Implement the Montgomery technique for speeding up modular
[u/mdw/putty] / sshrsa.c
CommitLineData
374330e2 1/*
8671a580 2 * RSA implementation for PuTTY.
374330e2 3 */
4
374330e2 5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
65a22376 8#include <assert.h>
374330e2 9
e5574168 10#include "ssh.h"
8365990c 11#include "misc.h"
374330e2 12
0016d70b 13int makekey(unsigned char *data, int len, struct RSAKey *result,
32874aea 14 unsigned char **keystr, int order)
15{
374330e2 16 unsigned char *p = data;
0016d70b 17 int i, n;
18
19 if (len < 4)
20 return -1;
374330e2 21
a52f067e 22 if (result) {
32874aea 23 result->bits = 0;
24 for (i = 0; i < 4; i++)
25 result->bits = (result->bits << 8) + *p++;
a52f067e 26 } else
32874aea 27 p += 4;
374330e2 28
0016d70b 29 len -= 4;
30
7cca0d81 31 /*
32 * order=0 means exponent then modulus (the keys sent by the
33 * server). order=1 means modulus then exponent (the keys
34 * stored in a keyfile).
35 */
374330e2 36
0016d70b 37 if (order == 0) {
38 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
39 if (n < 0) return -1;
40 p += n;
41 len -= n;
42 }
43
44 n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
26d98fc6 45 if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
a52f067e 46 if (result)
0016d70b 47 result->bytes = n - 2;
32874aea 48 if (keystr)
49 *keystr = p + 2;
0016d70b 50 p += n;
51 len -= n;
52
53 if (order == 1) {
54 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
55 if (n < 0) return -1;
56 p += n;
57 len -= n;
58 }
374330e2 59 return p - data;
60}
61
0016d70b 62int makeprivate(unsigned char *data, int len, struct RSAKey *result)
32874aea 63{
0016d70b 64 return ssh1_read_bignum(data, len, &result->private_exponent);
7cca0d81 65}
66
0016d70b 67int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
32874aea 68{
374330e2 69 Bignum b1, b2;
3709bfe9 70 int i;
374330e2 71 unsigned char *p;
72
0016d70b 73 if (key->bytes < length + 4)
74 return 0; /* RSA key too short! */
75
32874aea 76 memmove(data + key->bytes - length, data, length);
374330e2 77 data[0] = 0;
78 data[1] = 2;
79
32874aea 80 for (i = 2; i < key->bytes - length - 1; i++) {
374330e2 81 do {
82 data[i] = random_byte();
83 } while (data[i] == 0);
84 }
32874aea 85 data[key->bytes - length - 1] = 0;
374330e2 86
3709bfe9 87 b1 = bignum_from_bytes(data, key->bytes);
374330e2 88
59600f67 89 b2 = modpow(b1, key->exponent, key->modulus);
374330e2 90
374330e2 91 p = data;
32874aea 92 for (i = key->bytes; i--;) {
93 *p++ = bignum_byte(b2, i);
374330e2 94 }
95
96 freebn(b1);
97 freebn(b2);
0016d70b 98
99 return 1;
374330e2 100}
101
b492c4d7 102static void sha512_mpint(SHA512_State * s, Bignum b)
103{
104 unsigned char lenbuf[4];
105 int len;
106 len = (bignum_bitcount(b) + 8) / 8;
107 PUT_32BIT(lenbuf, len);
108 SHA512_Bytes(s, lenbuf, 4);
109 while (len-- > 0) {
110 lenbuf[0] = bignum_byte(b, len);
111 SHA512_Bytes(s, lenbuf, 1);
112 }
113 memset(lenbuf, 0, sizeof(lenbuf));
114}
115
8671a580 116/*
117 * This function is a wrapper on modpow(). It has the same effect
118 * as modpow(), but employs RSA blinding to protect against timing
119 * attacks.
120 */
121static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
32874aea 122{
8671a580 123 Bignum random, random_encrypted, random_inverse;
124 Bignum input_blinded, ret_blinded;
7cca0d81 125 Bignum ret;
8671a580 126
b492c4d7 127 SHA512_State ss;
128 unsigned char digest512[64];
129 int digestused = lenof(digest512);
130 int hashseq = 0;
131
8671a580 132 /*
133 * Start by inventing a random number chosen uniformly from the
134 * range 2..modulus-1. (We do this by preparing a random number
135 * of the right length and retrying if it's greater than the
136 * modulus, to prevent any potential Bleichenbacher-like
137 * attacks making use of the uneven distribution within the
138 * range that would arise from just reducing our number mod n.
139 * There are timing implications to the potential retries, of
140 * course, but all they tell you is the modulus, which you
141 * already knew.)
b492c4d7 142 *
143 * To preserve determinism and avoid Pageant needing to share
144 * the random number pool, we actually generate this `random'
145 * number by hashing stuff with the private key.
8671a580 146 */
147 while (1) {
148 int bits, byte, bitsleft, v;
149 random = copybn(key->modulus);
150 /*
151 * Find the topmost set bit. (This function will return its
152 * index plus one.) Then we'll set all bits from that one
153 * downwards randomly.
154 */
155 bits = bignum_bitcount(random);
156 byte = 0;
157 bitsleft = 0;
158 while (bits--) {
b492c4d7 159 if (bitsleft <= 0) {
160 bitsleft = 8;
161 /*
162 * Conceptually the following few lines are equivalent to
163 * byte = random_byte();
164 */
165 if (digestused >= lenof(digest512)) {
166 unsigned char seqbuf[4];
167 PUT_32BIT(seqbuf, hashseq);
168 SHA512_Init(&ss);
169 SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
170 SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
171 sha512_mpint(&ss, key->private_exponent);
172 SHA512_Final(&ss, digest512);
173 hashseq++;
174
175 /*
176 * Now hash that digest plus the signature
177 * input.
178 */
179 SHA512_Init(&ss);
180 SHA512_Bytes(&ss, digest512, sizeof(digest512));
181 sha512_mpint(&ss, input);
182 SHA512_Final(&ss, digest512);
183
184 digestused = 0;
185 }
186 byte = digest512[digestused++];
187 }
8671a580 188 v = byte & 1;
189 byte >>= 1;
190 bitsleft--;
191 bignum_set_bit(random, bits, v);
192 }
193
194 /*
195 * Now check that this number is strictly greater than
196 * zero, and strictly less than modulus.
197 */
198 if (bignum_cmp(random, Zero) <= 0 ||
199 bignum_cmp(random, key->modulus) >= 0) {
200 freebn(random);
201 continue;
202 } else {
203 break;
204 }
205 }
206
207 /*
208 * RSA blinding relies on the fact that (xy)^d mod n is equal
209 * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
033a3ded 210 * y and y^d; then we multiply x by y, raise to the power d mod
211 * n as usual, and divide by y^d to recover x^d. Thus an
212 * attacker can't correlate the timing of the modpow with the
213 * input, because they don't know anything about the number
214 * that was input to the actual modpow.
8671a580 215 *
216 * The clever bit is that we don't have to do a huge modpow to
217 * get y and y^d; we will use the number we just invented as
033a3ded 218 * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
219 * from it, which is much faster to do.
8671a580 220 */
221 random_encrypted = modpow(random, key->exponent, key->modulus);
222 random_inverse = modinv(random, key->modulus);
223 input_blinded = modmul(input, random_encrypted, key->modulus);
224 ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
225 ret = modmul(ret_blinded, random_inverse, key->modulus);
226
227 freebn(ret_blinded);
228 freebn(input_blinded);
229 freebn(random_inverse);
230 freebn(random_encrypted);
231 freebn(random);
232
7cca0d81 233 return ret;
234}
235
8671a580 236Bignum rsadecrypt(Bignum input, struct RSAKey *key)
237{
238 return rsa_privkey_op(input, key);
239}
240
32874aea 241int rsastr_len(struct RSAKey *key)
242{
374330e2 243 Bignum md, ex;
3709bfe9 244 int mdlen, exlen;
374330e2 245
246 md = key->modulus;
247 ex = key->exponent;
32874aea 248 mdlen = (bignum_bitcount(md) + 15) / 16;
249 exlen = (bignum_bitcount(ex) + 15) / 16;
250 return 4 * (mdlen + exlen) + 20;
374330e2 251}
252
32874aea 253void rsastr_fmt(char *str, struct RSAKey *key)
254{
374330e2 255 Bignum md, ex;
d5859615 256 int len = 0, i, nibbles;
257 static const char hex[] = "0123456789abcdef";
374330e2 258
259 md = key->modulus;
260 ex = key->exponent;
261
32874aea 262 len += sprintf(str + len, "0x");
d5859615 263
32874aea 264 nibbles = (3 + bignum_bitcount(ex)) / 4;
265 if (nibbles < 1)
266 nibbles = 1;
267 for (i = nibbles; i--;)
268 str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
d5859615 269
32874aea 270 len += sprintf(str + len, ",0x");
d5859615 271
32874aea 272 nibbles = (3 + bignum_bitcount(md)) / 4;
273 if (nibbles < 1)
274 nibbles = 1;
275 for (i = nibbles; i--;)
276 str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
d5859615 277
374330e2 278 str[len] = '\0';
279}
280
1c2a93c4 281/*
282 * Generate a fingerprint string for the key. Compatible with the
283 * OpenSSH fingerprint code.
284 */
32874aea 285void rsa_fingerprint(char *str, int len, struct RSAKey *key)
286{
1c2a93c4 287 struct MD5Context md5c;
288 unsigned char digest[16];
32874aea 289 char buffer[16 * 3 + 40];
1c2a93c4 290 int numlen, slen, i;
291
292 MD5Init(&md5c);
293 numlen = ssh1_bignum_length(key->modulus) - 2;
32874aea 294 for (i = numlen; i--;) {
295 unsigned char c = bignum_byte(key->modulus, i);
296 MD5Update(&md5c, &c, 1);
1c2a93c4 297 }
298 numlen = ssh1_bignum_length(key->exponent) - 2;
32874aea 299 for (i = numlen; i--;) {
300 unsigned char c = bignum_byte(key->exponent, i);
301 MD5Update(&md5c, &c, 1);
1c2a93c4 302 }
303 MD5Final(digest, &md5c);
304
ddecd643 305 sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
1c2a93c4 306 for (i = 0; i < 16; i++)
32874aea 307 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
308 digest[i]);
309 strncpy(str, buffer, len);
310 str[len - 1] = '\0';
1c2a93c4 311 slen = strlen(str);
32874aea 312 if (key->comment && slen < len - 1) {
313 str[slen] = ' ';
314 strncpy(str + slen + 1, key->comment, len - slen - 1);
315 str[len - 1] = '\0';
1c2a93c4 316 }
317}
318
98f022f5 319/*
320 * Verify that the public data in an RSA key matches the private
60fe6ff7 321 * data. We also check the private data itself: we ensure that p >
322 * q and that iqmp really is the inverse of q mod p.
98f022f5 323 */
32874aea 324int rsa_verify(struct RSAKey *key)
325{
60fe6ff7 326 Bignum n, ed, pm1, qm1;
98f022f5 327 int cmp;
328
329 /* n must equal pq. */
330 n = bigmul(key->p, key->q);
331 cmp = bignum_cmp(n, key->modulus);
332 freebn(n);
333 if (cmp != 0)
334 return 0;
335
60fe6ff7 336 /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
98f022f5 337 pm1 = copybn(key->p);
338 decbn(pm1);
60fe6ff7 339 ed = modmul(key->exponent, key->private_exponent, pm1);
340 cmp = bignum_cmp(ed, One);
341 sfree(ed);
342 if (cmp != 0)
343 return 0;
344
98f022f5 345 qm1 = copybn(key->q);
346 decbn(qm1);
60fe6ff7 347 ed = modmul(key->exponent, key->private_exponent, qm1);
98f022f5 348 cmp = bignum_cmp(ed, One);
349 sfree(ed);
350 if (cmp != 0)
351 return 0;
014970c8 352
60fe6ff7 353 /*
354 * Ensure p > q.
f5bcbcc2 355 *
356 * I have seen key blobs in the wild which were generated with
357 * p < q, so instead of rejecting the key in this case we
358 * should instead flip them round into the canonical order of
359 * p > q. This also involves regenerating iqmp.
60fe6ff7 360 */
f5bcbcc2 361 if (bignum_cmp(key->p, key->q) <= 0) {
362 Bignum tmp = key->p;
363 key->p = key->q;
364 key->q = tmp;
365
366 freebn(key->iqmp);
367 key->iqmp = modinv(key->q, key->p);
368 }
60fe6ff7 369
370 /*
371 * Ensure iqmp * q is congruent to 1, modulo p.
372 */
373 n = modmul(key->iqmp, key->q, key->p);
374 cmp = bignum_cmp(n, One);
375 sfree(n);
376 if (cmp != 0)
32874aea 377 return 0;
60fe6ff7 378
014970c8 379 return 1;
98f022f5 380}
381
3f2d010c 382/* Public key blob as used by Pageant: exponent before modulus. */
383unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
384{
385 int length, pos;
386 unsigned char *ret;
387
388 length = (ssh1_bignum_length(key->modulus) +
389 ssh1_bignum_length(key->exponent) + 4);
3d88e64d 390 ret = snewn(length, unsigned char);
3f2d010c 391
392 PUT_32BIT(ret, bignum_bitcount(key->modulus));
393 pos = 4;
394 pos += ssh1_write_bignum(ret + pos, key->exponent);
395 pos += ssh1_write_bignum(ret + pos, key->modulus);
396
397 *len = length;
398 return ret;
399}
400
401/* Given a public blob, determine its length. */
0016d70b 402int rsa_public_blob_len(void *data, int maxlen)
3f2d010c 403{
404 unsigned char *p = (unsigned char *)data;
0016d70b 405 int n;
3f2d010c 406
0016d70b 407 if (maxlen < 4)
408 return -1;
3f2d010c 409 p += 4; /* length word */
0016d70b 410 maxlen -= 4;
411
412 n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */
413 if (n < 0)
414 return -1;
415 p += n;
416
417 n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */
418 if (n < 0)
419 return -1;
420 p += n;
3f2d010c 421
422 return p - (unsigned char *)data;
423}
424
32874aea 425void freersakey(struct RSAKey *key)
426{
427 if (key->modulus)
428 freebn(key->modulus);
429 if (key->exponent)
430 freebn(key->exponent);
431 if (key->private_exponent)
432 freebn(key->private_exponent);
f5bcbcc2 433 if (key->p)
434 freebn(key->p);
435 if (key->q)
436 freebn(key->q);
437 if (key->iqmp)
438 freebn(key->iqmp);
32874aea 439 if (key->comment)
440 sfree(key->comment);
5c58ad2d 441}
85cc02bb 442
443/* ----------------------------------------------------------------------
444 * Implementation of the ssh-rsa signing key type.
445 */
446
32874aea 447static void getstring(char **data, int *datalen, char **p, int *length)
448{
85cc02bb 449 *p = NULL;
450 if (*datalen < 4)
32874aea 451 return;
85cc02bb 452 *length = GET_32BIT(*data);
32874aea 453 *datalen -= 4;
454 *data += 4;
85cc02bb 455 if (*datalen < *length)
32874aea 456 return;
85cc02bb 457 *p = *data;
32874aea 458 *data += *length;
459 *datalen -= *length;
85cc02bb 460}
32874aea 461static Bignum getmp(char **data, int *datalen)
462{
85cc02bb 463 char *p;
464 int length;
465 Bignum b;
466
467 getstring(data, datalen, &p, &length);
468 if (!p)
32874aea 469 return NULL;
9bf430c9 470 b = bignum_from_bytes((unsigned char *)p, length);
85cc02bb 471 return b;
472}
473
32874aea 474static void *rsa2_newkey(char *data, int len)
475{
85cc02bb 476 char *p;
477 int slen;
478 struct RSAKey *rsa;
479
3d88e64d 480 rsa = snew(struct RSAKey);
32874aea 481 if (!rsa)
482 return NULL;
85cc02bb 483 getstring(&data, &len, &p, &slen);
484
45cebe79 485 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
85cc02bb 486 sfree(rsa);
487 return NULL;
488 }
489 rsa->exponent = getmp(&data, &len);
490 rsa->modulus = getmp(&data, &len);
491 rsa->private_exponent = NULL;
bc7cc96f 492 rsa->p = rsa->q = rsa->iqmp = NULL;
85cc02bb 493 rsa->comment = NULL;
494
495 return rsa;
496}
497
32874aea 498static void rsa2_freekey(void *key)
499{
500 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 501 freersakey(rsa);
502 sfree(rsa);
503}
504
32874aea 505static char *rsa2_fmtkey(void *key)
506{
507 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 508 char *p;
509 int len;
32874aea 510
85cc02bb 511 len = rsastr_len(rsa);
3d88e64d 512 p = snewn(len, char);
32874aea 513 rsastr_fmt(p, rsa);
85cc02bb 514 return p;
515}
516
32874aea 517static unsigned char *rsa2_public_blob(void *key, int *len)
518{
519 struct RSAKey *rsa = (struct RSAKey *) key;
65a22376 520 int elen, mlen, bloblen;
521 int i;
522 unsigned char *blob, *p;
523
32874aea 524 elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
525 mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
65a22376 526
527 /*
528 * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
529 * (three length fields, 12+7=19).
530 */
32874aea 531 bloblen = 19 + elen + mlen;
3d88e64d 532 blob = snewn(bloblen, unsigned char);
65a22376 533 p = blob;
32874aea 534 PUT_32BIT(p, 7);
535 p += 4;
536 memcpy(p, "ssh-rsa", 7);
537 p += 7;
538 PUT_32BIT(p, elen);
539 p += 4;
540 for (i = elen; i--;)
541 *p++ = bignum_byte(rsa->exponent, i);
542 PUT_32BIT(p, mlen);
543 p += 4;
544 for (i = mlen; i--;)
545 *p++ = bignum_byte(rsa->modulus, i);
65a22376 546 assert(p == blob + bloblen);
547 *len = bloblen;
548 return blob;
549}
550
32874aea 551static unsigned char *rsa2_private_blob(void *key, int *len)
552{
553 struct RSAKey *rsa = (struct RSAKey *) key;
65a22376 554 int dlen, plen, qlen, ulen, bloblen;
555 int i;
556 unsigned char *blob, *p;
557
32874aea 558 dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
559 plen = (bignum_bitcount(rsa->p) + 8) / 8;
560 qlen = (bignum_bitcount(rsa->q) + 8) / 8;
561 ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
65a22376 562
563 /*
564 * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
565 * sum of lengths.
566 */
32874aea 567 bloblen = 16 + dlen + plen + qlen + ulen;
3d88e64d 568 blob = snewn(bloblen, unsigned char);
65a22376 569 p = blob;
32874aea 570 PUT_32BIT(p, dlen);
571 p += 4;
572 for (i = dlen; i--;)
573 *p++ = bignum_byte(rsa->private_exponent, i);
574 PUT_32BIT(p, plen);
575 p += 4;
576 for (i = plen; i--;)
577 *p++ = bignum_byte(rsa->p, i);
578 PUT_32BIT(p, qlen);
579 p += 4;
580 for (i = qlen; i--;)
581 *p++ = bignum_byte(rsa->q, i);
582 PUT_32BIT(p, ulen);
583 p += 4;
584 for (i = ulen; i--;)
585 *p++ = bignum_byte(rsa->iqmp, i);
65a22376 586 assert(p == blob + bloblen);
587 *len = bloblen;
588 return blob;
589}
590
591static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
32874aea 592 unsigned char *priv_blob, int priv_len)
593{
65a22376 594 struct RSAKey *rsa;
32874aea 595 char *pb = (char *) priv_blob;
596
597 rsa = rsa2_newkey((char *) pub_blob, pub_len);
65a22376 598 rsa->private_exponent = getmp(&pb, &priv_len);
599 rsa->p = getmp(&pb, &priv_len);
600 rsa->q = getmp(&pb, &priv_len);
601 rsa->iqmp = getmp(&pb, &priv_len);
602
98f022f5 603 if (!rsa_verify(rsa)) {
604 rsa2_freekey(rsa);
605 return NULL;
606 }
607
65a22376 608 return rsa;
609}
610
32874aea 611static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
612{
613 char **b = (char **) blob;
45cebe79 614 struct RSAKey *rsa;
45cebe79 615
3d88e64d 616 rsa = snew(struct RSAKey);
32874aea 617 if (!rsa)
618 return NULL;
45cebe79 619 rsa->comment = NULL;
620
621 rsa->modulus = getmp(b, len);
622 rsa->exponent = getmp(b, len);
623 rsa->private_exponent = getmp(b, len);
624 rsa->iqmp = getmp(b, len);
625 rsa->p = getmp(b, len);
626 rsa->q = getmp(b, len);
627
628 if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
629 !rsa->iqmp || !rsa->p || !rsa->q) {
630 sfree(rsa->modulus);
631 sfree(rsa->exponent);
632 sfree(rsa->private_exponent);
633 sfree(rsa->iqmp);
634 sfree(rsa->p);
635 sfree(rsa->q);
636 sfree(rsa);
637 return NULL;
638 }
639
640 return rsa;
641}
642
32874aea 643static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
644{
645 struct RSAKey *rsa = (struct RSAKey *) key;
ddecd643 646 int bloblen, i;
647
648 bloblen =
649 ssh2_bignum_length(rsa->modulus) +
650 ssh2_bignum_length(rsa->exponent) +
651 ssh2_bignum_length(rsa->private_exponent) +
652 ssh2_bignum_length(rsa->iqmp) +
32874aea 653 ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
ddecd643 654
655 if (bloblen > len)
656 return bloblen;
657
658 bloblen = 0;
659#define ENC(x) \
660 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
661 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
662 ENC(rsa->modulus);
663 ENC(rsa->exponent);
664 ENC(rsa->private_exponent);
665 ENC(rsa->iqmp);
666 ENC(rsa->p);
667 ENC(rsa->q);
668
669 return bloblen;
670}
671
47a6b94c 672static int rsa2_pubkey_bits(void *blob, int len)
673{
674 struct RSAKey *rsa;
675 int ret;
676
677 rsa = rsa2_newkey((char *) blob, len);
678 ret = bignum_bitcount(rsa->modulus);
679 rsa2_freekey(rsa);
680
681 return ret;
682}
683
32874aea 684static char *rsa2_fingerprint(void *key)
685{
686 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 687 struct MD5Context md5c;
688 unsigned char digest[16], lenbuf[4];
32874aea 689 char buffer[16 * 3 + 40];
85cc02bb 690 char *ret;
691 int numlen, i;
692
693 MD5Init(&md5c);
9bf430c9 694 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
85cc02bb 695
696#define ADD_BIGNUM(bignum) \
ddecd643 697 numlen = (bignum_bitcount(bignum)+8)/8; \
85cc02bb 698 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
699 for (i = numlen; i-- ;) { \
700 unsigned char c = bignum_byte(bignum, i); \
701 MD5Update(&md5c, &c, 1); \
702 }
703 ADD_BIGNUM(rsa->exponent);
704 ADD_BIGNUM(rsa->modulus);
705#undef ADD_BIGNUM
706
707 MD5Final(digest, &md5c);
708
ddecd643 709 sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
85cc02bb 710 for (i = 0; i < 16; i++)
32874aea 711 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
712 digest[i]);
3d88e64d 713 ret = snewn(strlen(buffer) + 1, char);
85cc02bb 714 if (ret)
32874aea 715 strcpy(ret, buffer);
85cc02bb 716 return ret;
717}
718
719/*
720 * This is the magic ASN.1/DER prefix that goes in the decoded
721 * signature, between the string of FFs and the actual SHA hash
96a73db9 722 * value. The meaning of it is:
85cc02bb 723 *
724 * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
725 *
726 * 30 21 -- a constructed SEQUENCE of length 0x21
727 * 30 09 -- a constructed sub-SEQUENCE of length 9
728 * 06 05 -- an object identifier, length 5
96a73db9 729 * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
730 * (the 1,3 comes from 0x2B = 43 = 40*1+3)
85cc02bb 731 * 05 00 -- NULL
732 * 04 14 -- a primitive OCTET STRING of length 0x14
733 * [0x14 bytes of hash data follows]
96a73db9 734 *
735 * The object id in the middle there is listed as `id-sha1' in
736 * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
737 * ASN module for PKCS #1) and its expanded form is as follows:
738 *
739 * id-sha1 OBJECT IDENTIFIER ::= {
740 * iso(1) identified-organization(3) oiw(14) secsig(3)
741 * algorithms(2) 26 }
85cc02bb 742 */
b5864f2c 743static const unsigned char asn1_weird_stuff[] = {
32874aea 744 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
745 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
85cc02bb 746};
747
d8770b12 748#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
749
85cc02bb 750static int rsa2_verifysig(void *key, char *sig, int siglen,
32874aea 751 char *data, int datalen)
752{
753 struct RSAKey *rsa = (struct RSAKey *) key;
85cc02bb 754 Bignum in, out;
755 char *p;
756 int slen;
757 int bytes, i, j, ret;
758 unsigned char hash[20];
759
760 getstring(&sig, &siglen, &p, &slen);
761 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
32874aea 762 return 0;
85cc02bb 763 }
764 in = getmp(&sig, &siglen);
765 out = modpow(in, rsa->exponent, rsa->modulus);
766 freebn(in);
767
768 ret = 1;
769
7bd33644 770 bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
85cc02bb 771 /* Top (partial) byte should be zero. */
32874aea 772 if (bignum_byte(out, bytes - 1) != 0)
773 ret = 0;
85cc02bb 774 /* First whole byte should be 1. */
32874aea 775 if (bignum_byte(out, bytes - 2) != 1)
776 ret = 0;
85cc02bb 777 /* Most of the rest should be FF. */
32874aea 778 for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
779 if (bignum_byte(out, i) != 0xFF)
780 ret = 0;
85cc02bb 781 }
782 /* Then we expect to see the asn1_weird_stuff. */
32874aea 783 for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
784 if (bignum_byte(out, i) != asn1_weird_stuff[j])
785 ret = 0;
85cc02bb 786 }
787 /* Finally, we expect to see the SHA-1 hash of the signed data. */
788 SHA_Simple(data, datalen, hash);
32874aea 789 for (i = 19, j = 0; i >= 0; i--, j++) {
790 if (bignum_byte(out, i) != hash[j])
791 ret = 0;
85cc02bb 792 }
679539d7 793 freebn(out);
85cc02bb 794
795 return ret;
796}
797
164feb13 798static unsigned char *rsa2_sign(void *key, char *data, int datalen,
799 int *siglen)
32874aea 800{
801 struct RSAKey *rsa = (struct RSAKey *) key;
65a22376 802 unsigned char *bytes;
803 int nbytes;
804 unsigned char hash[20];
805 Bignum in, out;
806 int i, j;
807
808 SHA_Simple(data, datalen, hash);
809
32874aea 810 nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
e99cd73f 811 assert(1 <= nbytes - 20 - ASN1_LEN);
3d88e64d 812 bytes = snewn(nbytes, unsigned char);
65a22376 813
814 bytes[0] = 1;
32874aea 815 for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
65a22376 816 bytes[i] = 0xFF;
32874aea 817 for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
65a22376 818 bytes[i] = asn1_weird_stuff[j];
32874aea 819 for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
65a22376 820 bytes[i] = hash[j];
821
822 in = bignum_from_bytes(bytes, nbytes);
823 sfree(bytes);
824
8671a580 825 out = rsa_privkey_op(in, rsa);
65a22376 826 freebn(in);
827
32874aea 828 nbytes = (bignum_bitcount(out) + 7) / 8;
3d88e64d 829 bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
65a22376 830 PUT_32BIT(bytes, 7);
32874aea 831 memcpy(bytes + 4, "ssh-rsa", 7);
832 PUT_32BIT(bytes + 4 + 7, nbytes);
65a22376 833 for (i = 0; i < nbytes; i++)
32874aea 834 bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
65a22376 835 freebn(out);
836
32874aea 837 *siglen = 4 + 7 + 4 + nbytes;
65a22376 838 return bytes;
85cc02bb 839}
840
65a22376 841const struct ssh_signkey ssh_rsa = {
85cc02bb 842 rsa2_newkey,
843 rsa2_freekey,
844 rsa2_fmtkey,
65a22376 845 rsa2_public_blob,
846 rsa2_private_blob,
847 rsa2_createkey,
45cebe79 848 rsa2_openssh_createkey,
ddecd643 849 rsa2_openssh_fmtkey,
47a6b94c 850 rsa2_pubkey_bits,
85cc02bb 851 rsa2_fingerprint,
852 rsa2_verifysig,
853 rsa2_sign,
854 "ssh-rsa",
855 "rsa2"
856};
fae1a71b 857
858void *ssh_rsakex_newkey(char *data, int len)
859{
860 return rsa2_newkey(data, len);
861}
862
863void ssh_rsakex_freekey(void *key)
864{
865 rsa2_freekey(key);
866}
867
868int ssh_rsakex_klen(void *key)
869{
870 struct RSAKey *rsa = (struct RSAKey *) key;
871
872 return bignum_bitcount(rsa->modulus);
873}
874
875static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,
876 void *vdata, int datalen)
877{
878 unsigned char *data = (unsigned char *)vdata;
879 unsigned count = 0;
880
881 while (datalen > 0) {
882 int i, max = (datalen > h->hlen ? h->hlen : datalen);
883 void *s;
143ec28a 884 unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN];
fae1a71b 885
143ec28a 886 assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
fae1a71b 887 PUT_32BIT(counter, count);
888 s = h->init();
889 h->bytes(s, seed, seedlen);
890 h->bytes(s, counter, 4);
891 h->final(s, hash);
892 count++;
893
894 for (i = 0; i < max; i++)
895 data[i] ^= hash[i];
896
897 data += max;
898 datalen -= max;
899 }
900}
901
902void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,
903 unsigned char *out, int outlen,
904 void *key)
905{
906 Bignum b1, b2;
907 struct RSAKey *rsa = (struct RSAKey *) key;
908 int k, i;
909 char *p;
910 const int HLEN = h->hlen;
911
912 /*
913 * Here we encrypt using RSAES-OAEP. Essentially this means:
914 *
915 * - we have a SHA-based `mask generation function' which
916 * creates a pseudo-random stream of mask data
917 * deterministically from an input chunk of data.
918 *
919 * - we have a random chunk of data called a seed.
920 *
921 * - we use the seed to generate a mask which we XOR with our
922 * plaintext.
923 *
924 * - then we use _the masked plaintext_ to generate a mask
925 * which we XOR with the seed.
926 *
927 * - then we concatenate the masked seed and the masked
928 * plaintext, and RSA-encrypt that lot.
929 *
930 * The result is that the data input to the encryption function
931 * is random-looking and (hopefully) contains no exploitable
932 * structure such as PKCS1-v1_5 does.
933 *
934 * For a precise specification, see RFC 3447, section 7.1.1.
935 * Some of the variable names below are derived from that, so
936 * it'd probably help to read it anyway.
937 */
938
939 /* k denotes the length in octets of the RSA modulus. */
940 k = (7 + bignum_bitcount(rsa->modulus)) / 8;
941
942 /* The length of the input data must be at most k - 2hLen - 2. */
943 assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
944
945 /* The length of the output data wants to be precisely k. */
946 assert(outlen == k);
947
948 /*
949 * Now perform EME-OAEP encoding. First set up all the unmasked
950 * output data.
951 */
952 /* Leading byte zero. */
953 out[0] = 0;
954 /* At position 1, the seed: HLEN bytes of random data. */
955 for (i = 0; i < HLEN; i++)
956 out[i + 1] = random_byte();
957 /* At position 1+HLEN, the data block DB, consisting of: */
958 /* The hash of the label (we only support an empty label here) */
959 h->final(h->init(), out + HLEN + 1);
960 /* A bunch of zero octets */
961 memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
962 /* A single 1 octet, followed by the input message data. */
963 out[outlen - inlen - 1] = 1;
964 memcpy(out + outlen - inlen, in, inlen);
965
966 /*
967 * Now use the seed data to mask the block DB.
968 */
969 oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
970
971 /*
972 * And now use the masked DB to mask the seed itself.
973 */
974 oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
975
976 /*
977 * Now `out' contains precisely the data we want to
978 * RSA-encrypt.
979 */
980 b1 = bignum_from_bytes(out, outlen);
981 b2 = modpow(b1, rsa->exponent, rsa->modulus);
7108a872 982 p = (char *)out;
fae1a71b 983 for (i = outlen; i--;) {
984 *p++ = bignum_byte(b2, i);
985 }
986 freebn(b1);
987 freebn(b2);
988
989 /*
990 * And we're done.
991 */
992}
993
994static const struct ssh_kex ssh_rsa_kex_sha1 = {
995 "rsa1024-sha1", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha1
996};
997
998static const struct ssh_kex ssh_rsa_kex_sha256 = {
999 "rsa2048-sha256", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha256
1000};
1001
1002static const struct ssh_kex *const rsa_kex_list[] = {
1003 &ssh_rsa_kex_sha256,
1004 &ssh_rsa_kex_sha1
1005};
1006
1007const struct ssh_kexes ssh_rsa_kex = {
1008 sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
1009 rsa_kex_list
1010};