Make tables of standard encryption schemes etc.
[u/mdw/catacomb] / rsa-recover.c
CommitLineData
01898d8e 1/* -*-c-*-
2 *
b0b682aa 3 * $Id: rsa-recover.c,v 1.6 2001/06/16 12:56:38 mdw Exp $
01898d8e 4 *
5 * Recover RSA parameters
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: rsa-recover.c,v $
b0b682aa 33 * Revision 1.6 2001/06/16 12:56:38 mdw
34 * Fixes for interface change to @mpmont_expr@ and @mpmont_mexpr@.
35 *
22bab86c 36 * Revision 1.5 2000/10/08 12:11:22 mdw
37 * Use @MP_EQ@ instead of @MP_CMP@.
38 *
b82ec4e8 39 * Revision 1.4 2000/07/01 11:22:22 mdw
40 * Remove bad type name `rsa_param'.
41 *
31cb4e2e 42 * Revision 1.3 2000/06/22 19:03:14 mdw
43 * Use the new @mp_odd@ function.
44 *
f3099c16 45 * Revision 1.2 2000/06/17 12:07:19 mdw
46 * Fix a bug in argument validation. Force %$p > q$% in output. Use
47 * %$\lambda(n) = \lcm(p - 1, q - 1)$% rather than the more traditional
48 * %$\phi(n) = (p - 1)(q - 1)$% when computing the decryption exponent.
49 *
01898d8e 50 * Revision 1.1 1999/12/22 15:50:45 mdw
51 * Initial RSA support.
52 *
53 */
54
55/*----- Header files ------------------------------------------------------*/
56
57#include "mp.h"
58#include "mpmont.h"
59#include "rsa.h"
60
61/*----- Main code ---------------------------------------------------------*/
62
63/* --- @rsa_recover@ --- *
64 *
b82ec4e8 65 * Arguments: @rsa_priv *rp@ = pointer to parameter block
01898d8e 66 *
67 * Returns: Zero if all went well, nonzero if the parameters make no
68 * sense.
69 *
70 * Use: Derives the full set of RSA parameters given a minimal set.
71 */
72
b82ec4e8 73int rsa_recover(rsa_priv *rp)
01898d8e 74{
75 /* --- If there is no modulus, calculate it --- */
76
77 if (!rp->n) {
78 if (!rp->p || !rp->q)
79 return (-1);
80 rp->n = mp_mul(MP_NEW, rp->p, rp->q);
81 }
82
83 /* --- If there are no factors, compute them --- */
84
85 else if (!rp->p || !rp->q) {
86
87 /* --- If one is missing, use simple division to recover the other --- */
88
89 if (rp->p || rp->q) {
90 mp *r = MP_NEW;
91 if (rp->p)
92 mp_div(&rp->q, &r, rp->n, rp->p);
93 else
94 mp_div(&rp->p, &r, rp->n, rp->q);
22bab86c 95 if (!MP_EQ(r, MP_ZERO)) {
01898d8e 96 mp_drop(r);
97 return (-1);
98 }
99 mp_drop(r);
100 }
101
102 /* --- Otherwise use the public and private moduli --- */
103
f3099c16 104 else if (!rp->e || !rp->d)
105 return (-1);
106 else {
01898d8e 107 mp *t;
31cb4e2e 108 size_t s;
01898d8e 109 mp a; mpw aw;
110 mp *m1;
111 mpmont mm;
112 int i;
113 mp *z = MP_NEW;
114
115 /* --- Work out the appropriate exponent --- *
116 *
117 * I need to compute %$s$% and %$t$% such that %$2^s t = e d - 1$%, and
118 * %$t$% is odd.
119 */
120
121 t = mp_mul(MP_NEW, rp->e, rp->d);
122 t = mp_sub(t, t, MP_ONE);
31cb4e2e 123 t = mp_odd(t, t, &s);
01898d8e 124
125 /* --- Set up for the exponentiation --- */
126
127 mpmont_create(&mm, rp->n);
128 m1 = mp_sub(MP_NEW, rp->n, mm.r);
129
130 /* --- Now for the main loop --- *
131 *
132 * Choose candidate integers and attempt to factor the modulus.
133 */
134
135 mp_build(&a, &aw, &aw + 1);
136 i = 0;
137 for (;;) {
138 again:
139
140 /* --- Choose a random %$a$% and calculate %$z = a^t \bmod n$% --- *
141 *
142 * If %$z \equiv 1$% or %$z \equiv -1 \pmod n$% then this iteration
143 * is a failure.
144 */
145
146 aw = primetab[i++];
b0b682aa 147 z = mpmont_mul(&mm, z, &a, mm.r2);
148 z = mpmont_expr(&mm, z, z, t);
22bab86c 149 if (MP_EQ(z, mm.r) || MP_EQ(z, m1))
01898d8e 150 continue;
151
152 /* --- Now square until something interesting happens --- *
153 *
154 * Compute %$z^{2i} \bmod n$%. Eventually, I'll either get %$-1$% or
155 * %$1$%. If the former, the number is uninteresting, and I need to
156 * restart. If the latter, the previous number minus 1 has a common
157 * factor with %$n$%.
158 */
159
160 for (;;) {
161 mp *zz = mp_sqr(MP_NEW, z);
162 zz = mpmont_reduce(&mm, zz, zz);
22bab86c 163 if (MP_EQ(zz, mm.r)) {
01898d8e 164 mp_drop(zz);
165 goto done;
22bab86c 166 } else if (MP_EQ(zz, m1)) {
01898d8e 167 mp_drop(zz);
168 goto again;
169 }
170 mp_drop(z);
171 z = zz;
172 }
173 }
174
175 /* --- Do the factoring --- *
176 *
177 * Here's how it actually works. I've found an interesting square
178 * root of %$1 \pmod n$%. Any square root of 1 must be congruent to
179 * %$\pm 1$% modulo both %$p$% and %$q$%. Both congruent to %$1$% is
180 * boring, as is both congruent to %$-1$%. Subtracting one from the
181 * result makes it congruent to %$0$% modulo %$p$% or %$q$% (and
182 * nobody cares which), and hence can be extracted by a GCD
183 * operation.
184 */
185
186 done:
187 z = mpmont_reduce(&mm, z, z);
188 z = mp_sub(z, z, MP_ONE);
189 rp->p = MP_NEW;
190 mp_gcd(&rp->p, 0, 0, rp->n, z);
191 rp->q = MP_NEW;
192 mp_div(&rp->q, 0, rp->n, rp->p);
193 mp_drop(z);
194 mp_drop(t);
195 mp_drop(m1);
f3099c16 196 if (MP_CMP(rp->p, <, rp->q)) {
197 z = rp->p;
198 rp->p = rp->q;
199 rp->q = z;
200 }
01898d8e 201 mpmont_destroy(&mm);
202 }
203 }
204
205 /* --- If %$e$% or %$d$% is missing, recalculate it --- */
206
207 if (!rp->e || !rp->d) {
208 mp *phi;
209 mp *g = MP_NEW;
f3099c16 210 mp *p1, *q1;
01898d8e 211
212 /* --- Compute %$\varphi(n)$% --- */
213
214 phi = mp_sub(MP_NEW, rp->n, rp->p);
215 phi = mp_sub(phi, phi, rp->q);
216 phi = mp_add(phi, phi, MP_ONE);
f3099c16 217 p1 = mp_sub(MP_NEW, rp->p, MP_ONE);
218 q1 = mp_sub(MP_NEW, rp->q, MP_ONE);
219 mp_gcd(&g, 0, 0, p1, q1);
220 mp_div(&phi, 0, phi, g);
221 mp_drop(p1);
222 mp_drop(q1);
01898d8e 223
224 /* --- Recover the other exponent --- */
225
226 if (rp->e)
227 mp_gcd(&g, 0, &rp->d, phi, rp->e);
228 else if (rp->d)
229 mp_gcd(&g, 0, &rp->e, phi, rp->d);
230 else {
231 mp_drop(phi);
f3099c16 232 mp_drop(g);
01898d8e 233 return (-1);
234 }
235
236 mp_drop(phi);
22bab86c 237 if (!MP_EQ(g, MP_ONE)) {
01898d8e 238 mp_drop(g);
239 return (-1);
240 }
241 mp_drop(g);
242 }
243
244 /* --- Compute %$q^{-1} \bmod p$% --- */
245
246 if (!rp->q_inv)
247 mp_gcd(0, 0, &rp->q_inv, rp->p, rp->q);
248
249 /* --- Compute %$d \bmod (p - 1)$% and %$d \bmod (q - 1)$% --- */
250
251 if (!rp->dp) {
252 mp *p1 = mp_sub(MP_NEW, rp->p, MP_ONE);
253 mp_div(0, &rp->dp, rp->d, p1);
254 mp_drop(p1);
255 }
256 if (!rp->dq) {
257 mp *q1 = mp_sub(MP_NEW, rp->q, MP_ONE);
258 mp_div(0, &rp->dq, rp->d, q1);
259 mp_drop(q1);
260 }
261
262 /* --- Done --- */
263
264 return (0);
265}
266
267/*----- That's all, folks -------------------------------------------------*/