Use a Karatsuba-based reduction for large moduli.
[u/mdw/catacomb] / mpx-kmul.c
CommitLineData
a86e33af 1/* -*-c-*-
2 *
3 * $Id: mpx-kmul.c,v 1.1 1999/12/10 23:23:51 mdw Exp $
4 *
5 * Karatsuba's multiplication algorithm
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx-kmul.c,v $
33 * Revision 1.1 1999/12/10 23:23:51 mdw
34 * Karatsuba-Ofman multiplication algorithm.
35 *
36 */
37
38/*----- Header files ------------------------------------------------------*/
39
40#include <stdio.h>
41
42#include "mpx.h"
43
44/*----- Tweakables --------------------------------------------------------*/
45
46/* --- @KARATSUBA_CUTOFF@ --- *
47 *
48 * If either of the arguments to @mpx_kmul@ contains this number of words or
49 * fewer, the job is dumped out to @mpx_umul@ instead. Reduce the size when
50 * testing, to ensure better coverage.
51 */
52
53#ifdef TEST_RIG
54# undef KARATSUBA_CUTOFF
55# define KARATSUBA_CUTOFF 2
56#endif
57
58/*----- Addition macros ---------------------------------------------------*/
59
60#define UADD(dv, av, avl) do { \
61 mpw *_dv = (dv); \
62 const mpw *_av = (av), *_avl = (avl); \
63 mpw _c = 0; \
64 \
65 while (_av < _avl) { \
66 mpw _a, _b; \
67 mpd _x; \
68 _a = *_av++; \
69 _b = *_dv; \
70 _x = (mpd)_a + (mpd)_b + _c; \
71 *_dv++ = MPW(_x); \
72 _c = _x >> MPW_BITS; \
73 } \
74 while (_c) { \
75 mpd _x = (mpd)*_dv + (mpd)_c; \
76 *_dv++ = MPW(_x); \
77 _c = _x >> MPW_BITS; \
78 } \
79} while (0)
80
81#define UADD2(dv, dvl, av, avl, bv, bvl) do { \
82 mpw *_dv = (dv), *_dvl = (dvl); \
83 const mpw *_av = (av), *_avl = (avl); \
84 const mpw *_bv = (bv), *_bvl = (bvl); \
85 mpw _c = 0; \
86 \
87 while (_av < _avl || _bv < _bvl) { \
88 mpw _a, _b; \
89 mpd _x; \
90 _a = (_av < _avl) ? *_av++ : 0; \
91 _b = (_bv < _bvl) ? *_bv++ : 0; \
92 _x = (mpd)_a + (mpd)_b + _c; \
93 *_dv++ = MPW(_x); \
94 _c = _x >> MPW_BITS; \
95 } \
96 *_dv++ = _c; \
97 while (_dv < _dvl) \
98 *_dv++ = 0; \
99} while (0)
100
101#define USUB(dv, av, avl) do { \
102 mpw *_dv = (dv); \
103 const mpw *_av = (av), *_avl = (avl); \
104 mpw _c = 0; \
105 \
106 while (_av < _avl) { \
107 mpw _a, _b; \
108 mpd _x; \
109 _a = *_av++; \
110 _b = *_dv; \
111 _x = (mpd)_b - (mpd)_a - _c; \
112 *_dv++ = MPW(_x); \
113 if (_x >> MPW_BITS) \
114 _c = 1; \
115 else \
116 _c = 0; \
117 } \
118 while (_c) { \
119 mpd _x = (mpd)*_dv - (mpd)_c; \
120 *_dv++ = MPW(_x); \
121 if (_x >> MPW_BITS) \
122 _c = 1; \
123 else \
124 _c = 0; \
125 } \
126} while (0)
127
128/*----- Main code ---------------------------------------------------------*/
129
130/* --- @mpx_kmul@ --- *
131 *
132 * Arguments: @mpw *dv, *dvl@ = pointer to destination buffer
133 * @const mpw *av, *avl@ = pointer to first argument
134 * @const mpw *bv, *bvl@ = pointer to second argument
135 * @mpw *sv, *svl@ = pointer to scratch workspace
136 *
137 * Returns: ---
138 *
139 * Use: Multiplies two multiprecision integers using Karatsuba's
140 * algorithm. This is rather faster than traditional long
141 * multiplication (e.g., @mpx_umul@) on large numbers, although
142 * more expensive on small ones.
143 *
144 * The destination must be twice as large as the larger
145 * argument. The scratch space must be twice as large as the
146 * larger argument, plus the magic number @KARATSUBA_SLOP@.
147 * (Actually, a number of words proportional to the depth of
148 * recursion, but since recusion is strongly bounded by memory,
149 * I can replace it with a constant as long as it's `big
150 * enough'.)
151 */
152
153void mpx_kmul(mpw *dv, mpw *dvl,
154 const mpw *av, const mpw *avl,
155 const mpw *bv, const mpw *bvl,
156 mpw *sv, mpw *svl)
157{
158 const mpw *avm, *bvm;
159 size_t m;
160
161 /* --- Dispose of easy cases to @mpx_umul@ --- *
162 *
163 * Karatsuba is only a win on large numbers, because of all the
164 * recursiveness and bookkeeping. The recursive calls make a quick check
165 * to see whether to bottom out to @mpx_umul@ which should help quite a
166 * lot, but sometimes the only way to know is to make sure...
167 */
168
169 MPX_SHRINK(av, avl);
170 MPX_SHRINK(bv, bvl);
171
172 if (avl - av <= KARATSUBA_CUTOFF || bvl - bv <= KARATSUBA_CUTOFF) {
173 mpx_umul(dv, dvl, av, avl, bv, bvl);
174 return;
175 }
176
177 /* --- How the algorithm works --- *
178 *
179 * Let %$A = xb + y$% and %$B = ub + v$%. Then, simply by expanding, %$AB
180 * = x u b^2 + b(x v + y u) + y v$%. That's not helped any, because I've
181 * got four multiplications, each four times easier than the one I started
182 * with. However, note that I can rewrite the coefficient of %$b$% as
183 * %$xv + yu = (x + y)(u + v) - xu - yv$%. The terms %$xu$% and %$yv$%
184 * I've already calculated, and that leaves only one more multiplication to
185 * do. So now I have three multiplications, each four times easier, and
186 * that's a win.
187 */
188
189 /* --- First things --- *
190 *
191 * Sort out where to break the factors in half. I'll choose the midpoint
192 * of the largest one, since this minimizes the amount of work I have to do
193 * most effectively.
194 */
195
196 if (avl - av > bvl - bv) {
197 m = (avl - av + 1) >> 1;
198 avm = av + m;
199 if (bvl - bv > m)
200 bvm = bv + m;
201 else
202 bvm = bvl;
203 } else {
204 m = (bvl - bv + 1) >> 1;
205 bvm = bv + m;
206 if (avl - av > m)
207 avm = av + m;
208 else
209 avm = avl;
210 }
211
212 /* --- Sort out the middle term --- *
213 *
214 * I'm going to keep track of the carry by hand rather than pass it down to
215 * the next level, because it means multiplication by one or zero, which I
216 * can do easily myself.
217 */
218
219 {
220 unsigned f = 0;
221 enum {
222 carry_a = 1,
223 carry_b = 2
224 };
225
226 mpw *bsv = sv + m, *ssv = bsv + m;
227 mpw *rdv = dv + m, *rdvl = rdv + 2 * m;
228
229 UADD2(sv, bsv + 1, av, avm, avm, avl);
230 if (*bsv)
231 f |= carry_a;
232 UADD2(bsv, ssv + 1, bv, bvm, bvm, bvl);
233 if (*ssv)
234 f |= carry_b;
235 MPX_ZERO(dv, rdv);
236 if (m > KARATSUBA_CUTOFF)
237 mpx_kmul(rdv, rdvl, sv, bsv, bsv, ssv, ssv, svl);
238 else
239 mpx_umul(rdv, rdvl, sv, bsv, bsv, ssv);
240 MPX_ZERO(rdvl, dvl);
241 rdv += m; rdvl += m;
242 if (f & carry_b)
243 UADD(rdv, sv, bsv);
244 if (f & carry_a)
245 UADD(rdv, bsv, ssv);
246 if (!(~f & (carry_a | carry_b)))
247 MPX_UADDN(rdv + m, rdvl, 1);
248 }
249
250 /* --- Sort out the other two terms --- */
251
252 {
253 mpw *ssv = sv + 2 * m;
254 mpw *tdv = dv + m;
255 mpw *rdv = tdv + m;
256
257 if (m > KARATSUBA_CUTOFF)
258 mpx_kmul(sv, ssv, avm, avl, bvm, bvl, ssv, svl);
259 else
260 mpx_umul(sv, ssv, avm, avl, bvm, bvl);
261 UADD(rdv, sv, ssv);
262 USUB(tdv, sv, ssv);
263
264 if (m > KARATSUBA_CUTOFF)
265 mpx_kmul(sv, ssv, av, avm, bv, bvm, ssv, svl);
266 else
267 mpx_umul(sv, ssv, av, avm, bv, bvm);
268 USUB(tdv, sv, ssv);
269 UADD(dv, sv, ssv);
270 }
271}
272
273/*----- Test rig ----------------------------------------------------------*/
274
275#ifdef TEST_RIG
276
277#include <mLib/alloc.h>
278#include <mLib/testrig.h>
279
280#include "mpscan.h"
281
282#define ALLOC(v, vl, sz) do { \
283 size_t _sz = (sz); \
284 mpw *_vv = xmalloc(MPWS(_sz)); \
285 mpw *_vvl = _vv + _sz; \
286 (v) = _vv; \
287 (vl) = _vvl; \
288} while (0)
289
290#define LOAD(v, vl, d) do { \
291 const dstr *_d = (d); \
292 mpw *_v, *_vl; \
293 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
294 mpx_loadb(_v, _vl, _d->buf, _d->len); \
295 (v) = _v; \
296 (vl) = _vl; \
297} while (0)
298
299#define MAX(x, y) ((x) > (y) ? (x) : (y))
300
301static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
302{
303 fputs(msg, stderr);
304 MPX_SHRINK(v, vl);
305 while (v < vl)
306 fprintf(stderr, " %08lx", (unsigned long)*--vl);
307 fputc('\n', stderr);
308}
309
310static int umul(dstr *v)
311{
312 mpw *a, *al;
313 mpw *b, *bl;
314 mpw *c, *cl;
315 mpw *d, *dl;
316 mpw *s, *sl;
317 size_t m;
318 int ok = 1;
319
320 LOAD(a, al, &v[0]);
321 LOAD(b, bl, &v[1]);
322 LOAD(c, cl, &v[2]);
323 m = MAX(al - a, bl - b) + 1;
324 ALLOC(d, dl, 2 * m);
325 ALLOC(s, sl, 2 * m + 32);
326
327 mpx_kmul(d, dl, a, al, b, bl, s, sl);
328 if (MPX_UCMP(d, dl, !=, c, cl)) {
329 fprintf(stderr, "\n*** umul failed\n");
330 dumpmp(" a", a, al);
331 dumpmp(" b", b, bl);
332 dumpmp("expected", c, cl);
333 dumpmp(" result", d, dl);
334 ok = 0;
335 }
336
337 free(a); free(b); free(c); free(d); free(s);
338 return (ok);
339}
340
341static test_chunk defs[] = {
342 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
343 { 0, 0, { 0 } }
344};
345
346int main(int argc, char *argv[])
347{
348 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
349 return (0);
350}
351
352#endif
353
354/*----- That's all, folks -------------------------------------------------*/