignum a, int shift)
724 {
725 Bignum ret;
726 int i, shiftw, shiftb, shiftbb, bits;
727 BignumInt ai, ai1;
728
729 bits = bignum_bitcount(a) - shift;
730 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
731
732 if (ret) {
733 shiftw = shift / BIGNUM_INT_BITS;
734 shiftb = shift % BIGNUM_INT_BITS;
735 shiftbb = BIGNUM_INT_BITS - shiftb;
736
737 ai1 = a[shiftw + 1];
738 for (i = 1; i <= ret[0]; i++) {
739 ai = ai1;
740 ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0);
741 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
742 }
743 }
744
745 return ret;
746 }
747
748 /*
749 * Non-modular multiplication and addition.
750 */
751 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
752 {
753 int alen = a[0], blen = b[0];
754 int mlen = (alen > blen ? alen : blen);
755 int rlen, i, maxspot;
756 BignumInt *workspace;
757 Bignum ret;
758
759 /* mlen space for a, mlen space for b, 2*mlen for result */
760 workspace = snewn(mlen * 4, BignumInt);
761 for (i = 0; i < mlen; i++) {
762 workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0);
763 workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0);
764 }
765
766 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
767 workspace + 2 * mlen, mlen);
768
769 /* now just copy the result back */
770 rlen = alen + blen + 1;
771 if (addend && rlen <= addend[0])
772 rlen = addend[0] + 1;
773 ret = newbn(rlen);
774 maxspot = 0;
775 for (i = 1; i <= ret[0]; i++) {
776 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
777 if (ret[i] != 0)
778 maxspot = i;
779 }
780 ret[0] = maxspot;
781
782 /* now add in the addend, if any */
783 if (addend) {
784 BignumDblInt carry = 0;
785 for (i = 1; i <= rlen; i++) {
786 carry += (i <= ret[0] ? ret[i] : 0);
787 carry += (i <= addend[0] ? addend[i] : 0);
788 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
789 carry >>= BIGNUM_INT_BITS;
790 if (ret[i] != 0 && i > maxspot)
791 maxspot = i;
792 }
793 }
794 ret[0] = maxspot;
795
796 sfree(workspace);
797 return ret;
798 }
799
800 /*
801 * Non-modular multiplication.
802 */
803 Bignum bigmul(Bignum a, Bignum b)
804 {
805 return bigmuladd(a, b, NULL);
806 }
807
808 /*
809 * Create a bignum which is the bitmask covering another one. That
810 * is, the smallest integer which is >= N and is also one less than
811 * a power of two.
812 */
813 Bignum bignum_bitmask(Bignum n)
814 {
815 Bignum ret = copybn(n);
816 int i;
817 BignumInt j;
818
819 i = ret[0];
820 while (n[i] == 0 && i > 0)
821 i--;
822 if (i <= 0)
823 return ret; /* input was zero */
824 j = 1;
825 while (j < n[i])
826 j = 2 * j + 1;
827 ret[i] = j;
828 while (--i > 0)
829 ret[i] = BIGNUM_INT_MASK;
830 return ret;
831 }
832
833 /*
834 * Convert a (max 32-bit) long into a bignum.
835 */
836 Bignum bignum_from_long(unsigned long nn)
837 {
838 Bignum ret;
839 BignumDblInt n = nn;
840
841 ret = newbn(3);
842 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
843 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
844 ret[3] = 0;
845 ret[0] = (ret[2] ? 2 : 1);
846 return ret;
847 }
848
849 /*
850 * Add a long to a bignum.
851 */
852 Bignum bignum_add_long(Bignum number, unsigned long addendx)
853 {
854 Bignum ret = newbn(number[0] + 1);
855 int i, maxspot = 0;
856 BignumDblInt carry = 0, addend = addendx;
857
858 for (i = 1; i <= ret[0]; i++) {
859 carry += addend & BIGNUM_INT_MASK;
860 carry += (i <= number[0] ? number[i] : 0);
861 addend >>= BIGNUM_INT_BITS;
862 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
863 carry >>= BIGNUM_INT_BITS;
864 if (ret[i] != 0)
865 maxspot = i;
866 }
867 ret[0] = maxspot;
868 return ret;
869 }
870
871 /*
872 * Compute the residue of a bignum, modulo a (max 16-bit) short.
873 */
874 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
875 {
876 BignumDblInt mod, r;
877 int i;
878
879 r = 0;
880 mod = modulus;
881 for (i = number[0]; i > 0; i--)
882 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
883 return (unsigned short) r;
884 }
885
886 #ifdef DEBUG
887 void diagbn(char *prefix, Bignum md)
888 {
889 int i, nibbles, morenibbles;
890 static const char hex[] = "0123456789ABCDEF";
891
892 debug(("%s0x", prefix ? prefix : ""));
893
894 nibbles = (3 + bignum_bitcount(md)) / 4;
895 if (nibbles < 1)
896 nibbles = 1;
897 morenibbles = 4 * md[0] - nibbles;
898 for (i = 0; i < morenibbles; i++)
899 debug(("-"));
900 for (i = nibbles; i--;)
901 debug(("%c",
902 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
903
904 if (prefix)
905 debug(("\n"));
906 }
907 #endif
908
909 /*
910 * Simple division.
911 */
912 Bignum bigdiv(Bignum a, Bignum b)
913 {
914 Bignum q = newbn(a[0]);
915 bigdivmod(a, b, NULL, q);
916 return q;
917 }
918
919 /*
920 * Simple remainder.
921 */
922 Bignum bigmod(Bignum a, Bignum b)
923 {
924 Bignum r = newbn(b[0]);
925 bigdivmod(a, b, r, NULL);
926 return r;
927 }
928
929 /*
930 * Greatest common divisor.
931 */
932 Bignum biggcd(Bignum av, Bignum bv)
933 {
934 Bignum a = copybn(av);
935 Bignum b = copybn(bv);
936
937 while (bignum_cmp(b, Zero) != 0) {
938 Bignum t = newbn(b[0]);
939 bigdivmod(a, b, t, NULL);
940 while (t[0] > 1 && t[t[0]] == 0)
941 t[0]--;
942 freebn(a);
943 a = b;
944 b = t;
945 }
946
947 freebn(b);
948 return a;
949 }
950
951 /*
952 * Modular inverse, using Euclid's extended algorithm.
953 */
954 Bignum modinv(Bignum number, Bignum modulus)
955 {
956 Bignum a = copybn(modulus);
957 Bignum b = copybn(number);
958 Bignum xp = copybn(Zero);
959 Bignum x = copybn(One);
960 int sign = +1;
961
962 while (bignum_cmp(b, One) != 0) {
963 Bignum t = newbn(b[0]);
964 Bignum q = newbn(a[0]);
965 bigdivmod(a, b, t, q);
966 while (t[0] > 1 && t[t[0]] == 0)
967 t[0]--;
968 freebn(a);
969 a = b;
970 b = t;
971 t = xp;
972 xp = x;
973 x = bigmuladd(q, xp, t);
974 sign = -sign;
975 freebn(t);
976 freebn(q);
977 }
978
979 freebn(b);
980 freebn(a);
981 freebn(xp);
982
983 /* now we know that sign * x == 1, and that x < modulus */
984 if (sign < 0) {
985 /* set a new x to be modulus - x */
986 Bignum newx = newbn(modulus[0]);
987 BignumInt carry = 0;
988 int maxspot = 1;
989 int i;
990
991 for (i = 1; i <= newx[0]; i++) {
992 BignumInt aword = (i <= modulus[0] ? modulus[i] : 0);
993 BignumInt bword = (i <= x[0] ? x[i] : 0);
994 newx[i] = aword - bword - carry;
995 bword = ~bword;
996 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
997 if (newx[i] != 0)
998 maxspot = i;
999 }
1000 newx[0] = maxspot;
1001 freebn(x);
1002 x = newx;
1003 }
1004
1005 /* and return. */
1006 return x;
1007 }
1008
1009 /*
1010 * Render a bignum into decimal. Return a malloced string holding
1011 * the decimal representation.
1012 */
1013 char *bignum_decimal(Bignum x)
1014 {
1015 int ndigits, ndigit;
1016 int i, iszero;
1017 BignumDblInt carry;
1018 char *ret;
1019 BignumInt *workspace;
1020
1021 /*
1022 * First, estimate the number of digits. Since log(10)/log(2)
1023 * is just greater than 93/28 (the joys of continued fraction
1024 * approximations...) we know that for every 93 bits, we need
1025 * at most 28 digits. This will tell us how much to malloc.
1026 *
1027 * Formally: if x has i bits, that means x is strictly less
1028 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1029 * 10^(28i/93). We need an integer power of ten, so we must
1030 * round up (rounding down might make it less than x again).
1031 * Therefore if we multiply the bit count by 28/93, rounding
1032 * up, we will have enough digits.
1033 */
1034 i = bignum_bitcount(x);
1035 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1036 ndigits++; /* allow for trailing \0 */
1037 ret = snewn(ndigits, char);
1038
1039 /*
1040 * Now allocate some workspace to hold the binary form as we
1041 * repeatedly divide it by ten. Initialise this to the
1042 * big-endian form of the number.
1043 */
1044 workspace = snewn(x[0], BignumInt);
1045 for (i = 0; i < x[0]; i++)
1046 workspace[i] = x[x[0] - i];
1047
1048 /*
1049 * Next, write the decimal number starting with the last digit.
1050 * We use ordinary short division, dividing 10 into the
1051 * workspace.
1052 */
1053 ndigit = ndigits - 1;
1054 ret[ndigit] = '\0';
1055 do {
1056 iszero = 1;
1057 carry = 0;
1058 for (i = 0; i < x[0]; i++) {
1059 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1060 workspace[i] = (BignumInt) (carry / 10);
1061 if (workspace[i])
1062 iszero = 0;
1063 carry %= 10;
1064 }
1065 ret[--ndigit] = (char) (carry + '0');
1066 } while (!iszero);
1067
1068 /*
1069 * There's a chance we've fallen short of the start of the
1070 * string. Correct if so.
1071 */
1072 if (ndigit > 0)
1073 memmove(ret, ret + ndigit, ndigits - ndigit);
1074
1075 /*
1076 * Done.
1077 */
1078 sfree(workspace);
1079 return ret;
1080 }