Make modinv able to return NULL if its inputs are not coprime, and
[u/mdw/putty] / sshrsa.c
CommitLineData
374330e2 1/*
8671a580 2 * RSA implementation for PuTTY.
374330e2 3 */
4
374330e2 5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
65a22376 8#include <assert.h>
374330e2 9
e5574168 10#include "ssh.h"
8365990c 11#include "misc.h"
374330e2 12
0016d70b 13int makekey(unsigned char *data, int len, struct RSAKey *result,
32874aea 14 unsigned char **keystr, int order)
15{
374330e2 16 unsigned char *p = data;
0016d70b 17 int i, n;
18
19 if (len < 4)
20 return -1;
374330e2 21
a52f067e 22 if (result) {
32874aea 23 result->bits = 0;
24 for (i = 0; i < 4; i++)
25 result->bits = (result->bits << 8) + *p++;
a52f067e 26 } else
32874aea 27 p += 4;
374330e2 28
0016d70b 29 len -= 4;
30
7cca0d81 31 /*
32 * order=0 means exponent then modulus (the keys sent by the
33 * server). order=1 means modulus then exponent (the keys
34 * stored in a keyfile).
35 */
374330e2 36
0016d70b 37 if (order == 0) {
38 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
39 if (n < 0) return -1;
40 p += n;
41 len -= n;
42 }
43
44 n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
26d98fc6 45 if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
a52f067e 46 if (result)
0016d70b 47 result->bytes = n - 2;
32874aea 48 if (keystr)
49 *keystr = p + 2;
0016d70b 50 p += n;
51 len -= n;
52
53 if (order == 1) {
54 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
55 if (n < 0) return -1;
56 p += n;
57 len -= n;
58 }
374330e2 59 return p - data;
60}
61
0016d70b 62int makeprivate(unsigned char *data, int len, struct RSAKey *result)
32874aea 63{
0016d70b 64 return ssh1_read_bignum(data, len, &result->private_exponent);
7cca0d81 65}
66
0016d70b 67int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
32874aea 68{
374330e2 69 Bignum b1, b2;
3709bfe9 70 int i;
374330e2 71 unsigned char *p;
72
0016d70b 73 if (key->bytes < length + 4)
74 return 0; /* RSA key too short! */
75
32874aea 76 memmove(data + key->bytes - length, data, length);
374330e2 77 data[0] = 0;
78 data[1] = 2;
79
32874aea 80 for (i = 2; i < key->bytes - length - 1; i++) {
374330e2 81 do {
82 data[i] = random_byte();
83 } while (data[i] == 0);
84 }
32874aea 85 data[key->bytes - length - 1] = 0;
374330e2 86
3709bfe9 87 b1 = bignum_from_bytes(data, key->bytes);
374330e2 88
59600f67 89 b2 = modpow(b1, key->exponent, key->modulus);
374330e2 90
374330e2 91 p = data;
32874aea 92 for (i = key->bytes; i--;) {
93 *p++ = bignum_byte(b2, i);
374330e2 94 }
95
96 freebn(b1);
97 freebn(b2);
0016d70b 98
99 return 1;
374330e2 100}
101
b492c4d7 102static void sha512_mpint(SHA512_State * s, Bignum b)
103{
104 unsigned char lenbuf[4];
105 int len;
106 len = (bignum_bitcount(b) + 8) / 8;
107 PUT_32BIT(lenbuf, len);
108 SHA512_Bytes(s, lenbuf, 4);
109 while (len-- > 0) {
110 lenbuf[0] = bignum_byte(b, len);
111 SHA512_Bytes(s, lenbuf, 1);
112 }
dfb88efd 113 smemclr(lenbuf, sizeof(lenbuf));
b492c4d7 114}
115
8671a580 116/*
d737853b 117 * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
118 * distinct primes, and iqmp is the multiplicative inverse of q mod p.
119 * Uses Chinese Remainder Theorem to speed computation up over the
120 * obvious implementation of a single big modpow.
121 */
122Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
123 Bignum p, Bignum q, Bignum iqmp)
124{
125 Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
126
127 /*
128 * Reduce the exponent mod phi(p) and phi(q), to save time when
129 * exponentiating mod p and mod q respectively. Of course, since p
130 * and q are prime, phi(p) == p-1 and similarly for q.
131 */
132 pm1 = copybn(p);
133 decbn(pm1);
134 qm1 = copybn(q);
135 decbn(qm1);
136 pexp = bigmod(exp, pm1);
137 qexp = bigmod(exp, qm1);
138
139 /*
140 * Do the two modpows.
141 */
142 presult = modpow(base, pexp, p);
143 qresult = modpow(base, qexp, q);
144
145 /*
146 * Recombine the results. We want a value which is congruent to
147 * qresult mod q, and to presult mod p.
148 *
149 * We know that iqmp * q is congruent to 1 * mod p (by definition
150 * of iqmp) and to 0 mod q (obviously). So we start with qresult
151 * (which is congruent to qresult mod both primes), and add on
152 * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
153 * to presult mod p without affecting its value mod q.
154 */
155 if (bignum_cmp(presult, qresult) < 0) {
156 /*
157 * Can't subtract presult from qresult without first adding on
158 * p.
159 */
160 Bignum tmp = presult;
161 presult = bigadd(presult, p);
162 freebn(tmp);
163 }
164 diff = bigsub(presult, qresult);
165 multiplier = bigmul(iqmp, q);
166 ret0 = bigmuladd(multiplier, diff, qresult);
167
168 /*
169 * Finally, reduce the result mod n.
170 */
171 ret = bigmod(ret0, mod);
172
173 /*
174 * Free all the intermediate results before returning.
175 */
176 freebn(pm1);
177 freebn(qm1);
178 freebn(pexp);
179 freebn(qexp);
180 freebn(presult);
181 freebn(qresult);
182 freebn(diff);
183 freebn(multiplier);
184 freebn(ret0);
185
186 return ret;
187}
188
189/*
190 * This function is a wrapper on modpow(). It has the same effect as
191 * modpow(), but employs RSA blinding to protect against timing
192 * attacks and also uses the Chinese Remainder Theorem (implemented
193 * above, in crt_modpow()) to speed up the main operation.
8671a580 194 */
195static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
32874aea 196{
8671a580 197 Bignum random, random_encrypted, random_inverse;
198 Bignum input_blinded, ret_blinded;
7cca0d81 199 Bignum ret;
8671a580 200
b492c4d7 201 SHA512_State ss;
202 unsigned char digest512[64];
203 int digestused = lenof(digest512);
204 int hashseq = 0;
205
8671a580 206 /*
207 * Start by inventing a random number chosen uniformly from the
208 * range 2..modulus-1. (We do this by preparing a random number
209 * of the right length and retrying if it's greater than the
210 * modulus, to prevent any potential Bleichenbacher-like
211 * attacks making use of the uneven distribution within the
212 * range that would arise from just reducing our number mod n.
213 * There are timing implications to the potential retries, of
214 * course, but all they tell you is the modulus, which you
215 * already knew.)
b492c4d7 216 *
217 * To preserve determinism and avoid Pageant needing to share
218 * the random number pool, we actually generate this `random'
219 * number by hashing stuff with the private key.
8671a580 220 */
221 while (1) {
222 int bits, byte, bitsleft, v;
223 random = copybn(key->modulus);
224 /*
225 * Find the topmost set bit. (This function will return its
226 * index plus one.) Then we'll set all bits from that one
227 * downwards randomly.
228 */
229 bits = bignum_bitcount(random);
230 byte = 0;
231 bitsleft = 0;
232 while (bits--) {
b492c4d7 233 if (bitsleft <= 0) {
234 bitsleft = 8;
235 /*
236 * Conceptually the following few lines are equivalent to
237 * byte = random_byte();
238 */
239 if (digestused >= lenof(digest512)) {
240 unsigned char seqbuf[4];
241 PUT_32BIT(seqbuf, hashseq);
242 SHA512_Init(&ss);
243 SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
244 SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
245 sha512_mpint(&ss, key->private_exponent);
246 SHA512_Final(&ss, digest512);
247 hashseq++;
248
249 /*
250 * Now hash that digest plus the signature
251 * input.
252 */
253 SHA512_Init(&ss);
254 SHA512_Bytes(&ss, digest512, sizeof(digest512));
255 sha512_mpint(&ss, input);
256 SHA512_Final(&ss, digest512);
257
258 digestused = 0;
259 }
260 byte = digest512[digestused++];
261 }
8671a580 262 v = byte & 1;
263 byte >>= 1;
264 bitsleft--;
265 bignum_set_bit(random, bits, v);
266 }
267
268 /*
269 * Now check that this number is strictly greater than
270 * zero, and strictly less than modulus.
271 */
272 if (bignum_cmp(random, Zero) <= 0 ||
273 bignum_cmp(random, key->modulus) >= 0) {
274 freebn(random);
275 continue;
8671a580 276 }
de81309d 277
278 /*
279 * Also, make sure it has an inverse mod modulus.
280 */
281 random_inverse = modinv(random, key->modulus);
282 if (!random_inverse) {
283 freebn(random);
284 continue;
285 }
286
287 break;
8671a580 288 }
289
290 /*
291 * RSA blinding relies on the fact that (xy)^d mod n is equal
292 * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
033a3ded 293 * y and y^d; then we multiply x by y, raise to the power d mod
294 * n as usual, and divide by y^d to recover x^d. Thus an
295 * attacker can't correlate the timing of the modpow with the
296 * input, because they don't know anything about the number
297 * that was input to the actual modpow.
8671a580 298 *
299 * The clever bit is that we don't have to do a huge modpow to
300 * get y and y^d; we will use the number we just invented as
033a3ded 301 * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
302 * from it, which is much faster to do.
8671a580 303 */
d737853b 304 random_encrypted = crt_modpow(random, key->exponent,
305 key->modulus, key->p, key->q, key->iqmp);
8671a580 306 input_blinded = modmul(input, random_encrypted, key->modulus);
d737853b 307 ret_blinded = crt_modpow(input_blinded, key->private_exponent,
308 key->modulus, key->p, key->q, key->iqmp);
8671a580 309 ret = modmul(ret_blinded, random_inverse, key->modulus);
310
311 freebn(ret_blinded);
312 freebn(input_blinded);
313 freebn(random_inverse);
314 freebn(random_encrypted);
315 freebn(random);
316
7cca0d81 317 return ret;
318}
319
8671a580 320Bignum rsadecrypt(Bignum input, struct RSAKey *key)
321{
322 return rsa_privkey_op(input, key);
323}
324
32874aea 325int rsastr_len(struct RSAKey *key)
326{
374330e2 327 Bignum md, ex;
3709bfe9 328 int mdlen, exlen;
374330e2 329
330 md = key->modulus;
331 ex = key->exponent;
32874aea 332 mdlen = (bignum_bitcount(md) + 15) / 16;
333 exlen = (bignum_bitcount(ex) + 15) / 16;
334 return 4 * (mdlen + exlen) + 20;
374330e2 335}
336
32874aea 337void rsastr_fmt(char *str, struct RSAKey *key)
338{
374330e2 339 Bignum md, ex;
d5859615 340 int len = 0, i, nibbles;
341 static const char hex[] = "0123456789abcdef";
374330e2 342
343 md = key->modulus;
344 ex = key->exponent;
345
32874aea 346 len += sprintf(str + len, "0x");
d5859615 347
32874aea 348 nibbles = (3 + bignum_bitcount(ex)) / 4;
349 if (nibbles < 1)
350 nibbles = 1;
351 for (i = nibbles; i--;)
352 str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
d5859615 353
32874aea 354 len += sprintf(str + len, ",0x");
d5859615 355
32874aea 356 nibbles = (3 + bignum_bitcount(md)) / 4;
357 if (nibbles < 1)
358 nibbles = 1;
359 for (i = nibbles; i--;)
360 str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
d5859615 361
374330e2 362 str[len] = '\0';
363}
364
1c2a93c4 365/*
366 * Generate a fingerprint string for the key. Compatible with the
367 * OpenSSH fingerprint code.
368 */
32874aea 369void rsa_fingerprint(char *str, int len, struct RSAKey *key)
370{
1c2a93c4 371 struct MD5Context md5c;
372 unsigned char digest[16];
32874aea 373 char buffer[16 * 3 + 40];
1c2a93c4 374 int numlen, slen, i;
375
376 MD5Init(&md5c);
377 numlen = ssh1_bignum_length(key->modulus) - 2;
32874aea 378 for (i = numlen; i--;) {
379 unsigned char c = bignum_byte(key->modulus, i);
380 MD5Update(&md5c, &c, 1);
1c2a93c4 381 }
382 numlen = ssh1_bignum_length(key->exponent) - 2;
32874aea 383 for (i = numlen; i--;) {
384 unsigned char c = bignum_byte(key->exponent, i);
385 MD5Update(&md5c, &c, 1);
1c2a93c4 386 }
387 MD5Final(digest, &md5c);
388
ddecd643 389 sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
1c2a93c4 390 for (i = 0; i < 16; i++)
32874aea 391 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
392 digest[i]);
393 strncpy(str, buffer, len);
394 str[len - 1] = '\0';
1c2a93c4 395 slen = strlen(str);
32874aea 396 if (key->comment && slen < len - 1) {
397 str[slen] = ' ';
398 strncpy(str + slen + 1, key->comment, len - slen - 1);
399 str[len - 1] = '\0';
1c2a93c4 400 }
401}
402
98f022f5 403/*
404 * Verify that the public data in an RSA key matches the private
60fe6ff7 405 * data. We also check the private data itself: we ensure that p >
406 * q and that iqmp really is the inverse of q mod p.
98f022f5 407 */
32874aea 408int rsa_verify(struct RSAKey *key)
409{
60fe6ff7 410 Bignum n, ed, pm1, qm1;
98f022f5 411 int cmp;
412
413 /* n must equal pq. */
414 n = bigmul(key->p, key->q);
415 cmp = bignum_cmp(n, key->modulus);
416 freebn(n);
417 if (cmp != 0)
418 return 0;
419
60fe6ff7 420 /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
98f022f5 421 pm1 = copybn(key->p);
422 decbn(pm1);
60fe6ff7 423 ed = modmul(key->exponent, key->private_exponent, pm1);
038ec85e 424 freebn(pm1);
60fe6ff7 425 cmp = bignum_cmp(ed, One);
378c6504 426 freebn(ed);
60fe6ff7 427 if (cmp != 0)
428 return 0;
429
98f022f5 430 qm1 = copybn(key->q);
431 decbn(qm1);
60fe6ff7 432 ed = modmul(key->exponent, key->private_exponent, qm1);
038ec85e 433 freebn(qm1);
98f022f5 434 cmp = bignum_cmp(ed, One);
378c6504 435 freebn(ed);
98f022f5 436 if (cmp != 0)
437 return 0;
014970c8 438
60fe6ff7 439 /*
440 * Ensure p > q.
f5bcbcc2 441 *
442 * I have seen key blobs in the wild which were generated with
443 * p < q, so instead of rejecting the key in this case we
444 * should instead flip them round into the canonical order of
445 * p > q. This also involves regenerating iqmp.
60fe6ff7 446 */
f5bcbcc2 447 if (bignum_cmp(key->p, key->q) <= 0) {
448 Bignum tmp = key->p;
449 key->p = key->q;
450 key->q = tmp;
451
452 freebn(key->iqmp);
453 key->iqmp = modinv(key->q, key->p);
de81309d 454 if (!key->iqmp)
455 return 0;
f5bcbcc2 456 }
60fe6ff7 457
458 /*
459 * Ensure iqmp * q is congruent to 1, modulo p.
460 */
461 n = modmul(key->iqmp, key->q, key->p);
462 cmp = bignum_cmp(n, One);
378c6504 463 freebn(n);
60fe6ff7 464 if (cmp != 0)
32874aea 465 return 0;
60fe6ff7 466
014970c8 467 return 1;
98f022f5 468}
469
3f2d010c 470/* Public key blob as used by Pageant: exponent before modulus. */
471unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
472{
473 int length, pos;
474 unsigned char *ret;
475
476 length = (ssh1_bignum_length(key->modulus) +
477 ssh1_bignum_length(key->exponent) + 4);
3d88e64d 478 ret = snewn(length, unsigned char);
3f2d010c 479
480 PUT_32BIT(ret, bignum_bitcount(key->modulus));
481 pos = 4;
482 pos += ssh1_write_bignum(ret + pos, key->exponent);
483 pos += ssh1_write_bignum(ret + pos, key->modulus);
484
485 *len = length;
486 return ret;
487}
488
489/* Given a public blob, determine its length. */
0016d70b 490int rsa_public_blob_len(void *data, int maxlen)
3f2d010c 491{
492 unsigned char *p = (unsigned char *)data;
0016d70b 493 int n;
3f2d010c 494
0016d70b 495 if (maxlen < 4)
496 return -1;
3f2d010c 497 p += 4; /* length word */
0016d70b 498 maxlen -= 4;
499
500 n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */
501 if (n < 0)
502 return -1;
503 p += n;
504
505 n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */
506 if (n < 0)
507 return -1;
508 p += n;
3f2d010c 509
510 return p - (unsigned char *)data;
511}
512
32874aea 513void freersakey(struct RSAKey *key)
514{
515 if (key->modulus)
516 freebn(key->modulus);
517 if (key->exponent)
518 freebn(key->exponent);
519 if (key->private_exponent)
520 freebn(key->private_exponent);
f5bcbcc2 521 if (key->p)
522 freebn(key->p);
523 if (key->q)
524 freebn(key->q);
525 if (key->iqmp)
526 freebn(key->iqmp);
32874aea 527 if (key->comment)
528 sfree(key->comment);
5c58ad2d 529}
85cc02bb 530
531/* ----------------------------------------------------------------------
532 * Implementation of the ssh-rsa signing key type.
533 */
534
32874aea 535static void getstring(char **data, int *datalen, char **p, int *length)
536{
85cc02bb 537 *p = NULL;
538 if (*datalen < 4)
32874aea 539 return;
b1650067 540 *length = toint(GET_32BIT(*data));
af1da246 541 if (*length < 0)
542 return;
32874aea 543 *datalen -= 4;
544 *data += 4;
85cc02bb 545 if (*datalen < *length)
32874aea 546 return;
85cc02bb 547 *p = *data;
32874aea 548 *data += *length;
549 *datalen -= *length;
85cc02bb 550}
32874aea 551static Bignum getmp(char **data, int *datalen)
552{
85cc02bb 553 char *p;
554 int length;
555 Bignum b;
556
557 getstring(data, datalen, &p, &length);
558 if (!p)
32874aea 559 return NULL;
9bf430c9 560 b = bignum_from_bytes((unsigned char *)p, length);
85cc02bb 561 return b;
562}
563
32874aea 564static void *rsa2_newkey(char *data, int len)
565{
85cc02bb 566 char *p;
567 int slen;
568 struct RSAKey *rsa;
569
3d88e64d 570 rsa = snew(struct RSAKey);
85cc02bb 571 getstring(&data, &len, &p, &slen);
572
45cebe79 573 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
85cc02bb 574 sfree(rsa);
575 return NULL;
576 }
577 rsa->exponent = getmp(&data, &len);
578 rsa->modulus = getmp(&data, &len);
579 rsa->private_exponent = NULL;
bc7cc96f 580 rsa->p = rsa->q = rsa->iqmp = NULL;
85cc02bb 581 rsa->comment = NULL;
582
583 return rsa;
584}
585
32874aea 586static void rsa2_freekey(void *key)
587{
588 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 589 freersakey(rsa);
590 sfree(rsa);
591}
592
32874aea 593static char *rsa2_fmtkey(void *key)
594{
595 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 596 char *p;
597 int len;
32874aea 598
85cc02bb 599 len = rsastr_len(rsa);
3d88e64d 600 p = snewn(len, char);
32874aea 601 rsastr_fmt(p, rsa);
85cc02bb 602 return p;
603}
604
32874aea 605static unsigned char *rsa2_public_blob(void *key, int *len)
606{
607 struct RSAKey *rsa = (struct RSAKey *) key;
65a22376 608 int elen, mlen, bloblen;
609 int i;
610 unsigned char *blob, *p;
611
32874aea 612 elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
613 mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
65a22376 614
615 /*
616 * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
617 * (three length fields, 12+7=19).
618 */
32874aea 619 bloblen = 19 + elen + mlen;
3d88e64d 620 blob = snewn(bloblen, unsigned char);
65a22376 621 p = blob;
32874aea 622 PUT_32BIT(p, 7);
623 p += 4;
624 memcpy(p, "ssh-rsa", 7);
625 p += 7;
626 PUT_32BIT(p, elen);
627 p += 4;
628 for (i = elen; i--;)
629 *p++ = bignum_byte(rsa->exponent, i);
630 PUT_32BIT(p, mlen);
631 p += 4;
632 for (i = mlen; i--;)
633 *p++ = bignum_byte(rsa->modulus, i);
65a22376 634 assert(p == blob + bloblen);
635 *len = bloblen;
636 return blob;
637}
638
32874aea 639static unsigned char *rsa2_private_blob(void *key, int *len)
640{
641 struct RSAKey *rsa = (struct RSAKey *) key;
65a22376 642 int dlen, plen, qlen, ulen, bloblen;
643 int i;
644 unsigned char *blob, *p;
645
32874aea 646 dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
647 plen = (bignum_bitcount(rsa->p) + 8) / 8;
648 qlen = (bignum_bitcount(rsa->q) + 8) / 8;
649 ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
65a22376 650
651 /*
652 * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
653 * sum of lengths.
654 */
32874aea 655 bloblen = 16 + dlen + plen + qlen + ulen;
3d88e64d 656 blob = snewn(bloblen, unsigned char);
65a22376 657 p = blob;
32874aea 658 PUT_32BIT(p, dlen);
659 p += 4;
660 for (i = dlen; i--;)
661 *p++ = bignum_byte(rsa->private_exponent, i);
662 PUT_32BIT(p, plen);
663 p += 4;
664 for (i = plen; i--;)
665 *p++ = bignum_byte(rsa->p, i);
666 PUT_32BIT(p, qlen);
667 p += 4;
668 for (i = qlen; i--;)
669 *p++ = bignum_byte(rsa->q, i);
670 PUT_32BIT(p, ulen);
671 p += 4;
672 for (i = ulen; i--;)
673 *p++ = bignum_byte(rsa->iqmp, i);
65a22376 674 assert(p == blob + bloblen);
675 *len = bloblen;
676 return blob;
677}
678
679static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
32874aea 680 unsigned char *priv_blob, int priv_len)
681{
65a22376 682 struct RSAKey *rsa;
32874aea 683 char *pb = (char *) priv_blob;
684
685 rsa = rsa2_newkey((char *) pub_blob, pub_len);
65a22376 686 rsa->private_exponent = getmp(&pb, &priv_len);
687 rsa->p = getmp(&pb, &priv_len);
688 rsa->q = getmp(&pb, &priv_len);
689 rsa->iqmp = getmp(&pb, &priv_len);
690
98f022f5 691 if (!rsa_verify(rsa)) {
692 rsa2_freekey(rsa);
693 return NULL;
694 }
695
65a22376 696 return rsa;
697}
698
32874aea 699static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
700{
701 char **b = (char **) blob;
45cebe79 702 struct RSAKey *rsa;
45cebe79 703
3d88e64d 704 rsa = snew(struct RSAKey);
45cebe79 705 rsa->comment = NULL;
706
707 rsa->modulus = getmp(b, len);
708 rsa->exponent = getmp(b, len);
709 rsa->private_exponent = getmp(b, len);
710 rsa->iqmp = getmp(b, len);
711 rsa->p = getmp(b, len);
712 rsa->q = getmp(b, len);
713
714 if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
715 !rsa->iqmp || !rsa->p || !rsa->q) {
378c6504 716 rsa2_freekey(rsa);
45cebe79 717 return NULL;
718 }
719
8d27a9c6 720 if (!rsa_verify(rsa)) {
721 rsa2_freekey(rsa);
722 return NULL;
723 }
724
45cebe79 725 return rsa;
726}
727
32874aea 728static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
729{
730 struct RSAKey *rsa = (struct RSAKey *) key;
ddecd643 731 int bloblen, i;
732
733 bloblen =
734 ssh2_bignum_length(rsa->modulus) +
735 ssh2_bignum_length(rsa->exponent) +
736 ssh2_bignum_length(rsa->private_exponent) +
737 ssh2_bignum_length(rsa->iqmp) +
32874aea 738 ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
ddecd643 739
740 if (bloblen > len)
741 return bloblen;
742
743 bloblen = 0;
744#define ENC(x) \
745 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
746 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
747 ENC(rsa->modulus);
748 ENC(rsa->exponent);
749 ENC(rsa->private_exponent);
750 ENC(rsa->iqmp);
751 ENC(rsa->p);
752 ENC(rsa->q);
753
754 return bloblen;
755}
756
47a6b94c 757static int rsa2_pubkey_bits(void *blob, int len)
758{
759 struct RSAKey *rsa;
760 int ret;
761
762 rsa = rsa2_newkey((char *) blob, len);
763 ret = bignum_bitcount(rsa->modulus);
764 rsa2_freekey(rsa);
765
766 return ret;
767}
768
32874aea 769static char *rsa2_fingerprint(void *key)
770{
771 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 772 struct MD5Context md5c;
773 unsigned char digest[16], lenbuf[4];
32874aea 774 char buffer[16 * 3 + 40];
85cc02bb 775 char *ret;
776 int numlen, i;
777
778 MD5Init(&md5c);
9bf430c9 779 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
85cc02bb 780
781#define ADD_BIGNUM(bignum) \
ddecd643 782 numlen = (bignum_bitcount(bignum)+8)/8; \
85cc02bb 783 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
784 for (i = numlen; i-- ;) { \
785 unsigned char c = bignum_byte(bignum, i); \
786 MD5Update(&md5c, &c, 1); \
787 }
788 ADD_BIGNUM(rsa->exponent);
789 ADD_BIGNUM(rsa->modulus);
790#undef ADD_BIGNUM
791
792 MD5Final(digest, &md5c);
793
ddecd643 794 sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
85cc02bb 795 for (i = 0; i < 16; i++)
32874aea 796 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
797 digest[i]);
3d88e64d 798 ret = snewn(strlen(buffer) + 1, char);
85cc02bb 799 if (ret)
32874aea 800 strcpy(ret, buffer);
85cc02bb 801 return ret;
802}
803
804/*
805 * This is the magic ASN.1/DER prefix that goes in the decoded
806 * signature, between the string of FFs and the actual SHA hash
96a73db9 807 * value. The meaning of it is:
85cc02bb 808 *
809 * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
810 *
811 * 30 21 -- a constructed SEQUENCE of length 0x21
812 * 30 09 -- a constructed sub-SEQUENCE of length 9
813 * 06 05 -- an object identifier, length 5
96a73db9 814 * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
815 * (the 1,3 comes from 0x2B = 43 = 40*1+3)
85cc02bb 816 * 05 00 -- NULL
817 * 04 14 -- a primitive OCTET STRING of length 0x14
818 * [0x14 bytes of hash data follows]
96a73db9 819 *
820 * The object id in the middle there is listed as `id-sha1' in
821 * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
822 * ASN module for PKCS #1) and its expanded form is as follows:
823 *
824 * id-sha1 OBJECT IDENTIFIER ::= {
825 * iso(1) identified-organization(3) oiw(14) secsig(3)
826 * algorithms(2) 26 }
85cc02bb 827 */
b5864f2c 828static const unsigned char asn1_weird_stuff[] = {
32874aea 829 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
830 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
85cc02bb 831};
832
d8770b12 833#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
834
85cc02bb 835static int rsa2_verifysig(void *key, char *sig, int siglen,
32874aea 836 char *data, int datalen)
837{
838 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 839 Bignum in, out;
840 char *p;
841 int slen;
842 int bytes, i, j, ret;
843 unsigned char hash[20];
844
845 getstring(&sig, &siglen, &p, &slen);
846 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
32874aea 847 return 0;
85cc02bb 848 }
849 in = getmp(&sig, &siglen);
9febf7ed 850 if (!in)
851 return 0;
85cc02bb 852 out = modpow(in, rsa->exponent, rsa->modulus);
853 freebn(in);
854
855 ret = 1;
856
7bd33644 857 bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
85cc02bb 858 /* Top (partial) byte should be zero. */
32874aea 859 if (bignum_byte(out, bytes - 1) != 0)
860 ret = 0;
85cc02bb 861 /* First whole byte should be 1. */
32874aea 862 if (bignum_byte(out, bytes - 2) != 1)
863 ret = 0;
85cc02bb 864 /* Most of the rest should be FF. */
32874aea 865 for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
866 if (bignum_byte(out, i) != 0xFF)
867 ret = 0;
85cc02bb 868 }
869 /* Then we expect to see the asn1_weird_stuff. */
32874aea 870 for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
871 if (bignum_byte(out, i) != asn1_weird_stuff[j])
872 ret = 0;
85cc02bb 873 }
874 /* Finally, we expect to see the SHA-1 hash of the signed data. */
875 SHA_Simple(data, datalen, hash);
32874aea 876 for (i = 19, j = 0; i >= 0; i--, j++) {
877 if (bignum_byte(out, i) != hash[j])
878 ret = 0;
85cc02bb 879 }
679539d7 880 freebn(out);
85cc02bb 881
882 return ret;
883}
884
164feb13 885static unsigned char *rsa2_sign(void *key, char *data, int datalen,
886 int *siglen)
32874aea 887{
888 struct RSAKey *rsa = (struct RSAKey *) key;
65a22376 889 unsigned char *bytes;
890 int nbytes;
891 unsigned char hash[20];
892 Bignum in, out;
893 int i, j;
894
895 SHA_Simple(data, datalen, hash);
896
32874aea 897 nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
e99cd73f 898 assert(1 <= nbytes - 20 - ASN1_LEN);
3d88e64d 899 bytes = snewn(nbytes, unsigned char);
65a22376 900
901 bytes[0] = 1;
32874aea 902 for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
65a22376 903 bytes[i] = 0xFF;
32874aea 904 for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
65a22376 905 bytes[i] = asn1_weird_stuff[j];
32874aea 906 for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
65a22376 907 bytes[i] = hash[j];
908
909 in = bignum_from_bytes(bytes, nbytes);
910 sfree(bytes);
911
8671a580 912 out = rsa_privkey_op(in, rsa);
65a22376 913 freebn(in);
914
32874aea 915 nbytes = (bignum_bitcount(out) + 7) / 8;
3d88e64d 916 bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
65a22376 917 PUT_32BIT(bytes, 7);
32874aea 918 memcpy(bytes + 4, "ssh-rsa", 7);
919 PUT_32BIT(bytes + 4 + 7, nbytes);
65a22376 920 for (i = 0; i < nbytes; i++)
32874aea 921 bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
65a22376 922 freebn(out);
923
32874aea 924 *siglen = 4 + 7 + 4 + nbytes;
65a22376 925 return bytes;
85cc02bb 926}
927
65a22376 928const struct ssh_signkey ssh_rsa = {
85cc02bb 929 rsa2_newkey,
930 rsa2_freekey,
931 rsa2_fmtkey,
65a22376 932 rsa2_public_blob,
933 rsa2_private_blob,
934 rsa2_createkey,
45cebe79 935 rsa2_openssh_createkey,
ddecd643 936 rsa2_openssh_fmtkey,
47a6b94c 937 rsa2_pubkey_bits,
85cc02bb 938 rsa2_fingerprint,
939 rsa2_verifysig,
940 rsa2_sign,
941 "ssh-rsa",
942 "rsa2"
943};
fae1a71b 944
945void *ssh_rsakex_newkey(char *data, int len)
946{
947 return rsa2_newkey(data, len);
948}
949
950void ssh_rsakex_freekey(void *key)
951{
952 rsa2_freekey(key);
953}
954
955int ssh_rsakex_klen(void *key)
956{
957 struct RSAKey *rsa = (struct RSAKey *) key;
958
959 return bignum_bitcount(rsa->modulus);
960}
961
962static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,
963 void *vdata, int datalen)
964{
965 unsigned char *data = (unsigned char *)vdata;
966 unsigned count = 0;
967
968 while (datalen > 0) {
969 int i, max = (datalen > h->hlen ? h->hlen : datalen);
970 void *s;
143ec28a 971 unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN];
fae1a71b 972
143ec28a 973 assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
fae1a71b 974 PUT_32BIT(counter, count);
975 s = h->init();
976 h->bytes(s, seed, seedlen);
977 h->bytes(s, counter, 4);
978 h->final(s, hash);
979 count++;
980
981 for (i = 0; i < max; i++)
982 data[i] ^= hash[i];
983
984 data += max;
985 datalen -= max;
986 }
987}
988
989void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,
990 unsigned char *out, int outlen,
991 void *key)
992{
993 Bignum b1, b2;
994 struct RSAKey *rsa = (struct RSAKey *) key;
995 int k, i;
996 char *p;
997 const int HLEN = h->hlen;
998
999 /*
1000 * Here we encrypt using RSAES-OAEP. Essentially this means:
1001 *
1002 * - we have a SHA-based `mask generation function' which
1003 * creates a pseudo-random stream of mask data
1004 * deterministically from an input chunk of data.
1005 *
1006 * - we have a random chunk of data called a seed.
1007 *
1008 * - we use the seed to generate a mask which we XOR with our
1009 * plaintext.
1010 *
1011 * - then we use _the masked plaintext_ to generate a mask
1012 * which we XOR with the seed.
1013 *
1014 * - then we concatenate the masked seed and the masked
1015 * plaintext, and RSA-encrypt that lot.
1016 *
1017 * The result is that the data input to the encryption function
1018 * is random-looking and (hopefully) contains no exploitable
1019 * structure such as PKCS1-v1_5 does.
1020 *
1021 * For a precise specification, see RFC 3447, section 7.1.1.
1022 * Some of the variable names below are derived from that, so
1023 * it'd probably help to read it anyway.
1024 */
1025
1026 /* k denotes the length in octets of the RSA modulus. */
1027 k = (7 + bignum_bitcount(rsa->modulus)) / 8;
1028
1029 /* The length of the input data must be at most k - 2hLen - 2. */
1030 assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
1031
1032 /* The length of the output data wants to be precisely k. */
1033 assert(outlen == k);
1034
1035 /*
1036 * Now perform EME-OAEP encoding. First set up all the unmasked
1037 * output data.
1038 */
1039 /* Leading byte zero. */
1040 out[0] = 0;
1041 /* At position 1, the seed: HLEN bytes of random data. */
1042 for (i = 0; i < HLEN; i++)
1043 out[i + 1] = random_byte();
1044 /* At position 1+HLEN, the data block DB, consisting of: */
1045 /* The hash of the label (we only support an empty label here) */
1046 h->final(h->init(), out + HLEN + 1);
1047 /* A bunch of zero octets */
1048 memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
1049 /* A single 1 octet, followed by the input message data. */
1050 out[outlen - inlen - 1] = 1;
1051 memcpy(out + outlen - inlen, in, inlen);
1052
1053 /*
1054 * Now use the seed data to mask the block DB.
1055 */
1056 oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
1057
1058 /*
1059 * And now use the masked DB to mask the seed itself.
1060 */
1061 oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
1062
1063 /*
1064 * Now `out' contains precisely the data we want to
1065 * RSA-encrypt.
1066 */
1067 b1 = bignum_from_bytes(out, outlen);
1068 b2 = modpow(b1, rsa->exponent, rsa->modulus);
7108a872 1069 p = (char *)out;
fae1a71b 1070 for (i = outlen; i--;) {
1071 *p++ = bignum_byte(b2, i);
1072 }
1073 freebn(b1);
1074 freebn(b2);
1075
1076 /*
1077 * And we're done.
1078 */
1079}
1080
1081static const struct ssh_kex ssh_rsa_kex_sha1 = {
1082 "rsa1024-sha1", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha1
1083};
1084
1085static const struct ssh_kex ssh_rsa_kex_sha256 = {
1086 "rsa2048-sha256", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha256
1087};
1088
1089static const struct ssh_kex *const rsa_kex_list[] = {
1090 &ssh_rsa_kex_sha256,
1091 &ssh_rsa_kex_sha1
1092};
1093
1094const struct ssh_kexes ssh_rsa_kex = {
1095 sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
1096 rsa_kex_list
1097};