Add cyclic group abstraction, with test code. Separate off exponentation
[u/mdw/catacomb] / mpmont.h
... / ...
CommitLineData
1/* -*-c-*-
2 *
3 * $Id: mpmont.h,v 1.7 2004/04/01 12:50:09 mdw Exp $
4 *
5 * Montgomery reduction
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpmont.h,v $
33 * Revision 1.7 2004/04/01 12:50:09 mdw
34 * Add cyclic group abstraction, with test code. Separate off exponentation
35 * functions for better static linking. Fix a buttload of bugs on the way.
36 * Generally ensure that negative exponents do inversion correctly. Add
37 * table of standard prime-field subgroups. (Binary field subgroups are
38 * currently unimplemented but easy to add if anyone ever finds a good one.)
39 *
40 * Revision 1.6 2002/01/13 13:49:25 mdw
41 * Make @const@-correct.
42 *
43 * Revision 1.5 2001/06/16 13:00:04 mdw
44 * Moved @mpmont_factor@ to <mp.h>. Documented interface change to
45 * @mpmont_expr@ and @mpmont_mexpr@ -- the arguments are now in Montgomery
46 * form.
47 *
48 * Revision 1.4 1999/12/11 01:51:14 mdw
49 * Use a Karatsuba-based reduction for large moduli.
50 *
51 * Revision 1.3 1999/12/10 23:29:48 mdw
52 * Change header file guard names.
53 *
54 * Revision 1.2 1999/11/19 13:17:43 mdw
55 * Add extra interface to exponentiation which returns a Montgomerized
56 * result. Add simultaneous exponentiation interface.
57 *
58 * Revision 1.1 1999/11/17 18:02:16 mdw
59 * New multiprecision integer arithmetic suite.
60 *
61 */
62
63#ifndef CATACOMB_MPMONT_H
64#define CATACOMB_MPMONT_H
65
66#ifdef __cplusplus
67 extern "C" {
68#endif
69
70/*----- Header files ------------------------------------------------------*/
71
72#ifndef CATACOMB_MP_H
73# include "mp.h"
74#endif
75
76/*----- Notes on Montgomery reduction -------------------------------------*
77 *
78 * Given a little bit of precomputation, Montgomery reduction enables modular
79 * reductions of products to be calculated rather rapidly, without recourse
80 * to annoying things like division.
81 *
82 * Before starting, you need to do a little work. In particular, the
83 * following things need to be worked out:
84 *
85 * * %$m$%, which is the modulus you'll be working with. This must be odd,
86 * otherwise the whole thing doesn't work. You're better off using
87 * Barrett reduction if your modulus might be even.
88 *
89 * * %$b$%, the radix of the number system you're in (here, it's
90 * @MPW_MAX + 1@).
91 *
92 * * %$-m^{-1} \bmod b$%, a useful number for the reduction step. (This
93 * means that the modulus mustn't be even. This shouldn't be a problem.)
94 *
95 * * %$R = b^n > m > b^{n - 1}$%, or at least %$\log_2 R$%.
96 *
97 * * %$R \bmod m$% and %$R^2 \bmod m$%, which are useful when doing
98 * calculations such as exponentiation.
99 *
100 * The result of a Montgomery reduction of %$x$% is %$x R^{-1} \bmod m$%,
101 * which doesn't look ever-so useful. The trick is to initially apply a
102 * factor of %$R$% to all of your numbers so that when you multiply and
103 * perform a Montgomery reduction you get %$(x R \cdot y R) R^{-1} \bmod m$%,
104 * which is just %$x y R \bmod m$%. Thanks to distributivity, even additions
105 * and subtractions can be performed on numbers in this form -- the extra
106 * factor of %$R$% just runs through all the calculations until it's finally
107 * stripped out by a final reduction operation.
108 */
109
110/*----- Data structures ---------------------------------------------------*/
111
112/* --- A Montgomery reduction context --- */
113
114typedef struct mpmont {
115 mp *m; /* Modulus */
116 mp *mi; /* %$-m^{-1} \bmod R$% */
117 size_t n; /* %$\log_b R$% */
118 mp *r, *r2; /* %$R \bmod m$%, %$R^2 \bmod m$% */
119} mpmont;
120
121/*----- Functions provided ------------------------------------------------*/
122
123/* --- @mpmont_create@ --- *
124 *
125 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
126 * @mp *m@ = modulus to use
127 *
128 * Returns: ---
129 *
130 * Use: Initializes a Montgomery reduction context ready for use.
131 * The argument @m@ must be a positive odd integer.
132 */
133
134extern void mpmont_create(mpmont */*mm*/, mp */*m*/);
135
136/* --- @mpmont_destroy@ --- *
137 *
138 * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context
139 *
140 * Returns: ---
141 *
142 * Use: Disposes of a context when it's no longer of any use to
143 * anyone.
144 */
145
146extern void mpmont_destroy(mpmont */*mm*/);
147
148/* --- @mpmont_reduce@ --- *
149 *
150 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
151 * @mp *d@ = destination
152 * @mp *a@ = source, assumed positive
153 *
154 * Returns: Result, %$a R^{-1} \bmod m$%.
155 */
156
157extern mp *mpmont_reduce(mpmont */*mm*/, mp */*d*/, mp */*a*/);
158
159/* --- @mpmont_mul@ --- *
160 *
161 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
162 * @mp *d@ = destination
163 * @mp *a, *b@ = sources, assumed positive
164 *
165 * Returns: Result, %$a b R^{-1} \bmod m$%.
166 */
167
168extern mp *mpmont_mul(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*b*/);
169
170/* --- @mpmont_expr@ --- *
171 *
172 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
173 * @mp *d@ = fake destination
174 * @mp *a@ = base
175 * @mp *e@ = exponent
176 *
177 * Returns: Result, %$(a R^{-1})^e R \bmod m$%. This is useful if
178 * further modular arithmetic is to be performed on the result.
179 */
180
181extern mp *mpmont_expr(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/);
182
183/* --- @mpmont_exp@ --- *
184 *
185 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
186 * @mp *d@ = fake destination
187 * @mp *a@ = base
188 * @mp *e@ = exponent
189 *
190 * Returns: Result, %$a^e \bmod m$%.
191 */
192
193extern mp *mpmont_exp(mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/);
194
195/* --- @mpmont_mexpr@ --- *
196 *
197 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
198 * @mp *d@ = fake destination
199 * @const mp_expfactor *f@ = pointer to array of factors
200 * @size_t n@ = number of factors supplied
201 *
202 * Returns: If the bases are %$g_0, g_1, \ldots, g_{n-1}$% and the
203 * exponents are %$e_0, e_1, \ldots, e_{n-1}$% then the result
204 * is:
205 *
206 * %$g_0^{e_0} g_1^{e_1} \ldots g_{n-1}^{e_{n-1}} \bmod m$%
207 *
208 *
209 * except that the %$g_i$% and result are in Montgomery form.
210 */
211
212extern mp *mpmont_mexpr(mpmont */*mm*/, mp */*d*/,
213 const mp_expfactor */*f*/, size_t /*n*/);
214
215/* --- @mpmont_mexp@ --- *
216 *
217 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
218 * @mp *d@ = fake destination
219 * @const mp_expfactor *f@ = pointer to array of factors
220 * @size_t n@ = number of factors supplied
221 *
222 * Returns: Product of bases raised to exponents, all mod @m@.
223 *
224 * Use: Convenient interface over @mpmont_mexpr@.
225 */
226
227extern mp *mpmont_mexp(mpmont */*mm*/, mp */*d*/,
228 const mp_expfactor */*f*/, size_t /*n*/);
229
230/*----- That's all, folks -------------------------------------------------*/
231
232#ifdef __cplusplus
233 }
234#endif
235
236#endif