Remove a return path from sshcom_write() which was both unreachable
[u/mdw/putty] / sshrand.c
CommitLineData
374330e2 1/*
2 * cryptographic random number generator for PuTTY's ssh client
3 */
4
19ad0a17 5#include "putty.h"
374330e2 6#include "ssh.h"
b72bdf11 7#include <assert.h>
374330e2 8
5d17ccfc 9/* Collect environmental noise every 5 minutes */
10#define NOISE_REGULAR_INTERVAL (5*60*TICKSPERSEC)
11
374330e2 12void noise_get_heavy(void (*func) (void *, int));
13void noise_get_light(void (*func) (void *, int));
14
15/*
16 * `pool' itself is a pool of random data which we actually use: we
17 * return bytes from `pool', at position `poolpos', until `poolpos'
18 * reaches the end of the pool. At this point we generate more
19 * random data, by adding noise, stirring well, and resetting
20 * `poolpos' to point to just past the beginning of the pool (not
21 * _the_ beginning, since otherwise we'd give away the whole
22 * contents of our pool, and attackers would just have to guess the
23 * next lot of noise).
24 *
25 * `incomingb' buffers acquired noise data, until it gets full, at
26 * which point the acquired noise is SHA'ed into `incoming' and
27 * `incomingb' is cleared. The noise in `incoming' is used as part
28 * of the noise for each stirring of the pool, in addition to local
29 * time, process listings, and other such stuff.
30 */
31
32#define HASHINPUT 64 /* 64 bytes SHA input */
33#define HASHSIZE 20 /* 160 bits SHA output */
34#define POOLSIZE 1200 /* size of random pool */
35
36struct RandPool {
37 unsigned char pool[POOLSIZE];
38 int poolpos;
39
40 unsigned char incoming[HASHSIZE];
41
42 unsigned char incomingb[HASHINPUT];
43 int incomingpos;
ab076e02 44
45 int stir_pending;
374330e2 46};
47
48static struct RandPool pool;
93b581bd 49int random_active = 0;
5d17ccfc 50long next_noise_collection;
374330e2 51
19ad0a17 52static void random_stir(void)
32874aea 53{
54 word32 block[HASHINPUT / sizeof(word32)];
55 word32 digest[HASHSIZE / sizeof(word32)];
374330e2 56 int i, j, k;
57
ab076e02 58 /*
59 * noise_get_light will call random_add_noise, which may call
60 * back to here. Prevent recursive stirs.
61 */
62 if (pool.stir_pending)
63 return;
64 pool.stir_pending = TRUE;
65
374330e2 66 noise_get_light(random_add_noise);
67
32874aea 68 SHATransform((word32 *) pool.incoming, (word32 *) pool.incomingb);
374330e2 69 pool.incomingpos = 0;
70
71 /*
72 * Chunks of this code are blatantly endianness-dependent, but
73 * as it's all random bits anyway, WHO CARES?
74 */
75 memcpy(digest, pool.incoming, sizeof(digest));
76
77 /*
78 * Make two passes over the pool.
79 */
80 for (i = 0; i < 2; i++) {
81
82 /*
83 * We operate SHA in CFB mode, repeatedly adding the same
84 * block of data to the digest. But we're also fiddling
85 * with the digest-so-far, so this shouldn't be Bad or
86 * anything.
87 */
88 memcpy(block, pool.pool, sizeof(block));
89
90 /*
91 * Each pass processes the pool backwards in blocks of
92 * HASHSIZE, just so that in general we get the output of
93 * SHA before the corresponding input, in the hope that
94 * things will be that much less predictable that way
95 * round, when we subsequently return bytes ...
96 */
32874aea 97 for (j = POOLSIZE; (j -= HASHSIZE) >= 0;) {
374330e2 98 /*
99 * XOR the bit of the pool we're processing into the
100 * digest.
101 */
102
32874aea 103 for (k = 0; k < sizeof(digest) / sizeof(*digest); k++)
104 digest[k] ^= ((word32 *) (pool.pool + j))[k];
374330e2 105
106 /*
107 * Munge our unrevealed first block of the pool into
108 * it.
109 */
110 SHATransform(digest, block);
111
112 /*
113 * Stick the result back into the pool.
114 */
115
32874aea 116 for (k = 0; k < sizeof(digest) / sizeof(*digest); k++)
117 ((word32 *) (pool.pool + j))[k] = digest[k];
374330e2 118 }
119 }
120
121 /*
122 * Might as well save this value back into `incoming', just so
123 * there'll be some extra bizarreness there.
124 */
125 SHATransform(digest, block);
a1a27668 126 memcpy(pool.incoming, digest, sizeof(digest));
374330e2 127
128 pool.poolpos = sizeof(pool.incoming);
ab076e02 129
130 pool.stir_pending = FALSE;
374330e2 131}
132
32874aea 133void random_add_noise(void *noise, int length)
134{
374330e2 135 unsigned char *p = noise;
6e522441 136 int i;
374330e2 137
7d6ee6ff 138 if (!random_active)
32874aea 139 return;
7d6ee6ff 140
6e522441 141 /*
142 * This function processes HASHINPUT bytes into only HASHSIZE
143 * bytes, so _if_ we were getting incredibly high entropy
144 * sources then we would be throwing away valuable stuff.
145 */
146 while (length >= (HASHINPUT - pool.incomingpos)) {
147 memcpy(pool.incomingb + pool.incomingpos, p,
148 HASHINPUT - pool.incomingpos);
149 p += HASHINPUT - pool.incomingpos;
150 length -= HASHINPUT - pool.incomingpos;
32874aea 151 SHATransform((word32 *) pool.incoming, (word32 *) pool.incomingb);
152 for (i = 0; i < HASHSIZE; i++) {
153 pool.pool[pool.poolpos++] ^= pool.incomingb[i];
154 if (pool.poolpos >= POOLSIZE)
155 pool.poolpos = 0;
156 }
157 if (pool.poolpos < HASHSIZE)
158 random_stir();
6e522441 159
160 pool.incomingpos = 0;
161 }
162
163 memcpy(pool.incomingb + pool.incomingpos, p, length);
164 pool.incomingpos += length;
165}
166
32874aea 167void random_add_heavynoise(void *noise, int length)
168{
6e522441 169 unsigned char *p = noise;
170 int i;
171
172 while (length >= POOLSIZE) {
32874aea 173 for (i = 0; i < POOLSIZE; i++)
174 pool.pool[i] ^= *p++;
6e522441 175 random_stir();
176 length -= POOLSIZE;
177 }
178
179 for (i = 0; i < length; i++)
32874aea 180 pool.pool[i] ^= *p++;
6e522441 181 random_stir();
182}
183
32874aea 184static void random_add_heavynoise_bitbybit(void *noise, int length)
185{
6e522441 186 unsigned char *p = noise;
187 int i;
188
189 while (length >= POOLSIZE - pool.poolpos) {
32874aea 190 for (i = 0; i < POOLSIZE - pool.poolpos; i++)
191 pool.pool[pool.poolpos + i] ^= *p++;
374330e2 192 random_stir();
6e522441 193 length -= POOLSIZE - pool.poolpos;
32874aea 194 pool.poolpos = 0;
374330e2 195 }
196
6e522441 197 for (i = 0; i < length; i++)
32874aea 198 pool.pool[i] ^= *p++;
6e522441 199 pool.poolpos = i;
374330e2 200}
201
d719927e 202static void random_timer(void *ctx, unsigned long now)
5d17ccfc 203{
d719927e 204 if (random_active > 0 && now == next_noise_collection) {
5d17ccfc 205 noise_regular();
206 next_noise_collection =
207 schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool);
208 }
209}
210
211void random_ref(void)
32874aea 212{
bc0e1c6c 213 if (!random_active) {
214 memset(&pool, 0, sizeof(pool)); /* just to start with */
374330e2 215
bc0e1c6c 216 noise_get_heavy(random_add_heavynoise_bitbybit);
217 random_stir();
5d17ccfc 218
219 next_noise_collection =
220 schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool);
bc0e1c6c 221 }
5d17ccfc 222
223 random_active++;
224}
225
226void random_unref(void)
227{
228 random_active--;
b72bdf11 229 assert(random_active >= 0);
230 if (random_active) return;
231
232 expire_timer_context(&pool);
374330e2 233}
234
32874aea 235int random_byte(void)
236{
374330e2 237 if (pool.poolpos >= POOLSIZE)
238 random_stir();
239
240 return pool.pool[pool.poolpos++];
241}
242
32874aea 243void random_get_savedata(void **data, int *len)
244{
3d88e64d 245 void *buf = snewn(POOLSIZE / 2, char);
374330e2 246 random_stir();
e3ac3c05 247 memcpy(buf, pool.pool + pool.poolpos, POOLSIZE / 2);
32874aea 248 *len = POOLSIZE / 2;
e3ac3c05 249 *data = buf;
250 random_stir();
374330e2 251}