0313071af536a880e16d991cb5e853982ca558c7
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 smemclr(b, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * little-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = 0; i < len; i++) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180 }
181
182 /*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all little-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187 static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189 {
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = 0; i < len; i++) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198 }
199
200 /*
201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 *
205 * 'scratch' must point to an array of BignumInt of size at least
206 * mul_compute_scratch(len). (This covers the needs of internal_mul
207 * and all its recursive calls to itself.)
208 */
209 #define KARATSUBA_THRESHOLD 50
210 static int mul_compute_scratch(int len)
211 {
212 int ret = 0;
213 while (len > KARATSUBA_THRESHOLD) {
214 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
215 int midlen = botlen + 1;
216 ret += 4*midlen;
217 len = midlen;
218 }
219 return ret;
220 }
221 static void internal_mul(const BignumInt *a, const BignumInt *b,
222 BignumInt *c, int len, BignumInt *scratch)
223 {
224 if (len > KARATSUBA_THRESHOLD) {
225 int i;
226
227 /*
228 * Karatsuba divide-and-conquer algorithm. Cut each input in
229 * half, so that it's expressed as two big 'digits' in a giant
230 * base D:
231 *
232 * a = a_1 D + a_0
233 * b = b_1 D + b_0
234 *
235 * Then the product is of course
236 *
237 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
238 *
239 * and we compute the three coefficients by recursively
240 * calling ourself to do half-length multiplications.
241 *
242 * The clever bit that makes this worth doing is that we only
243 * need _one_ half-length multiplication for the central
244 * coefficient rather than the two that it obviouly looks
245 * like, because we can use a single multiplication to compute
246 *
247 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
248 *
249 * and then we subtract the other two coefficients (a_1 b_1
250 * and a_0 b_0) which we were computing anyway.
251 *
252 * Hence we get to multiply two numbers of length N in about
253 * three times as much work as it takes to multiply numbers of
254 * length N/2, which is obviously better than the four times
255 * as much work it would take if we just did a long
256 * conventional multiply.
257 */
258
259 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
260 int midlen = botlen + 1;
261 BignumDblInt carry;
262
263 /*
264 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
265 * in the output array, so we can compute them immediately in
266 * place.
267 */
268
269 #ifdef KARA_DEBUG
270 printf("a1,a0 = 0x");
271 for (i = 0; i < len; i++) {
272 if (i == toplen) printf(", 0x");
273 printf("%0*x", BIGNUM_INT_BITS/4, a[len - 1 - i]);
274 }
275 printf("\n");
276 printf("b1,b0 = 0x");
277 for (i = 0; i < len; i++) {
278 if (i == toplen) printf(", 0x");
279 printf("%0*x", BIGNUM_INT_BITS/4, b[len - 1 - i]);
280 }
281 printf("\n");
282 #endif
283
284 /* a_1 b_1 */
285 internal_mul(a + botlen, b + botlen, c + 2*botlen, toplen, scratch);
286 #ifdef KARA_DEBUG
287 printf("a1b1 = 0x");
288 for (i = 0; i < 2*toplen; i++) {
289 printf("%0*x", BIGNUM_INT_BITS/4, c[2*len - 1 - i]);
290 }
291 printf("\n");
292 #endif
293
294 /* a_0 b_0 */
295 internal_mul(a, b, c, botlen, scratch);
296 #ifdef KARA_DEBUG
297 printf("a0b0 = 0x");
298 for (i = 0; i < 2*botlen; i++) {
299 printf("%0*x", BIGNUM_INT_BITS/4, c[2*botlen - 1 - i]);
300 }
301 printf("\n");
302 #endif
303
304 /* Zero padding. botlen exceeds toplen by at most 1, and we'll set
305 * the extra carry explicitly below, so we only need to zero at most
306 * one of the top words here.
307 */
308 scratch[midlen - 2] = scratch[2*midlen - 2] = 0;
309
310 for (i = 0; i < toplen; i++) {
311 scratch[i] = a[i + botlen]; /* a_1 */
312 scratch[midlen + i] = b[i + botlen]; /* b_1 */
313 }
314
315 /* compute a_1 + a_0 */
316 scratch[midlen - 1] = internal_add(scratch, a, scratch, botlen);
317 #ifdef KARA_DEBUG
318 printf("a1plusa0 = 0x");
319 for (i = 0; i < midlen; i++) {
320 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen - 1 - i]);
321 }
322 printf("\n");
323 #endif
324 /* compute b_1 + b_0 */
325 scratch[2*midlen - 1] = internal_add(scratch+midlen, b,
326 scratch+midlen, botlen);
327 #ifdef KARA_DEBUG
328 printf("b1plusb0 = 0x");
329 for (i = 0; i < midlen; i++) {
330 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen - 1 - i]);
331 }
332 printf("\n");
333 #endif
334
335 /*
336 * Now we can do the third multiplication.
337 */
338 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
339 scratch + 4*midlen);
340 #ifdef KARA_DEBUG
341 printf("a1plusa0timesb1plusb0 = 0x");
342 for (i = 0; i < 2*midlen; i++) {
343 printf("%0*x", BIGNUM_INT_BITS/4, scratch[4*midlen - 1 - i]);
344 }
345 printf("\n");
346 #endif
347
348 /*
349 * Now we can reuse the first half of 'scratch' to compute the
350 * sum of the outer two coefficients, to subtract from that
351 * product to obtain the middle one.
352 */
353 scratch[2*botlen - 2] = scratch[2*botlen - 1] = 0;
354 for (i = 0; i < 2*toplen; i++)
355 scratch[i] = c[2*botlen + i];
356 scratch[2*botlen] = internal_add(scratch, c, scratch, 2*botlen);
357 scratch[2*botlen + 1] = 0;
358 #ifdef KARA_DEBUG
359 printf("a1b1plusa0b0 = 0x");
360 for (i = 0; i < 2*midlen; i++) {
361 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen - 1 - i]);
362 }
363 printf("\n");
364 #endif
365
366 internal_sub(scratch + 2*midlen, scratch, scratch, 2*midlen);
367 #ifdef KARA_DEBUG
368 printf("a1b0plusa0b1 = 0x");
369 for (i = 0; i < 2*midlen; i++) {
370 printf("%0*x", BIGNUM_INT_BITS/4, scratch[4*midlen - 1 - i]);
371 }
372 printf("\n");
373 #endif
374
375 /*
376 * And now all we need to do is to add that middle coefficient
377 * back into the output. We may have to propagate a carry
378 * further up the output, but we can be sure it won't
379 * propagate right the way off the top.
380 */
381 carry = internal_add(c + botlen, scratch, c + botlen, 2*midlen);
382 i = botlen + 2*midlen;
383 while (carry) {
384 assert(i <= 2*len);
385 carry += c[i];
386 c[i] = (BignumInt)carry;
387 carry >>= BIGNUM_INT_BITS;
388 i++;
389 }
390 #ifdef KARA_DEBUG
391 printf("ab = 0x");
392 for (i = 0; i < 2*len; i++) {
393 printf("%0*x", BIGNUM_INT_BITS/4, c[2*len - i]);
394 }
395 printf("\n");
396 #endif
397
398 } else {
399 int i;
400 BignumInt carry;
401 BignumDblInt t;
402 const BignumInt *ap, *alim = a + len, *bp, *blim = b + len;
403 BignumInt *cp, *cps;
404
405 /*
406 * Multiply in the ordinary O(N^2) way.
407 */
408
409 for (i = 0; i < 2 * len; i++)
410 c[i] = 0;
411
412 for (cps = c, ap = a; ap < alim; ap++, cps++) {
413 carry = 0;
414 for (cp = cps, bp = b, i = blim - bp; i--; bp++, cp++) {
415 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
416 *cp = (BignumInt) t;
417 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
418 }
419 *cp = carry;
420 }
421 }
422 }
423
424 /*
425 * Variant form of internal_mul used for the initial step of
426 * Montgomery reduction. Only bothers outputting 'len' words
427 * (everything above that is thrown away).
428 */
429 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
430 BignumInt *c, int len, BignumInt *scratch)
431 {
432 if (len > KARATSUBA_THRESHOLD) {
433 int i;
434
435 /*
436 * Karatsuba-aware version of internal_mul_low. As before, we
437 * express each input value as a shifted combination of two
438 * halves:
439 *
440 * a = a_1 D + a_0
441 * b = b_1 D + b_0
442 *
443 * Then the full product is, as before,
444 *
445 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
446 *
447 * Provided we choose D on the large side (so that a_0 and b_0
448 * are _at least_ as long as a_1 and b_1), we don't need the
449 * topmost term at all, and we only need half of the middle
450 * term. So there's no point in doing the proper Karatsuba
451 * optimisation which computes the middle term using the top
452 * one, because we'd take as long computing the top one as
453 * just computing the middle one directly.
454 *
455 * So instead, we do a much more obvious thing: we call the
456 * fully optimised internal_mul to compute a_0 b_0, and we
457 * recursively call ourself to compute the _bottom halves_ of
458 * a_1 b_0 and a_0 b_1, each of which we add into the result
459 * in the obvious way.
460 *
461 * In other words, there's no actual Karatsuba _optimisation_
462 * in this function; the only benefit in doing it this way is
463 * that we call internal_mul proper for a large part of the
464 * work, and _that_ can optimise its operation.
465 */
466
467 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
468
469 /*
470 * Scratch space for the various bits and pieces we're going
471 * to be adding together: we need botlen*2 words for a_0 b_0
472 * (though we may end up throwing away its topmost word), and
473 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
474 * to exactly 2*len.
475 */
476
477 /* a_0 b_0 */
478 internal_mul(a, b, scratch + 2*toplen, botlen, scratch + 2*len);
479
480 /* a_1 b_0 */
481 internal_mul_low(a + botlen, b, scratch + toplen, toplen,
482 scratch + 2*len);
483
484 /* a_0 b_1 */
485 internal_mul_low(a, b + botlen, scratch, toplen, scratch + 2*len);
486
487 /* Copy the bottom half of the big coefficient into place */
488 for (i = 0; i < botlen; i++)
489 c[i] = scratch[2*toplen + i];
490
491 /* Add the two small coefficients, throwing away the returned carry */
492 internal_add(scratch, scratch + toplen, scratch, toplen);
493
494 /* And add that to the large coefficient, leaving the result in c. */
495 internal_add(scratch, scratch + 2*toplen + botlen,
496 c + botlen, toplen);
497
498 } else {
499 int i;
500 BignumInt carry;
501 BignumDblInt t;
502 const BignumInt *ap, *alim = a + len, *bp;
503 BignumInt *cp, *cps, *clim = c + len;
504
505 /*
506 * Multiply in the ordinary O(N^2) way.
507 */
508
509 for (i = 0; i < len; i++)
510 c[i] = 0;
511
512 for (cps = c, ap = a; ap < alim; ap++, cps++) {
513 carry = 0;
514 for (cp = cps, bp = b, i = clim - cp; i--; bp++, cp++) {
515 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
516 *cp = (BignumInt) t;
517 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
518 }
519 }
520 }
521 }
522
523 /*
524 * Montgomery reduction. Expects x to be a little-endian array of 2*len
525 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
526 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
527 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
528 * x' < n.
529 *
530 * 'n' and 'mninv' should be little-endian arrays of 'len' BignumInts
531 * each, containing respectively n and the multiplicative inverse of
532 * -n mod r.
533 *
534 * 'tmp' is an array of BignumInt used as scratch space, of length at
535 * least 3*len + mul_compute_scratch(len).
536 */
537 static void monty_reduce(BignumInt *x, const BignumInt *n,
538 const BignumInt *mninv, BignumInt *tmp, int len)
539 {
540 int i;
541 BignumInt carry;
542
543 /*
544 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
545 * that mn is congruent to -x mod r. Hence, mn+x is an exact
546 * multiple of r, and is also (obviously) congruent to x mod n.
547 */
548 internal_mul_low(x, mninv, tmp, len, tmp + 3*len);
549
550 /*
551 * Compute t = (mn+x)/r in ordinary, non-modular, integer
552 * arithmetic. By construction this is exact, and is congruent mod
553 * n to x * r^{-1}, i.e. the answer we want.
554 *
555 * The following multiply leaves that answer in the _most_
556 * significant half of the 'x' array, so then we must shift it
557 * down.
558 */
559 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
560 carry = internal_add(x, tmp+len, x, 2*len);
561 for (i = 0; i < len; i++)
562 x[i] = x[len + i], x[len + i] = 0;
563
564 /*
565 * Reduce t mod n. This doesn't require a full-on division by n,
566 * but merely a test and single optional subtraction, since we can
567 * show that 0 <= t < 2n.
568 *
569 * Proof:
570 * + we computed m mod r, so 0 <= m < r.
571 * + so 0 <= mn < rn, obviously
572 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
573 * + yielding 0 <= (mn+x)/r < 2n as required.
574 */
575 if (!carry) {
576 for (i = len; i-- > 0; )
577 if (x[i] != n[i])
578 break;
579 }
580 if (carry || i < 0 || x[i] > n[i])
581 internal_sub(x, n, x, len);
582 }
583
584 static void internal_add_shifted(BignumInt *number,
585 unsigned n, int shift)
586 {
587 int word = 1 + (shift / BIGNUM_INT_BITS);
588 int bshift = shift % BIGNUM_INT_BITS;
589 BignumDblInt addend;
590
591 addend = (BignumDblInt)n << bshift;
592
593 while (addend) {
594 addend += number[word];
595 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
596 addend >>= BIGNUM_INT_BITS;
597 word++;
598 }
599 }
600
601 /*
602 * Compute a = a % m.
603 * Input in first alen words of a and first mlen words of m.
604 * Output in first alen words of a
605 * (of which last alen-mlen words will be zero).
606 * The MSW of m MUST have its high bit set.
607 * Quotient is accumulated in the `quotient' array. Quotient parts
608 * are shifted left by `qshift' before adding into quot.
609 */
610 static void internal_mod(BignumInt *a, int alen,
611 BignumInt *m, int mlen,
612 BignumInt *quot, int qshift)
613 {
614 BignumInt m0, m1;
615 unsigned int h;
616 int i, j, k;
617
618 m0 = m[mlen - 1];
619 if (mlen > 1)
620 m1 = m[mlen - 2];
621 else
622 m1 = 0;
623
624 for (i = alen, h = 0; i-- >= mlen; ) {
625 BignumDblInt t;
626 unsigned int q, r, c, ai1;
627
628 if (i)
629 ai1 = a[i - 1];
630 else
631 ai1 = 0;
632
633 /* Find q = h:a[i] / m0 */
634 if (h >= m0) {
635 /*
636 * Special case.
637 *
638 * To illustrate it, suppose a BignumInt is 8 bits, and
639 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
640 * our initial division will be 0xA123 / 0xA1, which
641 * will give a quotient of 0x100 and a divide overflow.
642 * However, the invariants in this division algorithm
643 * are not violated, since the full number A1:23:... is
644 * _less_ than the quotient prefix A1:B2:... and so the
645 * following correction loop would have sorted it out.
646 *
647 * In this situation we set q to be the largest
648 * quotient we _can_ stomach (0xFF, of course).
649 */
650 q = BIGNUM_INT_MASK;
651 } else {
652 /* Macro doesn't want an array subscript expression passed
653 * into it (see definition), so use a temporary. */
654 BignumInt tmplo = a[i];
655 DIVMOD_WORD(q, r, h, tmplo, m0);
656
657 /* Refine our estimate of q by looking at
658 h:a[i]:a[i-1] / m0:m1 */
659 t = MUL_WORD(m1, q);
660 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
661 q--;
662 t -= m1;
663 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
664 if (r >= (BignumDblInt) m0 &&
665 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
666 }
667 }
668
669 j = i + 1 - mlen;
670
671 /* Subtract q * m from a[i...] */
672 c = 0;
673 for (k = 0; k < mlen; k++) {
674 t = MUL_WORD(q, m[k]);
675 t += c;
676 c = (unsigned)(t >> BIGNUM_INT_BITS);
677 if ((BignumInt) t > a[j + k])
678 c++;
679 a[j + k] -= (BignumInt) t;
680 }
681
682 /* Add back m in case of borrow */
683 if (c != h) {
684 t = 0;
685 for (k = 0; k < mlen; k++) {
686 t += m[k];
687 t += a[j + k];
688 a[j + k] = (BignumInt) t;
689 t = t >> BIGNUM_INT_BITS;
690 }
691 q--;
692 }
693
694 if (quot)
695 internal_add_shifted(quot, q,
696 qshift + BIGNUM_INT_BITS * (i + 1 - mlen));
697
698 if (i >= mlen) {
699 h = a[i];
700 a[i] = 0;
701 }
702 }
703 }
704
705 static void shift_left(BignumInt *x, int xlen, int shift)
706 {
707 int i;
708
709 if (!shift)
710 return;
711 for (i = xlen; --i > 0; )
712 x[i] = (x[i] << shift) | (x[i - 1] >> (BIGNUM_INT_BITS - shift));
713 x[0] = x[0] << shift;
714 }
715
716 static void shift_right(BignumInt *x, int xlen, int shift)
717 {
718 int i;
719
720 if (!shift || !xlen)
721 return;
722 xlen--;
723 for (i = 0; i < xlen; i++)
724 x[i] = (x[i] >> shift) | (x[i + 1] << (BIGNUM_INT_BITS - shift));
725 x[i] = x[i] >> shift;
726 }
727
728 /*
729 * Compute (base ^ exp) % mod, the pedestrian way.
730 */
731 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
732 {
733 BignumInt *a, *b, *n, *m, *scratch;
734 int mshift;
735 int mlen, scratchlen, i, j;
736 Bignum base, result;
737
738 /*
739 * The most significant word of mod needs to be non-zero. It
740 * should already be, but let's make sure.
741 */
742 assert(mod[mod[0]] != 0);
743
744 /*
745 * Make sure the base is smaller than the modulus, by reducing
746 * it modulo the modulus if not.
747 */
748 base = bigmod(base_in, mod);
749
750 /* Allocate m of size mlen, copy mod to m */
751 mlen = mod[0];
752 m = snewn(mlen, BignumInt);
753 for (j = 0; j < mlen; j++)
754 m[j] = mod[j + 1];
755
756 /* Shift m left to make msb bit set */
757 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
758 if ((m[mlen - 1] << mshift) & BIGNUM_TOP_BIT)
759 break;
760 if (mshift)
761 shift_left(m, mlen, mshift);
762
763 /* Allocate n of size mlen, copy base to n */
764 n = snewn(mlen, BignumInt);
765 for (i = 0; i < (int)base[0]; i++)
766 n[i] = base[i + 1];
767 for (; i < mlen; i++)
768 n[i] = 0;
769
770 /* Allocate a and b of size 2*mlen. Set a = 1 */
771 a = snewn(2 * mlen, BignumInt);
772 b = snewn(2 * mlen, BignumInt);
773 a[0] = 1;
774 for (i = 1; i < 2 * mlen; i++)
775 a[i] = 0;
776
777 /* Scratch space for multiplies */
778 scratchlen = mul_compute_scratch(mlen);
779 scratch = snewn(scratchlen, BignumInt);
780
781 /* Skip leading zero bits of exp. */
782 i = 0;
783 j = BIGNUM_INT_BITS-1;
784 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
785 j--;
786 if (j < 0) {
787 i++;
788 j = BIGNUM_INT_BITS-1;
789 }
790 }
791
792 /* Main computation */
793 while (i < (int)exp[0]) {
794 while (j >= 0) {
795 internal_mul(a, a, b, mlen, scratch);
796 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
797 if ((exp[exp[0] - i] & (1 << j)) != 0) {
798 internal_mul(b, n, a, mlen, scratch);
799 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
800 } else {
801 BignumInt *t;
802 t = a;
803 a = b;
804 b = t;
805 }
806 j--;
807 }
808 i++;
809 j = BIGNUM_INT_BITS-1;
810 }
811
812 /* Fixup result in case the modulus was shifted */
813 if (mshift) {
814 shift_left(a, mlen + 1, mshift);
815 internal_mod(a, mlen + 1, m, mlen, NULL, 0);
816 shift_right(a, mlen, mshift);
817 }
818
819 /* Copy result to buffer */
820 result = newbn(mod[0]);
821 for (i = 0; i < mlen; i++)
822 result[i + 1] = a[i];
823 while (result[0] > 1 && result[result[0]] == 0)
824 result[0]--;
825
826 /* Free temporary arrays */
827 for (i = 0; i < 2 * mlen; i++)
828 a[i] = 0;
829 sfree(a);
830 for (i = 0; i < scratchlen; i++)
831 scratch[i] = 0;
832 sfree(scratch);
833 for (i = 0; i < 2 * mlen; i++)
834 b[i] = 0;
835 sfree(b);
836 for (i = 0; i < mlen; i++)
837 m[i] = 0;
838 sfree(m);
839 for (i = 0; i < mlen; i++)
840 n[i] = 0;
841 sfree(n);
842
843 freebn(base);
844
845 return result;
846 }
847
848 /*
849 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
850 * technique where possible, falling back to modpow_simple otherwise.
851 */
852 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
853 {
854 BignumInt *a, *b, *x, *n, *mninv, *scratch;
855 int len, scratchlen, i, j;
856 Bignum base, base2, r, rn, inv, result;
857
858 /*
859 * The most significant word of mod needs to be non-zero. It
860 * should already be, but let's make sure.
861 */
862 assert(mod[mod[0]] != 0);
863
864 /*
865 * mod had better be odd, or we can't do Montgomery multiplication
866 * using a power of two at all.
867 */
868 if (!(mod[1] & 1))
869 return modpow_simple(base_in, exp, mod);
870
871 /*
872 * Make sure the base is smaller than the modulus, by reducing
873 * it modulo the modulus if not.
874 */
875 base = bigmod(base_in, mod);
876
877 /*
878 * Compute the inverse of n mod r, for monty_reduce. (In fact we
879 * want the inverse of _minus_ n mod r, but we'll sort that out
880 * below.)
881 */
882 len = mod[0];
883 r = bn_power_2(BIGNUM_INT_BITS * len);
884 inv = modinv(mod, r);
885
886 /*
887 * Multiply the base by r mod n, to get it into Montgomery
888 * representation.
889 */
890 base2 = modmul(base, r, mod);
891 freebn(base);
892 base = base2;
893
894 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
895
896 freebn(r); /* won't need this any more */
897
898 /*
899 * Set up internal arrays of the right lengths containing the base,
900 * the modulus, and the modulus's inverse.
901 */
902 n = snewn(len, BignumInt);
903 for (j = 0; j < len; j++)
904 n[j] = mod[j + 1];
905
906 mninv = snewn(len, BignumInt);
907 for (j = 0; j < len; j++)
908 mninv[j] = (j < (int)inv[0] ? inv[j + 1] : 0);
909 freebn(inv); /* we don't need this copy of it any more */
910 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
911 x = snewn(len, BignumInt);
912 for (j = 0; j < len; j++)
913 x[j] = 0;
914 internal_sub(x, mninv, mninv, len);
915
916 /* x = snewn(len, BignumInt); */ /* already done above */
917 for (j = 0; j < len; j++)
918 x[j] = (j < (int)base[0] ? base[j + 1] : 0);
919 freebn(base); /* we don't need this copy of it any more */
920
921 a = snewn(2*len, BignumInt);
922 b = snewn(2*len, BignumInt);
923 for (j = 0; j < len; j++)
924 a[j] = (j < (int)rn[0] ? rn[j + 1] : 0);
925 freebn(rn);
926
927 /* Scratch space for multiplies */
928 scratchlen = 3*len + mul_compute_scratch(len);
929 scratch = snewn(scratchlen, BignumInt);
930
931 /* Skip leading zero bits of exp. */
932 i = 0;
933 j = BIGNUM_INT_BITS-1;
934 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
935 j--;
936 if (j < 0) {
937 i++;
938 j = BIGNUM_INT_BITS-1;
939 }
940 }
941
942 /* Main computation */
943 while (i < (int)exp[0]) {
944 while (j >= 0) {
945 internal_mul(a, a, b, len, scratch);
946 monty_reduce(b, n, mninv, scratch, len);
947 if ((exp[exp[0] - i] & (1 << j)) != 0) {
948 internal_mul(b, x, a, len, scratch);
949 monty_reduce(a, n, mninv, scratch, len);
950 } else {
951 BignumInt *t;
952 t = a;
953 a = b;
954 b = t;
955 }
956 j--;
957 }
958 i++;
959 j = BIGNUM_INT_BITS-1;
960 }
961
962 /*
963 * Final monty_reduce to get back from the adjusted Montgomery
964 * representation.
965 */
966 monty_reduce(a, n, mninv, scratch, len);
967
968 /* Copy result to buffer */
969 result = newbn(mod[0]);
970 for (i = 0; i < len; i++)
971 result[i + 1] = a[i];
972 while (result[0] > 1 && result[result[0]] == 0)
973 result[0]--;
974
975 /* Free temporary arrays */
976 for (i = 0; i < scratchlen; i++)
977 scratch[i] = 0;
978 sfree(scratch);
979 for (i = 0; i < 2 * len; i++)
980 a[i] = 0;
981 sfree(a);
982 for (i = 0; i < 2 * len; i++)
983 b[i] = 0;
984 sfree(b);
985 for (i = 0; i < len; i++)
986 mninv[i] = 0;
987 sfree(mninv);
988 for (i = 0; i < len; i++)
989 n[i] = 0;
990 sfree(n);
991 for (i = 0; i < len; i++)
992 x[i] = 0;
993 sfree(x);
994
995 return result;
996 }
997
998 /*
999 * Compute (p * q) % mod.
1000 * The most significant word of mod MUST be non-zero.
1001 * We assume that the result array is the same size as the mod array.
1002 */
1003 Bignum modmul(Bignum p, Bignum q, Bignum mod)
1004 {
1005 BignumInt *a, *n, *m, *o, *scratch;
1006 int mshift, scratchlen;
1007 int pqlen, mlen, rlen, i, j;
1008 Bignum result;
1009
1010 /* Allocate m of size mlen, copy mod to m */
1011 mlen = mod[0];
1012 m = snewn(mlen, BignumInt);
1013 for (j = 0; j < mlen; j++)
1014 m[j] = mod[j + 1];
1015
1016 /* Shift m left to make msb bit set */
1017 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1018 if ((m[mlen - 1] << mshift) & BIGNUM_TOP_BIT)
1019 break;
1020 if (mshift)
1021 shift_left(m, mlen, mshift);
1022
1023 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1024
1025 /* Make sure that we're allowing enough space. The shifting below will
1026 * underflow the vectors we allocate if `pqlen' is too small.
1027 */
1028 if (2*pqlen <= mlen)
1029 pqlen = mlen/2 + 1;
1030
1031 /* Allocate n of size pqlen, copy p to n */
1032 n = snewn(pqlen, BignumInt);
1033 for (i = 0; i < (int)p[0]; i++)
1034 n[i] = p[i + 1];
1035 for (; i < pqlen; i++)
1036 n[i] = 0;
1037
1038 /* Allocate o of size pqlen, copy q to o */
1039 o = snewn(pqlen, BignumInt);
1040 for (i = 0; i < (int)q[0]; i++)
1041 o[i] = q[i + 1];
1042 for (; i < pqlen; i++)
1043 o[i] = 0;
1044
1045 /* Allocate a of size 2*pqlen for result */
1046 a = snewn(2 * pqlen, BignumInt);
1047
1048 /* Scratch space for multiplies */
1049 scratchlen = mul_compute_scratch(pqlen);
1050 scratch = snewn(scratchlen, BignumInt);
1051
1052 /* Main computation */
1053 internal_mul(n, o, a, pqlen, scratch);
1054 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1055
1056 /* Fixup result in case the modulus was shifted */
1057 if (mshift) {
1058 shift_left(a, mlen + 1, mshift);
1059 internal_mod(a, mlen + 1, m, mlen, NULL, 0);
1060 shift_right(a, mlen, mshift);
1061 }
1062
1063 /* Copy result to buffer */
1064 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
1065 result = newbn(rlen);
1066 for (i = 0; i < rlen; i++)
1067 result[i + 1] = a[i];
1068 while (result[0] > 1 && result[result[0]] == 0)
1069 result[0]--;
1070
1071 /* Free temporary arrays */
1072 for (i = 0; i < scratchlen; i++)
1073 scratch[i] = 0;
1074 sfree(scratch);
1075 for (i = 0; i < 2 * pqlen; i++)
1076 a[i] = 0;
1077 sfree(a);
1078 for (i = 0; i < mlen; i++)
1079 m[i] = 0;
1080 sfree(m);
1081 for (i = 0; i < pqlen; i++)
1082 n[i] = 0;
1083 sfree(n);
1084 for (i = 0; i < pqlen; i++)
1085 o[i] = 0;
1086 sfree(o);
1087
1088 return result;
1089 }
1090
1091 /*
1092 * Compute p % mod.
1093 * The most significant word of mod MUST be non-zero.
1094 * We assume that the result array is the same size as the mod array.
1095 * We optionally write out a quotient if `quotient' is non-NULL.
1096 * We can avoid writing out the result if `result' is NULL.
1097 */
1098 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1099 {
1100 BignumInt *n, *m;
1101 int mshift;
1102 int plen, mlen, i, j;
1103
1104 /* Allocate m of size mlen, copy mod to m */
1105 mlen = mod[0];
1106 m = snewn(mlen, BignumInt);
1107 for (j = 0; j < mlen; j++)
1108 m[j] = mod[j + 1];
1109
1110 /* Shift m left to make msb bit set */
1111 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1112 if ((m[mlen - 1] << mshift) & BIGNUM_TOP_BIT)
1113 break;
1114 if (mshift)
1115 shift_left(m, mlen, mshift);
1116
1117 plen = p[0];
1118 /* Ensure plen > mlen */
1119 if (plen <= mlen)
1120 plen = mlen + 1;
1121
1122 /* Allocate n of size plen, copy p to n */
1123 n = snewn(plen, BignumInt);
1124 for (i = 0; i < (int)p[0]; i++)
1125 n[i] = p[i + 1];
1126 for (; i < plen; i++)
1127 n[i] = 0;
1128
1129 /* Main computation */
1130 internal_mod(n, plen, m, mlen, quotient, mshift);
1131
1132 /* Fixup result in case the modulus was shifted */
1133 if (mshift) {
1134 shift_left(n, mlen + 1, mshift);
1135 internal_mod(n, plen, m, mlen, quotient, 0);
1136 shift_right(n, mlen, mshift);
1137 }
1138
1139 /* Copy result to buffer */
1140 if (result) {
1141 for (i = 0; i < (int)result[0]; i++)
1142 result[i + 1] = i < plen ? n[i] : 0;
1143 bn_restore_invariant(result);
1144 }
1145
1146 /* Free temporary arrays */
1147 for (i = 0; i < mlen; i++)
1148 m[i] = 0;
1149 sfree(m);
1150 for (i = 0; i < plen; i++)
1151 n[i] = 0;
1152 sfree(n);
1153 }
1154
1155 /*
1156 * Decrement a number.
1157 */
1158 void decbn(Bignum bn)
1159 {
1160 int i = 1;
1161 while (i < (int)bn[0] && bn[i] == 0)
1162 bn[i++] = BIGNUM_INT_MASK;
1163 bn[i]--;
1164 }
1165
1166 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1167 {
1168 Bignum result;
1169 int w, i;
1170
1171 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1172
1173 result = newbn(w);
1174 for (i = 1; i <= w; i++)
1175 result[i] = 0;
1176 for (i = nbytes; i--;) {
1177 unsigned char byte = *data++;
1178 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1179 }
1180
1181 while (result[0] > 1 && result[result[0]] == 0)
1182 result[0]--;
1183 return result;
1184 }
1185
1186 /*
1187 * Read an SSH-1-format bignum from a data buffer. Return the number
1188 * of bytes consumed, or -1 if there wasn't enough data.
1189 */
1190 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1191 {
1192 const unsigned char *p = data;
1193 int i;
1194 int w, b;
1195
1196 if (len < 2)
1197 return -1;
1198
1199 w = 0;
1200 for (i = 0; i < 2; i++)
1201 w = (w << 8) + *p++;
1202 b = (w + 7) / 8; /* bits -> bytes */
1203
1204 if (len < b+2)
1205 return -1;
1206
1207 if (!result) /* just return length */
1208 return b + 2;
1209
1210 *result = bignum_from_bytes(p, b);
1211
1212 return p + b - data;
1213 }
1214
1215 /*
1216 * Return the bit count of a bignum, for SSH-1 encoding.
1217 */
1218 int bignum_bitcount(Bignum bn)
1219 {
1220 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1221 while (bitcount >= 0
1222 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1223 return bitcount + 1;
1224 }
1225
1226 /*
1227 * Return the byte length of a bignum when SSH-1 encoded.
1228 */
1229 int ssh1_bignum_length(Bignum bn)
1230 {
1231 return 2 + (bignum_bitcount(bn) + 7) / 8;
1232 }
1233
1234 /*
1235 * Return the byte length of a bignum when SSH-2 encoded.
1236 */
1237 int ssh2_bignum_length(Bignum bn)
1238 {
1239 return 4 + (bignum_bitcount(bn) + 8) / 8;
1240 }
1241
1242 /*
1243 * Return a byte from a bignum; 0 is least significant, etc.
1244 */
1245 int bignum_byte(Bignum bn, int i)
1246 {
1247 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1248 return 0; /* beyond the end */
1249 else
1250 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1251 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1252 }
1253
1254 /*
1255 * Return a bit from a bignum; 0 is least significant, etc.
1256 */
1257 int bignum_bit(Bignum bn, int i)
1258 {
1259 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1260 return 0; /* beyond the end */
1261 else
1262 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1263 }
1264
1265 /*
1266 * Set a bit in a bignum; 0 is least significant, etc.
1267 */
1268 void bignum_set_bit(Bignum bn, int bitnum, int value)
1269 {
1270 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1271 abort(); /* beyond the end */
1272 else {
1273 int v = bitnum / BIGNUM_INT_BITS + 1;
1274 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1275 if (value)
1276 bn[v] |= mask;
1277 else
1278 bn[v] &= ~mask;
1279 }
1280 }
1281
1282 /*
1283 * Write a SSH-1-format bignum into a buffer. It is assumed the
1284 * buffer is big enough. Returns the number of bytes used.
1285 */
1286 int ssh1_write_bignum(void *data, Bignum bn)
1287 {
1288 unsigned char *p = data;
1289 int len = ssh1_bignum_length(bn);
1290 int i;
1291 int bitc = bignum_bitcount(bn);
1292
1293 *p++ = (bitc >> 8) & 0xFF;
1294 *p++ = (bitc) & 0xFF;
1295 for (i = len - 2; i--;)
1296 *p++ = bignum_byte(bn, i);
1297 return len;
1298 }
1299
1300 /*
1301 * Compare two bignums. Returns like strcmp.
1302 */
1303 int bignum_cmp(Bignum a, Bignum b)
1304 {
1305 int amax = a[0], bmax = b[0];
1306 int i = (amax > bmax ? amax : bmax);
1307 while (i) {
1308 BignumInt aval = (i > amax ? 0 : a[i]);
1309 BignumInt bval = (i > bmax ? 0 : b[i]);
1310 if (aval < bval)
1311 return -1;
1312 if (aval > bval)
1313 return +1;
1314 i--;
1315 }
1316 return 0;
1317 }
1318
1319 /*
1320 * Right-shift one bignum to form another.
1321 */
1322 Bignum bignum_rshift(Bignum a, int shift)
1323 {
1324 Bignum ret;
1325 int i, shiftw, shiftb, shiftbb, bits;
1326 BignumInt ai, ai1;
1327
1328 bits = bignum_bitcount(a) - shift;
1329 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1330
1331 if (ret) {
1332 shiftw = shift / BIGNUM_INT_BITS;
1333 shiftb = shift % BIGNUM_INT_BITS;
1334 shiftbb = BIGNUM_INT_BITS - shiftb;
1335
1336 ai1 = a[shiftw + 1];
1337 for (i = 1; i <= (int)ret[0]; i++) {
1338 ai = ai1;
1339 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1340 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1341 }
1342 }
1343
1344 return ret;
1345 }
1346
1347 /*
1348 * Non-modular multiplication and addition.
1349 */
1350 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1351 {
1352 int alen = a[0], blen = b[0];
1353 int mlen = (alen > blen ? alen : blen);
1354 int rlen, i, maxspot;
1355 int wslen;
1356 BignumInt *workspace;
1357 Bignum ret;
1358
1359 /* mlen space for a, mlen space for b, 2*mlen for result,
1360 * plus scratch space for multiplication */
1361 wslen = mlen * 4 + mul_compute_scratch(mlen);
1362 workspace = snewn(wslen, BignumInt);
1363 for (i = 0; i < mlen; i++) {
1364 workspace[0 * mlen + i] = i < (int)a[0] ? a[i + 1] : 0;
1365 workspace[1 * mlen + i] = i < (int)b[0] ? b[i + 1] : 0;
1366 }
1367
1368 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1369 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
1370
1371 /* now just copy the result back */
1372 rlen = alen + blen + 1;
1373 if (addend && rlen <= (int)addend[0])
1374 rlen = addend[0] + 1;
1375 ret = newbn(rlen);
1376 maxspot = 0;
1377 for (i = 0; i < (int)ret[0]; i++) {
1378 ret[i + 1] = (i < 2 * mlen ? workspace[2 * mlen + i] : 0);
1379 if (ret[i + 1] != 0)
1380 maxspot = i + 1;
1381 }
1382 ret[0] = maxspot;
1383
1384 /* now add in the addend, if any */
1385 if (addend) {
1386 BignumDblInt carry = 0;
1387 for (i = 1; i <= rlen; i++) {
1388 carry += (i <= (int)ret[0] ? ret[i] : 0);
1389 carry += (i <= (int)addend[0] ? addend[i] : 0);
1390 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1391 carry >>= BIGNUM_INT_BITS;
1392 if (ret[i] != 0 && i > maxspot)
1393 maxspot = i;
1394 }
1395 }
1396 ret[0] = maxspot;
1397
1398 for (i = 0; i < wslen; i++)
1399 workspace[i] = 0;
1400 sfree(workspace);
1401 return ret;
1402 }
1403
1404 /*
1405 * Non-modular multiplication.
1406 */
1407 Bignum bigmul(Bignum a, Bignum b)
1408 {
1409 return bigmuladd(a, b, NULL);
1410 }
1411
1412 /*
1413 * Simple addition.
1414 */
1415 Bignum bigadd(Bignum a, Bignum b)
1416 {
1417 int alen = a[0], blen = b[0];
1418 int rlen = (alen > blen ? alen : blen) + 1;
1419 int i, maxspot;
1420 Bignum ret;
1421 BignumDblInt carry;
1422
1423 ret = newbn(rlen);
1424
1425 carry = 0;
1426 maxspot = 0;
1427 for (i = 1; i <= rlen; i++) {
1428 carry += (i <= (int)a[0] ? a[i] : 0);
1429 carry += (i <= (int)b[0] ? b[i] : 0);
1430 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1431 carry >>= BIGNUM_INT_BITS;
1432 if (ret[i] != 0 && i > maxspot)
1433 maxspot = i;
1434 }
1435 ret[0] = maxspot;
1436
1437 return ret;
1438 }
1439
1440 /*
1441 * Subtraction. Returns a-b, or NULL if the result would come out
1442 * negative (recall that this entire bignum module only handles
1443 * positive numbers).
1444 */
1445 Bignum bigsub(Bignum a, Bignum b)
1446 {
1447 int alen = a[0], blen = b[0];
1448 int rlen = (alen > blen ? alen : blen);
1449 int i, maxspot;
1450 Bignum ret;
1451 BignumDblInt carry;
1452
1453 ret = newbn(rlen);
1454
1455 carry = 1;
1456 maxspot = 0;
1457 for (i = 1; i <= rlen; i++) {
1458 carry += (i <= (int)a[0] ? a[i] : 0);
1459 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1460 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1461 carry >>= BIGNUM_INT_BITS;
1462 if (ret[i] != 0 && i > maxspot)
1463 maxspot = i;
1464 }
1465 ret[0] = maxspot;
1466
1467 if (!carry) {
1468 freebn(ret);
1469 return NULL;
1470 }
1471
1472 return ret;
1473 }
1474
1475 /*
1476 * Create a bignum which is the bitmask covering another one. That
1477 * is, the smallest integer which is >= N and is also one less than
1478 * a power of two.
1479 */
1480 Bignum bignum_bitmask(Bignum n)
1481 {
1482 Bignum ret = copybn(n);
1483 int i;
1484 BignumInt j;
1485
1486 i = ret[0];
1487 while (n[i] == 0 && i > 0)
1488 i--;
1489 if (i <= 0)
1490 return ret; /* input was zero */
1491 j = 1;
1492 while (j < n[i])
1493 j = 2 * j + 1;
1494 ret[i] = j;
1495 while (--i > 0)
1496 ret[i] = BIGNUM_INT_MASK;
1497 return ret;
1498 }
1499
1500 /*
1501 * Convert a (max 32-bit) long into a bignum.
1502 */
1503 Bignum bignum_from_long(unsigned long nn)
1504 {
1505 Bignum ret;
1506 BignumDblInt n = nn;
1507
1508 ret = newbn(3);
1509 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1510 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1511 ret[3] = 0;
1512 ret[0] = (ret[2] ? 2 : 1);
1513 return ret;
1514 }
1515
1516 /*
1517 * Add a long to a bignum.
1518 */
1519 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1520 {
1521 Bignum ret = newbn(number[0] + 1);
1522 int i, maxspot = 0;
1523 BignumDblInt carry = 0, addend = addendx;
1524
1525 for (i = 1; i <= (int)ret[0]; i++) {
1526 carry += addend & BIGNUM_INT_MASK;
1527 carry += (i <= (int)number[0] ? number[i] : 0);
1528 addend >>= BIGNUM_INT_BITS;
1529 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1530 carry >>= BIGNUM_INT_BITS;
1531 if (ret[i] != 0)
1532 maxspot = i;
1533 }
1534 ret[0] = maxspot;
1535 return ret;
1536 }
1537
1538 /*
1539 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1540 */
1541 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1542 {
1543 BignumDblInt mod, r;
1544 int i;
1545
1546 r = 0;
1547 mod = modulus;
1548 for (i = number[0]; i > 0; i--)
1549 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1550 return (unsigned short) r;
1551 }
1552
1553 #ifdef DEBUG
1554 void diagbn(char *prefix, Bignum md)
1555 {
1556 int i, nibbles, morenibbles;
1557 static const char hex[] = "0123456789ABCDEF";
1558
1559 debug(("%s0x", prefix ? prefix : ""));
1560
1561 nibbles = (3 + bignum_bitcount(md)) / 4;
1562 if (nibbles < 1)
1563 nibbles = 1;
1564 morenibbles = 4 * md[0] - nibbles;
1565 for (i = 0; i < morenibbles; i++)
1566 debug(("-"));
1567 for (i = nibbles; i--;)
1568 debug(("%c",
1569 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1570
1571 if (prefix)
1572 debug(("\n"));
1573 }
1574 #endif
1575
1576 /*
1577 * Simple division.
1578 */
1579 Bignum bigdiv(Bignum a, Bignum b)
1580 {
1581 Bignum q = newbn(a[0]);
1582 bigdivmod(a, b, NULL, q);
1583 return q;
1584 }
1585
1586 /*
1587 * Simple remainder.
1588 */
1589 Bignum bigmod(Bignum a, Bignum b)
1590 {
1591 Bignum r = newbn(b[0]);
1592 bigdivmod(a, b, r, NULL);
1593 return r;
1594 }
1595
1596 /*
1597 * Greatest common divisor.
1598 */
1599 Bignum biggcd(Bignum av, Bignum bv)
1600 {
1601 Bignum a = copybn(av);
1602 Bignum b = copybn(bv);
1603
1604 while (bignum_cmp(b, Zero) != 0) {
1605 Bignum t = newbn(b[0]);
1606 bigdivmod(a, b, t, NULL);
1607 while (t[0] > 1 && t[t[0]] == 0)
1608 t[0]--;
1609 freebn(a);
1610 a = b;
1611 b = t;
1612 }
1613
1614 freebn(b);
1615 return a;
1616 }
1617
1618 /*
1619 * Modular inverse, using Euclid's extended algorithm.
1620 */
1621 Bignum modinv(Bignum number, Bignum modulus)
1622 {
1623 Bignum a = copybn(modulus);
1624 Bignum b = copybn(number);
1625 Bignum xp = copybn(Zero);
1626 Bignum x = copybn(One);
1627 int sign = +1;
1628
1629 while (bignum_cmp(b, One) != 0) {
1630 Bignum t = newbn(b[0]);
1631 Bignum q = newbn(a[0]);
1632 bigdivmod(a, b, t, q);
1633 while (t[0] > 1 && t[t[0]] == 0)
1634 t[0]--;
1635 freebn(a);
1636 a = b;
1637 b = t;
1638 t = xp;
1639 xp = x;
1640 x = bigmuladd(q, xp, t);
1641 sign = -sign;
1642 freebn(t);
1643 freebn(q);
1644 }
1645
1646 freebn(b);
1647 freebn(a);
1648 freebn(xp);
1649
1650 /* now we know that sign * x == 1, and that x < modulus */
1651 if (sign < 0) {
1652 /* set a new x to be modulus - x */
1653 Bignum newx = newbn(modulus[0]);
1654 BignumInt carry = 0;
1655 int maxspot = 1;
1656 int i;
1657
1658 for (i = 1; i <= (int)newx[0]; i++) {
1659 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1660 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1661 newx[i] = aword - bword - carry;
1662 bword = ~bword;
1663 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1664 if (newx[i] != 0)
1665 maxspot = i;
1666 }
1667 newx[0] = maxspot;
1668 freebn(x);
1669 x = newx;
1670 }
1671
1672 /* and return. */
1673 return x;
1674 }
1675
1676 /*
1677 * Extract the largest power of 2 dividing x, storing it in p2, and returning
1678 * the product of the remaining factors.
1679 */
1680 static Bignum extract_p2(Bignum x, unsigned *p2)
1681 {
1682 unsigned i, j, k, n;
1683 Bignum y;
1684
1685 /* If x is zero then the following won't work. And if x is odd then
1686 * there's nothing very useful to do.
1687 */
1688 if (!x[0] || (x[1] & 1)) {
1689 *p2 = 0;
1690 return copybn(x);
1691 }
1692
1693 /* Find the power of two. */
1694 for (i = 0; !x[i + 1]; i++);
1695 for (j = 0; !((x[i + 1] >> j) & 1); j++);
1696 *p2 = i*BIGNUM_INT_BITS + j;
1697
1698 /* Work out how big the copy should be. */
1699 n = x[0] - i - 1;
1700 if (x[x[0]] >> j) n++;
1701
1702 /* Copy and shift down. */
1703 y = newbn(n);
1704 for (k = 1; k <= n; k++) {
1705 y[k] = x[k + i] >> j;
1706 if (j && k < x[0]) y[k] |= x[k + i + 1] << (BIGNUM_INT_BITS - j);
1707 }
1708
1709 /* Done. */
1710 return y;
1711 }
1712
1713 /*
1714 * Kronecker symbol (a|n). The result is always in { -1, 0, +1 }, and is
1715 * zero if and only if a and n have a nontrivial common factor. Most
1716 * usefully, if n is prime, this is the Legendre symbol, taking the value +1
1717 * if a is a quadratic residue mod n, and -1 otherwise; i.e., (a|p) ==
1718 * a^{(p-1)/2} (mod p).
1719 */
1720 int kronecker(Bignum a, Bignum n)
1721 {
1722 unsigned s, nn;
1723 int r = +1;
1724 Bignum t;
1725
1726 /* Special case for n = 0. This is the same convention PARI uses,
1727 * except that we can't represent negative numbers.
1728 */
1729 if (bignum_cmp(n, Zero) == 0) {
1730 if (bignum_cmp(a, One) == 0) return +1;
1731 else return 0;
1732 }
1733
1734 /* Write n = 2^s t, with t odd. If s > 0 and a is even, then the answer
1735 * is zero; otherwise throw in a factor of (-1)^s if a == 3 or 5 (mod 8).
1736 *
1737 * At this point, we have a copy of n, and must remember to free it when
1738 * we're done. It's convenient to take a copy of a at the same time.
1739 */
1740 a = copybn(a);
1741 n = extract_p2(n, &s);
1742
1743 if (s && (!a[0] || !(a[1] & 1))) { r = 0; goto done; }
1744 else if ((s & 1) && ((a[1] & 7) == 3 || (a[1] & 7) == 5)) r = -r;
1745
1746 /* If n is (now) a unit then we're done. */
1747 if (bignum_cmp(n, One) == 0) goto done;
1748
1749 /* Reduce a modulo n before we go any further. */
1750 if (bignum_cmp(a, n) >= 0) { t = bigmod(a, n); freebn(a); a = t; }
1751
1752 /* Main loop. */
1753 for (;;) {
1754 if (bignum_cmp(a, Zero) == 0) { r = 0; goto done; }
1755
1756 /* Strip out and handle powers of two from a. */
1757 t = extract_p2(a, &s); freebn(a); a = t;
1758 nn = n[1] & 7;
1759 if ((s & 1) && (nn == 3 || nn == 5)) r = -r;
1760 if (bignum_cmp(a, One) == 0) break;
1761
1762 /* Swap, applying quadratic reciprocity. */
1763 if ((nn & 3) == 3 && (a[1] & 3) == 3) r = -r;
1764 t = bigmod(n, a); freebn(n); n = a; a = t;
1765 }
1766
1767 /* Tidy up: we're done. */
1768 done:
1769 freebn(a); freebn(n);
1770 return r;
1771 }
1772
1773 /*
1774 * Modular square root. We must have p prime: extracting square roots modulo
1775 * composites is equivalent to factoring (but we don't check: you'll just get
1776 * the wrong answer). Returns NULL if x is not a quadratic residue mod p.
1777 */
1778 Bignum modsqrt(Bignum x, Bignum p)
1779 {
1780 Bignum xinv, b, c, r, t, z, X, mone;
1781 unsigned i, j, s;
1782
1783 /* If x is not a quadratic residue then we will not go to space today. */
1784 if (kronecker(x, p) != +1) return NULL;
1785
1786 /* We need a quadratic nonresidue from somewhere. Exactly half of all
1787 * units mod p are quadratic residues, but no efficient deterministic
1788 * algorithm for finding one is known. So pick at random: we don't
1789 * expect this to take long.
1790 */
1791 z = newbn(p[0]);
1792 do {
1793 for (i = 1; i <= p[0]; i++) z[i] = rand();
1794 z[0] = p[0]; bn_restore_invariant(z);
1795 } while (kronecker(z, p) != -1);
1796 b = bigmod(z, p); freebn(z);
1797
1798 /* We need to compute a few things before we really get started. */
1799 xinv = modinv(x, p); /* x^{-1} mod p */
1800 mone = bigsub(p, One); /* p - 1 == -1 (mod p) */
1801 t = extract_p2(mone, &s); /* 2^s t = p - 1 */
1802 c = modpow(b, t, p); /* b^t (mod p) */
1803 z = bigadd(t, One); freebn(t); t = z; /* (t + 1) */
1804 shift_right(t + 1, t[0], 1); if (!t[t[0]]) t[0]--;
1805 r = modpow(x, t, p); /* x^{(t+1)/2} (mod p) */
1806 freebn(b); freebn(mone); freebn(t);
1807
1808 /* OK, so how does this work anyway?
1809 *
1810 * We know that x^t is somewhere in the order-2^s subgroup of GF(p)^*;
1811 * and g = c^{-1} is a generator for this subgroup (since we know that
1812 * g^{2^{s-1}} = b^{(p-1)/2} = (b|p) = -1); so x^t = g^m for some m. In
1813 * fact, we know that m is even because x is a square. Suppose we can
1814 * determine m; then we know that x^t/g^m = 1, so x^{t+1}/c^m = x -- but
1815 * both t + 1 and m are even, so x^{(t+1)/2}/g^{m/2} is a square root of
1816 * x.
1817 *
1818 * Conveniently, finding the discrete log of an element X in a group of
1819 * order 2^s is easy. Write X = g^m = g^{m_0+2k'}; then X^{2^{s-1}} =
1820 * g^{m_0 2^{s-1}} c^{m' 2^s} = g^{m_0 2^{s-1}} is either -1 or +1,
1821 * telling us that m_0 is 1 or 0 respectively. Then X/g^{m_0} =
1822 * (g^2)^{m'} has order 2^{s-1} so we can continue inductively. What we
1823 * end up with at the end is X/g^m.
1824 *
1825 * There are a few wrinkles. As we proceed through the induction, the
1826 * generator for the subgroup will be c^{-2}, since we know that m is
1827 * even. While we want the discrete log of X = x^t, we're actually going
1828 * to keep track of r, which will eventually be x^{(t+1)/2}/g^{m/2} =
1829 * x^{(t+1)/2} c^m, recovering X/g^m = r^2/x as we go. We don't actually
1830 * form the discrete log explicitly, because the final result will
1831 * actually be the square root we want.
1832 */
1833 for (i = 1; i < s; i++) {
1834
1835 /* Determine X. We could optimize this, only recomputing it when
1836 * it's been invalidated, but that's fiddlier and this isn't
1837 * performance critical.
1838 */
1839 z = modmul(r, r, p);
1840 X = modmul(z, xinv, p);
1841 freebn(z);
1842
1843 /* Determine X^{2^{s-1-i}}. */
1844 for (j = i + 1; j < s; j++)
1845 z = modmul(X, X, p), freebn(X), X = z;
1846
1847 /* Maybe accumulate a factor of c. */
1848 if (bignum_cmp(X, One) != 0)
1849 z = modmul(r, c, p), freebn(r), r = z;
1850
1851 /* Move on to the next smaller subgroup. */
1852 z = modmul(c, c, p), freebn(c), c = z;
1853 freebn(X);
1854 }
1855
1856 /* Of course, there are two square roots of x. For predictability's sake
1857 * we'll always return the one in [1..(p - 1)/2]. The other is, of
1858 * course, p - r.
1859 */
1860 z = bigsub(p, r);
1861 if (bignum_cmp(r, z) < 0)
1862 freebn(z);
1863 else {
1864 freebn(r);
1865 r = z;
1866 }
1867
1868 /* We're done. */
1869 freebn(xinv); freebn(c);
1870 return r;
1871 }
1872
1873 /*
1874 * Render a bignum into decimal. Return a malloced string holding
1875 * the decimal representation.
1876 */
1877 char *bignum_decimal(Bignum x)
1878 {
1879 int ndigits, ndigit;
1880 int i, iszero;
1881 BignumDblInt carry;
1882 char *ret;
1883 BignumInt *workspace;
1884
1885 /*
1886 * First, estimate the number of digits. Since log(10)/log(2)
1887 * is just greater than 93/28 (the joys of continued fraction
1888 * approximations...) we know that for every 93 bits, we need
1889 * at most 28 digits. This will tell us how much to malloc.
1890 *
1891 * Formally: if x has i bits, that means x is strictly less
1892 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1893 * 10^(28i/93). We need an integer power of ten, so we must
1894 * round up (rounding down might make it less than x again).
1895 * Therefore if we multiply the bit count by 28/93, rounding
1896 * up, we will have enough digits.
1897 *
1898 * i=0 (i.e., x=0) is an irritating special case.
1899 */
1900 i = bignum_bitcount(x);
1901 if (!i)
1902 ndigits = 1; /* x = 0 */
1903 else
1904 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1905 ndigits++; /* allow for trailing \0 */
1906 ret = snewn(ndigits, char);
1907
1908 /*
1909 * Now allocate some workspace to hold the binary form as we
1910 * repeatedly divide it by ten. Initialise this to the
1911 * big-endian form of the number.
1912 */
1913 workspace = snewn(x[0], BignumInt);
1914 for (i = 0; i < (int)x[0]; i++)
1915 workspace[i] = x[x[0] - i];
1916
1917 /*
1918 * Next, write the decimal number starting with the last digit.
1919 * We use ordinary short division, dividing 10 into the
1920 * workspace.
1921 */
1922 ndigit = ndigits - 1;
1923 ret[ndigit] = '\0';
1924 do {
1925 iszero = 1;
1926 carry = 0;
1927 for (i = 0; i < (int)x[0]; i++) {
1928 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1929 workspace[i] = (BignumInt) (carry / 10);
1930 if (workspace[i])
1931 iszero = 0;
1932 carry %= 10;
1933 }
1934 ret[--ndigit] = (char) (carry + '0');
1935 } while (!iszero);
1936
1937 /*
1938 * There's a chance we've fallen short of the start of the
1939 * string. Correct if so.
1940 */
1941 if (ndigit > 0)
1942 memmove(ret, ret + ndigit, ndigits - ndigit);
1943
1944 /*
1945 * Done.
1946 */
1947 sfree(workspace);
1948 return ret;
1949 }
1950
1951 #ifdef TESTBN
1952
1953 #include <stdio.h>
1954 #include <stdlib.h>
1955 #include <ctype.h>
1956
1957 /*
1958 * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
1959 *
1960 * Then feed to this program's standard input the output of
1961 * testdata/bignum.py .
1962 */
1963
1964 void modalfatalbox(char *p, ...)
1965 {
1966 va_list ap;
1967 fprintf(stderr, "FATAL ERROR: ");
1968 va_start(ap, p);
1969 vfprintf(stderr, p, ap);
1970 va_end(ap);
1971 fputc('\n', stderr);
1972 exit(1);
1973 }
1974
1975 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1976
1977 int main(int argc, char **argv)
1978 {
1979 char *buf;
1980 int line = 0;
1981 int passes = 0, fails = 0;
1982
1983 while ((buf = fgetline(stdin)) != NULL) {
1984 int maxlen = strlen(buf);
1985 unsigned char *data = snewn(maxlen, unsigned char);
1986 unsigned char *ptrs[5], *q;
1987 int ptrnum;
1988 char *bufp = buf;
1989
1990 line++;
1991
1992 q = data;
1993 ptrnum = 0;
1994
1995 while (*bufp && !isspace((unsigned char)*bufp))
1996 bufp++;
1997 if (bufp)
1998 *bufp++ = '\0';
1999
2000 while (*bufp) {
2001 char *start, *end;
2002 int i;
2003
2004 while (*bufp && !isxdigit((unsigned char)*bufp))
2005 bufp++;
2006 start = bufp;
2007
2008 if (!*bufp)
2009 break;
2010
2011 while (*bufp && isxdigit((unsigned char)*bufp))
2012 bufp++;
2013 end = bufp;
2014
2015 if (ptrnum >= lenof(ptrs))
2016 break;
2017 ptrs[ptrnum++] = q;
2018
2019 for (i = -((end - start) & 1); i < end-start; i += 2) {
2020 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
2021 val = val * 16 + fromxdigit(start[i+1]);
2022 *q++ = val;
2023 }
2024
2025 ptrs[ptrnum] = q;
2026 }
2027
2028 if (!strcmp(buf, "mul")) {
2029 Bignum a, b, c, p;
2030
2031 if (ptrnum != 3) {
2032 printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
2033 exit(1);
2034 }
2035 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
2036 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
2037 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
2038 p = bigmul(a, b);
2039
2040 if (bignum_cmp(c, p) == 0) {
2041 passes++;
2042 } else {
2043 char *as = bignum_decimal(a);
2044 char *bs = bignum_decimal(b);
2045 char *cs = bignum_decimal(c);
2046 char *ps = bignum_decimal(p);
2047
2048 printf("%d: fail: %s * %s gave %s expected %s\n",
2049 line, as, bs, ps, cs);
2050 fails++;
2051
2052 sfree(as);
2053 sfree(bs);
2054 sfree(cs);
2055 sfree(ps);
2056 }
2057 freebn(a);
2058 freebn(b);
2059 freebn(c);
2060 freebn(p);
2061 } else if (!strcmp(buf, "pow")) {
2062 Bignum base, expt, modulus, expected, answer;
2063
2064 if (ptrnum != 4) {
2065 printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
2066 exit(1);
2067 }
2068
2069 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
2070 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
2071 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
2072 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
2073 answer = modpow(base, expt, modulus);
2074
2075 if (bignum_cmp(expected, answer) == 0) {
2076 passes++;
2077 } else {
2078 char *as = bignum_decimal(base);
2079 char *bs = bignum_decimal(expt);
2080 char *cs = bignum_decimal(modulus);
2081 char *ds = bignum_decimal(answer);
2082 char *ps = bignum_decimal(expected);
2083
2084 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
2085 line, as, bs, cs, ds, ps);
2086 fails++;
2087
2088 sfree(as);
2089 sfree(bs);
2090 sfree(cs);
2091 sfree(ds);
2092 sfree(ps);
2093 }
2094 freebn(base);
2095 freebn(expt);
2096 freebn(modulus);
2097 freebn(expected);
2098 freebn(answer);
2099 } else if (!strcmp(buf, "modsqrt")) {
2100 Bignum x, p, expected, answer;
2101
2102 if (ptrnum != 3) {
2103 printf("%d: modsqrt with %d parameters, expected 3\n", line, ptrnum);
2104 exit(1);
2105 }
2106
2107 x = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
2108 p = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
2109 expected = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
2110 answer = modsqrt(x, p);
2111 if (!answer)
2112 answer = copybn(Zero);
2113
2114 if (bignum_cmp(expected, answer) == 0) {
2115 passes++;
2116 } else {
2117 char *xs = bignum_decimal(x);
2118 char *ps = bignum_decimal(p);
2119 char *qs = bignum_decimal(answer);
2120 char *ws = bignum_decimal(expected);
2121
2122 printf("%d: fail: sqrt(%s) mod %s gave %s expected %s\n",
2123 line, xs, ps, qs, ws);
2124 fails++;
2125
2126 sfree(xs);
2127 sfree(ps);
2128 sfree(qs);
2129 sfree(ws);
2130 }
2131 freebn(p);
2132 freebn(x);
2133 freebn(expected);
2134 freebn(answer);
2135 } else {
2136 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
2137 exit(1);
2138 }
2139
2140 sfree(buf);
2141 sfree(data);
2142 }
2143
2144 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
2145 return fails != 0;
2146 }
2147
2148 #endif