Add an icon for the PuTTY installer. Design concept (and noticing
[u/mdw/putty] / windows / winhandl.c
CommitLineData
34292b1d 1/*
2 * winhandl.c: Module to give Windows front ends the general
3 * ability to deal with consoles, pipes, serial ports, or any other
4 * type of data stream accessed through a Windows API HANDLE rather
5 * than a WinSock SOCKET.
6 *
7 * We do this by spawning a subthread to continuously try to read
8 * from the handle. Every time a read successfully returns some
9 * data, the subthread sets an event object which is picked up by
10 * the main thread, and the main thread then sets an event in
11 * return to instruct the subthread to resume reading.
12 *
13 * Output works precisely the other way round, in a second
14 * subthread. The output subthread should not be attempting to
15 * write all the time, because it hasn't always got data _to_
16 * write; so the output thread waits for an event object notifying
17 * it to _attempt_ a write, and then it sets an event in return
18 * when one completes.
8e32bfe0 19 *
20 * (It's terribly annoying having to spawn a subthread for each
21 * direction of each handle. Technically it isn't necessary for
22 * serial ports, since we could use overlapped I/O within the main
23 * thread and wait directly on the event objects in the OVERLAPPED
24 * structures. However, we can't use this trick for some types of
25 * file handle at all - for some reason Windows restricts use of
26 * OVERLAPPED to files which were opened with the overlapped flag -
27 * and so we must use threads for those. This being the case, it's
28 * simplest just to use threads for everything rather than trying
29 * to keep track of multiple completely separate mechanisms.)
34292b1d 30 */
31
34292b1d 32#include <assert.h>
33
34#include "putty.h"
35
36/* ----------------------------------------------------------------------
37 * Generic definitions.
38 */
39
40/*
41 * Maximum amount of backlog we will allow to build up on an input
42 * handle before we stop reading from it.
43 */
44#define MAX_BACKLOG 32768
45
46struct handle_generic {
47 /*
48 * Initial fields common to both handle_input and handle_output
49 * structures.
50 *
51 * The three HANDLEs are set up at initialisation time and are
52 * thereafter read-only to both main thread and subthread.
53 * `moribund' is only used by the main thread; `done' is
54 * written by the main thread before signalling to the
55 * subthread. `defunct' and `busy' are used only by the main
56 * thread.
57 */
58 HANDLE h; /* the handle itself */
59 HANDLE ev_to_main; /* event used to signal main thread */
60 HANDLE ev_from_main; /* event used to signal back to us */
61 int moribund; /* are we going to kill this soon? */
62 int done; /* request subthread to terminate */
63 int defunct; /* has the subthread already gone? */
64 int busy; /* operation currently in progress? */
0e03ceff 65 void *privdata; /* for client to remember who they are */
34292b1d 66};
67
68/* ----------------------------------------------------------------------
69 * Input threads.
70 */
71
72/*
73 * Data required by an input thread.
74 */
75struct handle_input {
76 /*
77 * Copy of the handle_generic structure.
78 */
79 HANDLE h; /* the handle itself */
80 HANDLE ev_to_main; /* event used to signal main thread */
81 HANDLE ev_from_main; /* event used to signal back to us */
82 int moribund; /* are we going to kill this soon? */
83 int done; /* request subthread to terminate */
84 int defunct; /* has the subthread already gone? */
85 int busy; /* operation currently in progress? */
0e03ceff 86 void *privdata; /* for client to remember who they are */
34292b1d 87
88 /*
bdebd7e9 89 * Data set at initialisation and then read-only.
90 */
91 int flags;
92
93 /*
34292b1d 94 * Data set by the input thread before signalling ev_to_main,
95 * and read by the main thread after receiving that signal.
96 */
97 char buffer[4096]; /* the data read from the handle */
98 DWORD len; /* how much data that was */
99 int readret; /* lets us know about read errors */
100
101 /*
102 * Callback function called by this module when data arrives on
103 * an input handle.
104 */
105 handle_inputfn_t gotdata;
106};
107
108/*
109 * The actual thread procedure for an input thread.
110 */
111static DWORD WINAPI handle_input_threadfunc(void *param)
112{
113 struct handle_input *ctx = (struct handle_input *) param;
bdebd7e9 114 OVERLAPPED ovl, *povl;
758a1377 115 HANDLE oev;
c606abbc 116 int readlen;
bdebd7e9 117
758a1377 118 if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
bdebd7e9 119 povl = &ovl;
758a1377 120 oev = CreateEvent(NULL, TRUE, FALSE, NULL);
121 } else {
bdebd7e9 122 povl = NULL;
758a1377 123 }
34292b1d 124
c606abbc 125 if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
126 readlen = 1;
127 else
128 readlen = sizeof(ctx->buffer);
129
34292b1d 130 while (1) {
758a1377 131 if (povl) {
bdebd7e9 132 memset(povl, 0, sizeof(OVERLAPPED));
758a1377 133 povl->hEvent = oev;
134 }
c606abbc 135 ctx->readret = ReadFile(ctx->h, ctx->buffer, readlen,
bdebd7e9 136 &ctx->len, povl);
758a1377 137 if (povl && !ctx->readret && GetLastError() == ERROR_IO_PENDING) {
138 WaitForSingleObject(povl->hEvent, INFINITE);
139 ctx->readret = GetOverlappedResult(ctx->h, povl, &ctx->len, FALSE);
140 }
bdebd7e9 141
34292b1d 142 if (!ctx->readret)
143 ctx->len = 0;
144
bdebd7e9 145 if (ctx->readret && ctx->len == 0 &&
146 (ctx->flags & HANDLE_FLAG_IGNOREEOF))
147 continue;
148
34292b1d 149 SetEvent(ctx->ev_to_main);
150
151 if (!ctx->len)
152 break;
153
154 WaitForSingleObject(ctx->ev_from_main, INFINITE);
155 if (ctx->done)
156 break; /* main thread told us to shut down */
157 }
158
758a1377 159 if (povl)
160 CloseHandle(oev);
161
34292b1d 162 return 0;
163}
164
165/*
166 * This is called after a succcessful read, or from the
167 * `unthrottle' function. It decides whether or not to begin a new
168 * read operation.
169 */
170static void handle_throttle(struct handle_input *ctx, int backlog)
171{
50ab783a 172 if (ctx->defunct)
173 return;
34292b1d 174
175 /*
176 * If there's a read operation already in progress, do nothing:
177 * when that completes, we'll come back here and be in a
178 * position to make a better decision.
179 */
180 if (ctx->busy)
181 return;
182
183 /*
184 * Otherwise, we must decide whether to start a new read based
185 * on the size of the backlog.
186 */
187 if (backlog < MAX_BACKLOG) {
188 SetEvent(ctx->ev_from_main);
189 ctx->busy = TRUE;
190 }
191}
192
193/* ----------------------------------------------------------------------
194 * Output threads.
195 */
196
197/*
198 * Data required by an output thread.
199 */
200struct handle_output {
201 /*
202 * Copy of the handle_generic structure.
203 */
204 HANDLE h; /* the handle itself */
205 HANDLE ev_to_main; /* event used to signal main thread */
206 HANDLE ev_from_main; /* event used to signal back to us */
207 int moribund; /* are we going to kill this soon? */
208 int done; /* request subthread to terminate */
209 int defunct; /* has the subthread already gone? */
210 int busy; /* operation currently in progress? */
0e03ceff 211 void *privdata; /* for client to remember who they are */
34292b1d 212
213 /*
bdebd7e9 214 * Data set at initialisation and then read-only.
215 */
216 int flags;
217
218 /*
34292b1d 219 * Data set by the main thread before signalling ev_from_main,
220 * and read by the input thread after receiving that signal.
221 */
222 char *buffer; /* the data to write */
223 DWORD len; /* how much data there is */
224
225 /*
226 * Data set by the input thread before signalling ev_to_main,
227 * and read by the main thread after receiving that signal.
228 */
229 DWORD lenwritten; /* how much data we actually wrote */
230 int writeret; /* return value from WriteFile */
231
232 /*
233 * Data only ever read or written by the main thread.
234 */
235 bufchain queued_data; /* data still waiting to be written */
236
237 /*
238 * Callback function called when the backlog in the bufchain
239 * drops.
240 */
241 handle_outputfn_t sentdata;
242};
243
244static DWORD WINAPI handle_output_threadfunc(void *param)
245{
246 struct handle_output *ctx = (struct handle_output *) param;
bdebd7e9 247 OVERLAPPED ovl, *povl;
248
249 if (ctx->flags & HANDLE_FLAG_OVERLAPPED)
250 povl = &ovl;
251 else
252 povl = NULL;
34292b1d 253
254 while (1) {
255 WaitForSingleObject(ctx->ev_from_main, INFINITE);
256 if (ctx->done) {
257 SetEvent(ctx->ev_to_main);
258 break;
259 }
bdebd7e9 260 if (povl)
261 memset(povl, 0, sizeof(OVERLAPPED));
34292b1d 262 ctx->writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
bdebd7e9 263 &ctx->lenwritten, povl);
264 if (povl && !ctx->writeret && GetLastError() == ERROR_IO_PENDING)
265 ctx->writeret = GetOverlappedResult(ctx->h, povl,
266 &ctx->lenwritten, TRUE);
267
34292b1d 268 SetEvent(ctx->ev_to_main);
269 if (!ctx->writeret)
270 break;
271 }
272
273 return 0;
274}
275
276static void handle_try_output(struct handle_output *ctx)
277{
278 void *senddata;
279 int sendlen;
280
281 if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
282 bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
283 ctx->buffer = senddata;
284 ctx->len = sendlen;
285 SetEvent(ctx->ev_from_main);
286 ctx->busy = TRUE;
287 }
288}
289
290/* ----------------------------------------------------------------------
291 * Unified code handling both input and output threads.
292 */
293
294struct handle {
295 int output;
296 union {
297 struct handle_generic g;
298 struct handle_input i;
299 struct handle_output o;
300 } u;
301};
302
303static tree234 *handles_by_evtomain;
304
305static int handle_cmp_evtomain(void *av, void *bv)
306{
307 struct handle *a = (struct handle *)av;
308 struct handle *b = (struct handle *)bv;
309
310 if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
311 return -1;
312 else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
313 return +1;
314 else
315 return 0;
316}
317
318static int handle_find_evtomain(void *av, void *bv)
319{
320 HANDLE *a = (HANDLE *)av;
321 struct handle *b = (struct handle *)bv;
322
323 if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
324 return -1;
325 else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
326 return +1;
327 else
328 return 0;
329}
330
0e03ceff 331struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
bdebd7e9 332 void *privdata, int flags)
34292b1d 333{
334 struct handle *h = snew(struct handle);
600f6499 335 DWORD in_threadid; /* required for Win9x */
34292b1d 336
337 h->output = FALSE;
338 h->u.i.h = handle;
339 h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
340 h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
341 h->u.i.gotdata = gotdata;
34292b1d 342 h->u.i.defunct = FALSE;
343 h->u.i.moribund = FALSE;
344 h->u.i.done = FALSE;
0e03ceff 345 h->u.i.privdata = privdata;
bdebd7e9 346 h->u.i.flags = flags;
34292b1d 347
348 if (!handles_by_evtomain)
349 handles_by_evtomain = newtree234(handle_cmp_evtomain);
350 add234(handles_by_evtomain, h);
351
352 CreateThread(NULL, 0, handle_input_threadfunc,
600f6499 353 &h->u.i, 0, &in_threadid);
2ceabd36 354 h->u.i.busy = TRUE;
34292b1d 355
356 return h;
357}
358
0e03ceff 359struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
bdebd7e9 360 void *privdata, int flags)
34292b1d 361{
362 struct handle *h = snew(struct handle);
600f6499 363 DWORD out_threadid; /* required for Win9x */
34292b1d 364
365 h->output = TRUE;
366 h->u.o.h = handle;
367 h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
368 h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
369 h->u.o.busy = FALSE;
370 h->u.o.defunct = FALSE;
371 h->u.o.moribund = FALSE;
372 h->u.o.done = FALSE;
0e03ceff 373 h->u.o.privdata = privdata;
34292b1d 374 bufchain_init(&h->u.o.queued_data);
375 h->u.o.sentdata = sentdata;
bdebd7e9 376 h->u.o.flags = flags;
34292b1d 377
378 if (!handles_by_evtomain)
379 handles_by_evtomain = newtree234(handle_cmp_evtomain);
380 add234(handles_by_evtomain, h);
381
382 CreateThread(NULL, 0, handle_output_threadfunc,
600f6499 383 &h->u.i, 0, &out_threadid);
34292b1d 384
385 return h;
386}
387
388int handle_write(struct handle *h, const void *data, int len)
389{
390 assert(h->output);
391 bufchain_add(&h->u.o.queued_data, data, len);
392 handle_try_output(&h->u.o);
393 return bufchain_size(&h->u.o.queued_data);
394}
395
396HANDLE *handle_get_events(int *nevents)
397{
398 HANDLE *ret;
399 struct handle *h;
400 int i, n, size;
401
402 /*
403 * Go through our tree counting the handle objects currently
404 * engaged in useful activity.
405 */
406 ret = NULL;
407 n = size = 0;
408 if (handles_by_evtomain) {
409 for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
410 if (h->u.g.busy) {
411 if (n >= size) {
412 size += 32;
413 ret = sresize(ret, size, HANDLE);
414 }
415 ret[n++] = h->u.g.ev_to_main;
416 }
417 }
418 }
419
420 *nevents = n;
421 return ret;
422}
423
424static void handle_destroy(struct handle *h)
425{
426 if (h->output)
427 bufchain_clear(&h->u.o.queued_data);
428 CloseHandle(h->u.g.ev_from_main);
429 CloseHandle(h->u.g.ev_to_main);
430 del234(handles_by_evtomain, h);
431 sfree(h);
432}
433
434void handle_free(struct handle *h)
435{
436 /*
437 * If the handle is currently busy, we cannot immediately free
438 * it. Instead we must wait until it's finished its current
439 * operation, because otherwise the subthread will write to
440 * invalid memory after we free its context from under it.
441 */
442 assert(h && !h->u.g.moribund);
443 if (h->u.g.busy) {
444 /*
445 * Just set the moribund flag, which will be noticed next
446 * time an operation completes.
447 */
448 h->u.g.moribund = TRUE;
449 } else if (h->u.g.defunct) {
450 /*
451 * There isn't even a subthread; we can go straight to
452 * handle_destroy.
453 */
454 handle_destroy(h);
455 } else {
456 /*
457 * The subthread is alive but not busy, so we now signal it
458 * to die. Set the moribund flag to indicate that it will
459 * want destroying after that.
460 */
461 h->u.g.moribund = TRUE;
462 h->u.g.done = TRUE;
c969e831 463 h->u.g.busy = TRUE;
34292b1d 464 SetEvent(h->u.g.ev_from_main);
465 }
466}
467
468void handle_got_event(HANDLE event)
469{
470 struct handle *h;
471
472 assert(handles_by_evtomain);
473 h = find234(handles_by_evtomain, &event, handle_find_evtomain);
474 if (!h) {
475 /*
476 * This isn't an error condition. If two or more event
477 * objects were signalled during the same select operation,
478 * and processing of the first caused the second handle to
479 * be closed, then it will sometimes happen that we receive
480 * an event notification here for a handle which is already
481 * deceased. In that situation we simply do nothing.
482 */
483 return;
484 }
485
486 if (h->u.g.moribund) {
487 /*
488 * A moribund handle is already treated as dead from the
489 * external user's point of view, so do nothing with the
490 * actual event. Just signal the thread to die if
491 * necessary, or destroy the handle if not.
492 */
493 if (h->u.g.done) {
494 handle_destroy(h);
495 } else {
496 h->u.g.done = TRUE;
c969e831 497 h->u.g.busy = TRUE;
34292b1d 498 SetEvent(h->u.g.ev_from_main);
499 }
500 return;
501 }
502
503 if (!h->output) {
504 int backlog;
505
506 h->u.i.busy = FALSE;
507
508 /*
509 * A signal on an input handle means data has arrived.
510 */
511 if (h->u.i.len == 0) {
512 /*
513 * EOF, or (nearly equivalently) read error.
514 */
515 h->u.i.gotdata(h, NULL, (h->u.i.readret ? 0 : -1));
516 h->u.i.defunct = TRUE;
517 } else {
518 backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
519 handle_throttle(&h->u.i, backlog);
520 }
521 } else {
522 h->u.o.busy = FALSE;
523
524 /*
525 * A signal on an output handle means we have completed a
526 * write. Call the callback to indicate that the output
527 * buffer size has decreased, or to indicate an error.
528 */
529 if (!h->u.o.writeret) {
530 /*
531 * Write error. Send a negative value to the callback,
532 * and mark the thread as defunct (because the output
533 * thread is terminating by now).
534 */
535 h->u.o.sentdata(h, -1);
536 h->u.o.defunct = TRUE;
537 } else {
538 bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
539 h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
540 handle_try_output(&h->u.o);
541 }
542 }
543}
544
545void handle_unthrottle(struct handle *h, int backlog)
546{
547 assert(!h->output);
548 handle_throttle(&h->u.i, backlog);
549}
550
551int handle_backlog(struct handle *h)
552{
553 assert(h->output);
554 return bufchain_size(&h->u.o.queued_data);
555}
0e03ceff 556
557void *handle_get_privdata(struct handle *h)
558{
559 return h->u.g.privdata;
560}