Find `safe' primes (i.e., %$p = 2q + 1$%).
[u/mdw/catacomb] / strongprime.c
CommitLineData
a30942cc 1/* -*-c-*-
2 *
3 * $Id: strongprime.c,v 1.1 1999/12/22 15:51:22 mdw Exp $
4 *
5 * Generate `strong' prime numbers
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: strongprime.c,v $
33 * Revision 1.1 1999/12/22 15:51:22 mdw
34 * Find `strong' RSA primes using Gordon's algorithm.
35 *
36 */
37
38/*----- Header files ------------------------------------------------------*/
39
40#include <mLib/dstr.h>
41
42#include "grand.h"
43#include "rand.h"
44#include "mp.h"
45#include "mpmont.h"
46#include "mprand.h"
47#include "pgen.h"
48#include "pfilt.h"
49#include "rabin.h"
50
51/*----- Main code ---------------------------------------------------------*/
52
53/* --- @strongprime@ --- *
54 *
55 * Arguments: @const char *name@ = pointer to name root
56 * @mp *d@ = destination integer
57 * @unsigned nbits@ = number of bits wanted
58 * @grand *r@ = random number source
59 * @unsigned n@ = number of attempts to make
60 * @pgen_proc *event@ = event handler function
61 * @void *ectx@ = argument for the event handler
62 *
63 * Returns: A `strong' prime, or zero.
64 *
65 * Use: Finds `strong' primes. A strong prime %$p$% is such that
66 *
67 * * %$p - 1$% has a large prime factor %$r$%,
68 * * %$p + 1$% has a large prime factor %$s$%, and
69 * * %$r - 1$% has a large prime factor %$t$%.
70 *
71 * The numbers produced may be slightly larger than requested,
72 * by a few bits.
73 */
74
75mp *strongprime(const char *name, mp *d, unsigned nbits, grand *r,
76 unsigned n, pgen_proc *event, void *ectx)
77{
78 mp *s, *t, *q, *p = 0;
79 dstr dn = DSTR_INIT;
80
81 mp *rr = MP_NEW;
82 pgen_filterctx c;
83 pgen_jumpctx cj;
84 rabin rb;
85
86 /* --- The bitslop parameter --- *
87 *
88 * There's quite a lot of prime searching to be done. The constant
89 * @BITSLOP@ is a (low) approximation to the base-2 log of the expected
90 * number of steps to find a prime number. Experimentation shows that
91 * numbers around 10 seem to be good.
92 */
93
94#define BITSLOP 10
95
96 /* --- Choose two primes %$s$% and %$t$% of half the required size --- */
97
98 nbits = nbits/2 - BITSLOP;
99 c.step = 1;
100
101 rr = mprand(rr, nbits, r, 1);
102 DRESET(&dn); dstr_putf(&dn, "%s [s]", name);
103 if ((s = pgen(dn.buf, MP_NEW, rr, event, ectx, n, pgen_filter, &c,
104 rabin_iters(nbits), pgen_test, &rb)) == 0)
105 goto fail_s;
106 mp_burn(s);
107
108 rr = mprand(rr, nbits, r, 1);
109 DRESET(&dn); dstr_putf(&dn, "%s [t]", name);
110 if ((t = pgen(dn.buf, MP_NEW, rr, event, ectx, n, pgen_filter, &c,
111 rabin_iters(nbits), pgen_test, &rb)) == 0)
112 goto fail_t;
113 mp_burn(t);
114
115 /* --- Choose a suitable value for %$r = 2it + 1$% for some %$i$% --- */
116
117 rr = mp_lsl(rr, t, 1);
118 pfilt_create(&c.f, rr);
119 rr = mp_lsl(rr, rr, BITSLOP - 1);
120 rr = mp_add(rr, rr, MP_ONE);
121 DRESET(&dn); dstr_putf(&dn, "%s [r]", name);
122 cj.j = &c.f;
123 nbits += BITSLOP;
124 if ((q = pgen(dn.buf, MP_NEW, rr, event, ectx, n, pgen_jump, &cj,
125 rabin_iters(nbits), pgen_test, &rb)) == 0)
126 goto fail_r;
127 pfilt_destroy(&c.f);
128
129 /* --- Select a suitable starting-point for finding %$p$% --- *
130 *
131 * This computes %$p_0 = 2(s^{r - 2} \bmod r)s - 1$%.
132 */
133
134 {
135 mpmont mm;
136
137 mpmont_create(&mm, q);
138 rr = mp_sub(rr, q, MP_TWO);
139 rr = mpmont_exp(&mm, rr, s, rr);
140 mpmont_destroy(&mm);
141 rr = mp_mul(rr, rr, s);
142 rr = mp_lsl(rr, rr, 1);
143 rr = mp_sub(rr, rr, MP_ONE);
144 }
145
146 /* --- Now find %$p = p_0 + 2jrs$% for some %$j$% --- */
147
148 {
149 mp *x;
150 x = mp_mul(MP_NEW, q, s);
151 x = mp_lsl(x, x, 1);
152 pfilt_create(&c.f, x);
153 x = mp_lsl(x, x, BITSLOP - 1);
154 rr = mp_add(rr, rr, x);
155 mp_drop(x);
156 }
157
158 if ((p = pgen(name, d, rr, event, ectx, n, pgen_jump, &cj,
159 rabin_iters(nbits * 2), pgen_test, &rb)) == 0)
160 goto fail_p;
161
162 /* --- Tidy up because we've finished --- */
163
164fail_p:
165 mp_drop(q);
166fail_r:
167 pfilt_destroy(&c.f);
168 mp_drop(t);
169fail_t:
170 mp_drop(s);
171fail_s:
172 mp_drop(rr);
173 dstr_destroy(&dn);
174
175 return (p);
176
177#undef BITSLOP
178}
179
180/*----- That's all, folks -------------------------------------------------*/