server/peer.c, server/keyset.c: Fix key renegotiation behaviour.
[tripe] / server / keyset.c
CommitLineData
410c8acf 1/* -*-c-*-
2 *
410c8acf 3 * Handling of symmetric keysets
4 *
5 * (c) 2001 Straylight/Edgeware
6 */
7
e04c2d50 8/*----- Licensing notice --------------------------------------------------*
410c8acf 9 *
10 * This file is part of Trivial IP Encryption (TrIPE).
11 *
12 * TrIPE is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
e04c2d50 16 *
410c8acf 17 * TrIPE is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
e04c2d50 21 *
410c8acf 22 * You should have received a copy of the GNU General Public License
23 * along with TrIPE; if not, write to the Free Software Foundation,
24 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 */
26
410c8acf 27/*----- Header files ------------------------------------------------------*/
28
29#include "tripe.h"
30
31/*----- Tunable parameters ------------------------------------------------*/
32
d132c651 33/* --- Note on size limits --- *
34 *
35 * For a 64-bit block cipher (e.g., Blowfish), the probability of a collision
36 * occurring after 32 MB is less than %$2^{-21}$%, and the probability of a
b5c45da1 37 * collision occurring after 64 MB is less than %$2^{-19}$%. These could be
38 * adjusted dependent on the encryption scheme, but it's too much pain.
d132c651 39 */
40
426c0bc6 41#define T_EXP MIN(60) /* Expiry time for a key */
42#define T_REGEN MIN(45) /* Regeneration time for a key */
43#define SZ_EXP MEG(64) /* Expiry data size for a key */
44#define SZ_REGEN MEG(32) /* Data size threshold for regen */
410c8acf 45
46/*----- Handy macros ------------------------------------------------------*/
47
48#define KEYOK(ks, now) ((ks)->sz_exp > 0 && (ks)->t_exp > now)
49
b5c45da1 50#define SEQSZ 4 /* Size of sequence number packet */
51
426c0bc6 52/*----- Low-level packet encryption and decryption ------------------------*/
410c8acf 53
59d670e7 54/* --- Encrypted data format --- *
55 *
7ed14135 56 * Let %$p_i$% be the %$i$%-th plaintext message, with type %$t$%. We first
e04c2d50 57 * compute
59d670e7 58 *
59 * %$c_i = \mathcal{E}\textrm{-CBC}_{K_{\text{E}}}(p_i)$%
60 *
61 * as the CBC-ciphertext of %$p_i$%, and then
62 *
7ed14135 63 * %$\sigma_i = \mathcal{T}_{K_{\text{M}}}(t, i, c_i)$%
59d670e7 64 *
65 * as a MAC on the %%\emph{ciphertext}%%. The message sent is then the pair
66 * %$(\sigma_i, c_i)$%. This construction is provably secure in the NM-CCA
67 * sense (assuming that the cipher is IND-CPA, and the MAC is SUF-CMA)
68 * [Bellare and Namprempre].
69 *
70 * This also ensures that, assuming the key is good, we have a secure channel
71 * [Krawczyk]. Actually, [Krawczyk] shows that, if the cipher is either a
72 * simple stream cipher or a block cipher in CBC mode, we can use the MAC-
73 * then-encrypt scheme and still have a secure channel. However, I like the
74 * NM-CCA guarantee from [Bellare and Namprempre]. I'm less worried about
75 * the Horton Principle [Wagner and Schneier].
76 */
77
426c0bc6 78/* --- @doencrypt@ --- *
410c8acf 79 *
426c0bc6 80 * Arguments: @keyset *ks@ = pointer to keyset to use
7ed14135 81 * @unsigned ty@ = type of message this is
426c0bc6 82 * @buf *b@ = pointer to an input buffer
83 * @buf *bb@ = pointer to an output buffer
410c8acf 84 *
a50f9a0e
MW
85 * Returns: Zero if OK; @KSERR_REGEN@ if it's time to generate new keys.
86 * Also returns zero if there was insufficient buffer space, but
87 * the buffer is broken in this case.
410c8acf 88 *
426c0bc6 89 * Use: Encrypts a message with the given key. We assume that the
90 * keyset is OK to use.
410c8acf 91 */
92
7ed14135 93static int doencrypt(keyset *ks, unsigned ty, buf *b, buf *bb)
410c8acf 94{
426c0bc6 95 ghash *h;
b5c45da1 96 gcipher *c = ks->cout;
426c0bc6 97 const octet *p = BCUR(b);
98 size_t sz = BLEFT(b);
59d670e7 99 octet *qmac, *qseq, *qiv, *qpk;
426c0bc6 100 uint32 oseq;
b5c45da1 101 size_t ivsz = GC_CLASS(c)->blksz;
102 size_t tagsz = ks->tagsz;
426c0bc6 103 size_t osz, nsz;
7ed14135 104 octet t[4];
426c0bc6 105 int rc = 0;
106
107 /* --- Allocate the required buffer space --- */
108
b5c45da1 109 if (buf_ensure(bb, tagsz + SEQSZ + ivsz + sz))
426c0bc6 110 return (0); /* Caution! */
b5c45da1 111 qmac = BCUR(bb); qseq = qmac + tagsz; qiv = qseq + SEQSZ; qpk = qiv + ivsz;
112 BSTEP(bb, tagsz + SEQSZ + ivsz + sz);
7ed14135 113 STORE32(t, ty);
426c0bc6 114
426c0bc6 115 oseq = ks->oseq++; STORE32(qseq, oseq);
426c0bc6 116 IF_TRACING(T_KEYSET, {
117 trace(T_KEYSET, "keyset: encrypting packet %lu using keyset %u",
118 (unsigned long)oseq, ks->seq);
b5c45da1 119 trace_block(T_CRYPTO, "crypto: plaintext packet", p, sz);
426c0bc6 120 })
59d670e7 121
b5c45da1 122 /* --- Encrypt the packet --- */
59d670e7 123
b5c45da1 124 if (ivsz) {
125 rand_get(RAND_GLOBAL, qiv, ivsz);
126 GC_SETIV(c, qiv);
127 IF_TRACING(T_KEYSET, {
128 trace_block(T_CRYPTO, "crypto: initialization vector", qiv, ivsz);
129 })
130 }
131 GC_ENCRYPT(c, p, qpk, sz);
426c0bc6 132 IF_TRACING(T_KEYSET, {
b5c45da1 133 trace_block(T_CRYPTO, "crypto: encrypted packet", qpk, sz);
426c0bc6 134 })
135
b5c45da1 136 /* --- Now compute the MAC --- */
137
138 if (tagsz) {
139 h = GM_INIT(ks->mout);
140 GH_HASH(h, t, sizeof(t));
141 GH_HASH(h, qseq, SEQSZ + ivsz + sz);
142 memcpy(qmac, GH_DONE(h, 0), tagsz);
143 GH_DESTROY(h);
144 IF_TRACING(T_KEYSET, {
145 trace_block(T_CRYPTO, "crypto: computed MAC", qmac, tagsz);
146 })
147 }
148
426c0bc6 149 /* --- Deduct the packet size from the key's data life --- */
150
151 osz = ks->sz_exp;
152 if (osz > sz)
153 nsz = osz - sz;
154 else
155 nsz = 0;
156 if (osz >= SZ_REGEN && nsz < SZ_REGEN) {
157 T( trace(T_KEYSET, "keyset: keyset %u data regen limit exceeded -- "
158 "forcing exchange", ks->seq); )
a50f9a0e 159 rc = KSERR_REGEN;
426c0bc6 160 }
161 ks->sz_exp = nsz;
e04c2d50 162 return (rc);
410c8acf 163}
164
426c0bc6 165/* --- @dodecrypt@ --- *
410c8acf 166 *
426c0bc6 167 * Arguments: @keyset *ks@ = pointer to keyset to use
7ed14135 168 * @unsigned ty@ = expected type code
426c0bc6 169 * @buf *b@ = pointer to an input buffer
170 * @buf *bb@ = pointer to an output buffer
171 * @uint32 *seq@ = where to store the sequence number
410c8acf 172 *
a50f9a0e 173 * Returns: Zero on success; @KSERR_DECRYPT@ on failure.
410c8acf 174 *
426c0bc6 175 * Use: Attempts to decrypt a message with the given key. No other
176 * checking (e.g., sequence number checks) is performed. We
177 * assume that the keyset is OK to use, and that there is
178 * sufficient output buffer space reserved. If the decryption
179 * is successful, the buffer pointer is moved past the decrypted
180 * packet, and the packet's sequence number is stored in @*seq@.
410c8acf 181 */
182
7ed14135 183static int dodecrypt(keyset *ks, unsigned ty, buf *b, buf *bb, uint32 *seq)
410c8acf 184{
59d670e7 185 const octet *pmac, *piv, *pseq, *ppk;
426c0bc6 186 size_t psz = BLEFT(b);
187 size_t sz;
188 octet *q = BCUR(bb);
189 ghash *h;
190 gcipher *c = ks->cin;
b5c45da1 191 size_t ivsz = GC_CLASS(c)->blksz;
192 size_t tagsz = ks->tagsz;
426c0bc6 193 octet *mac;
194 int eq;
7ed14135 195 octet t[4];
426c0bc6 196
197 /* --- Break up the packet into its components --- */
198
b5c45da1 199 if (psz < ivsz + SEQSZ + tagsz) {
426c0bc6 200 T( trace(T_KEYSET, "keyset: block too small for keyset %u", ks->seq); )
a50f9a0e 201 return (KSERR_DECRYPT);
410c8acf 202 }
b5c45da1 203 sz = psz - ivsz - SEQSZ - tagsz;
204 pmac = BCUR(b); pseq = pmac + tagsz; piv = pseq + SEQSZ; ppk = piv + ivsz;
7ed14135 205 STORE32(t, ty);
426c0bc6 206
426c0bc6 207 IF_TRACING(T_KEYSET, {
208 trace(T_KEYSET, "keyset: decrypting using keyset %u", ks->seq);
b5c45da1 209 trace_block(T_CRYPTO, "crypto: ciphertext packet", ppk, sz);
426c0bc6 210 })
b5c45da1 211
212 /* --- Verify the MAC on the packet --- */
213
214 if (tagsz) {
215 h = GM_INIT(ks->min);
216 GH_HASH(h, t, sizeof(t));
217 GH_HASH(h, pseq, SEQSZ + ivsz + sz);
218 mac = GH_DONE(h, 0);
219 eq = !memcmp(mac, pmac, tagsz);
426c0bc6 220 IF_TRACING(T_KEYSET, {
b5c45da1 221 trace_block(T_CRYPTO, "crypto: computed MAC", mac, tagsz);
426c0bc6 222 })
b5c45da1 223 GH_DESTROY(h);
224 if (!eq) {
225 IF_TRACING(T_KEYSET, {
226 trace(T_KEYSET, "keyset: incorrect MAC: decryption failed");
227 trace_block(T_CRYPTO, "crypto: expected MAC", pmac, tagsz);
228 })
a50f9a0e 229 return (KSERR_DECRYPT);
b5c45da1 230 }
426c0bc6 231 }
59d670e7 232
233 /* --- Decrypt the packet --- */
234
b5c45da1 235 if (ivsz) {
236 GC_SETIV(c, piv);
237 IF_TRACING(T_KEYSET, {
238 trace_block(T_CRYPTO, "crypto: initialization vector", piv, ivsz);
239 })
240 }
241 GC_DECRYPT(c, ppk, q, sz);
426c0bc6 242 if (seq)
243 *seq = LOAD32(pseq);
244 IF_TRACING(T_KEYSET, {
245 trace(T_KEYSET, "keyset: decrypted OK (sequence = %lu)",
246 (unsigned long)LOAD32(pseq));
247 trace_block(T_CRYPTO, "crypto: decrypted packet", q, sz);
248 })
249 BSTEP(bb, sz);
250 return (0);
410c8acf 251}
252
426c0bc6 253/*----- Operations on a single keyset -------------------------------------*/
254
255/* --- @ks_drop@ --- *
256 *
257 * Arguments: @keyset *ks@ = pointer to a keyset
258 *
259 * Returns: ---
260 *
261 * Use: Decrements a keyset's reference counter. If the counter hits
262 * zero, the keyset is freed.
263 */
264
265void ks_drop(keyset *ks)
266{
267 if (--ks->ref)
268 return;
b5c45da1 269 GC_DESTROY(ks->cin);
270 GC_DESTROY(ks->cout);
271 GM_DESTROY(ks->min);
272 GM_DESTROY(ks->mout);
426c0bc6 273 DESTROY(ks);
410c8acf 274}
275
276/* --- @ks_gen@ --- *
277 *
426c0bc6 278 * Arguments: @const void *k@ = pointer to key material
279 * @size_t x, y, z@ = offsets into key material (see below)
e04c2d50 280 * @peer *p@ = pointer to peer information
410c8acf 281 *
426c0bc6 282 * Returns: A pointer to the new keyset.
410c8acf 283 *
426c0bc6 284 * Use: Derives a new keyset from the given key material. The
285 * offsets @x@, @y@ and @z@ separate the key material into three
286 * parts. Between the @k@ and @k + x@ is `my' contribution to
287 * the key material; between @k + x@ and @k + y@ is `your'
288 * contribution; and between @k + y@ and @k + z@ is a shared
289 * value we made together. These are used to construct two
290 * pairs of symmetric keys. Each pair consists of an encryption
291 * key and a message authentication key. One pair is used for
292 * outgoing messages, the other for incoming messages.
293 *
294 * The new key is marked so that it won't be selected for output
295 * by @ksl_encrypt@. You can still encrypt data with it by
296 * calling @ks_encrypt@ directly.
410c8acf 297 */
298
9466fafa 299keyset *ks_gen(const void *k, size_t x, size_t y, size_t z, peer *p)
410c8acf 300{
b5c45da1 301 ghash *h;
302 const octet *hh;
410c8acf 303 keyset *ks = CREATE(keyset);
304 time_t now = time(0);
9466fafa 305 const octet *pp = k;
410c8acf 306 T( static unsigned seq = 0; )
307
308 T( trace(T_KEYSET, "keyset: adding new keyset %u", seq); )
309
426c0bc6 310 /* --- Construct the various keys --- *
311 *
312 * This is done with macros, because it's quite tedious.
313 */
314
b5c45da1 315#define MINE GH_HASH(h, pp, x)
316#define YOURS GH_HASH(h, pp + x, y - x)
317#define OURS GH_HASH(h, pp + y, z - y)
318
319#define HASH_in MINE; YOURS; OURS
320#define HASH_out YOURS; MINE; OURS
321#define INIT_c(k) GC_INIT(algs.c, (k), algs.cksz)
322#define INIT_m(k) GM_KEY(algs.m, (k), algs.mksz)
323#define STR_c "encryption"
324#define STR_m "integrity"
325#define STR_in "incoming"
326#define STR_out "outgoing"
327
328#define SETKEY(a, dir) do { \
329 h = GH_INIT(algs.h); \
330 HASH_STRING(h, "tripe-" STR_##a); \
331 HASH_##dir; \
332 hh = GH_DONE(h, 0); \
410c8acf 333 IF_TRACING(T_KEYSET, { \
b5c45da1 334 trace_block(T_CRYPTO, "crypto: " STR_##dir " key " STR_##a, \
335 hh, algs.a##ksz); \
410c8acf 336 }) \
b5c45da1 337 ks->a##dir = INIT_##a(hh); \
338 GH_DESTROY(h); \
410c8acf 339} while (0)
340
b5c45da1 341 SETKEY(c, in); SETKEY(c, out);
342 SETKEY(m, in); SETKEY(m, out);
426c0bc6 343
344#undef MINE
345#undef YOURS
346#undef OURS
b5c45da1 347#undef STR_c
348#undef STR_m
349#undef STR_in
350#undef STR_out
351#undef INIT_c
352#undef INIT_m
353#undef HASH_in
354#undef HASH_out
355#undef SETKEY
410c8acf 356
357 T( ks->seq = seq++; )
e945d6e4 358 ks->ref = 1;
426c0bc6 359 ks->t_exp = now + T_EXP;
360 ks->sz_exp = SZ_EXP;
37941236 361 ks->oseq = 0;
362 seq_reset(&ks->iseq);
426c0bc6 363 ks->next = 0;
9466fafa 364 ks->p = p;
426c0bc6 365 ks->f = KSF_LISTEN;
b5c45da1 366 ks->tagsz = algs.tagsz;
426c0bc6 367 return (ks);
368}
369
370/* --- @ks_tregen@ --- *
371 *
372 * Arguments: @keyset *ks@ = pointer to a keyset
373 *
374 * Returns: The time at which moves ought to be made to replace this key.
375 */
376
377time_t ks_tregen(keyset *ks) { return (ks->t_exp - T_EXP + T_REGEN); }
378
379/* --- @ks_activate@ --- *
380 *
381 * Arguments: @keyset *ks@ = pointer to a keyset
382 *
383 * Returns: ---
384 *
385 * Use: Activates a keyset, so that it can be used for encrypting
386 * outgoing messages.
387 */
388
389void ks_activate(keyset *ks)
390{
391 if (ks->f & KSF_LISTEN) {
392 T( trace(T_KEYSET, "keyset: activating keyset %u", ks->seq); )
393 ks->f &= ~KSF_LISTEN;
394 }
410c8acf 395}
396
397/* --- @ks_encrypt@ --- *
398 *
426c0bc6 399 * Arguments: @keyset *ks@ = pointer to a keyset
7ed14135 400 * @unsigned ty@ = message type
426c0bc6 401 * @buf *b@ = pointer to input buffer
402 * @buf *bb@ = pointer to output buffer
403 *
a50f9a0e
MW
404 * Returns: Zero if successful; @KSERR_REGEN@ if we should negotiate a
405 * new key; @KSERR_NOKEYS@ if the key is not usable. Also
406 * returns zero if there was insufficient buffer (but the output
407 * buffer is broken in this case).
426c0bc6 408 *
409 * Use: Encrypts a block of data using the key. Note that the `key
410 * ought to be replaced' notification is only ever given once
411 * for each key. Also note that this call forces a keyset to be
412 * used even if it's marked as not for data output.
413 */
414
7ed14135 415int ks_encrypt(keyset *ks, unsigned ty, buf *b, buf *bb)
426c0bc6 416{
417 time_t now = time(0);
418
419 if (!KEYOK(ks, now)) {
420 buf_break(bb);
a50f9a0e 421 return (KSERR_NOKEYS);
426c0bc6 422 }
7ed14135 423 return (doencrypt(ks, ty, b, bb));
426c0bc6 424}
425
426/* --- @ks_decrypt@ --- *
427 *
428 * Arguments: @keyset *ks@ = pointer to a keyset
7ed14135 429 * @unsigned ty@ = expected type code
426c0bc6 430 * @buf *b@ = pointer to an input buffer
431 * @buf *bb@ = pointer to an output buffer
432 *
a50f9a0e
MW
433 * Returns: Zero on success; @KSERR_DECRYPT@ on failure. Also returns
434 * zero if there was insufficient buffer (but the output buffer
435 * is broken in this case).
426c0bc6 436 *
437 * Use: Attempts to decrypt a message using a given key. Note that
438 * requesting decryption with a key directly won't clear a
439 * marking that it's not for encryption.
440 */
441
7ed14135 442int ks_decrypt(keyset *ks, unsigned ty, buf *b, buf *bb)
426c0bc6 443{
444 time_t now = time(0);
445 uint32 seq;
446
447 if (!KEYOK(ks, now) ||
448 buf_ensure(bb, BLEN(b)) ||
7ed14135 449 dodecrypt(ks, ty, b, bb, &seq) ||
f43df819 450 seq_check(&ks->iseq, seq, "SYMM"))
a50f9a0e 451 return (KSERR_DECRYPT);
426c0bc6 452 return (0);
453}
454
455/*----- Keyset list handling ----------------------------------------------*/
456
457/* --- @ksl_free@ --- *
458 *
459 * Arguments: @keyset **ksroot@ = pointer to keyset list head
460 *
461 * Returns: ---
462 *
463 * Use: Frees (releases references to) all of the keys in a keyset.
464 */
465
466void ksl_free(keyset **ksroot)
467{
468 keyset *ks, *ksn;
469 for (ks = *ksroot; ks; ks = ksn) {
470 ksn = ks->next;
471 ks->f &= ~KSF_LINK;
472 ks_drop(ks);
473 }
474}
475
476/* --- @ksl_link@ --- *
477 *
478 * Arguments: @keyset **ksroot@ = pointer to keyset list head
479 * @keyset *ks@ = pointer to a keyset
480 *
481 * Returns: ---
482 *
483 * Use: Links a keyset into a list. A keyset can only be on one list
484 * at a time. Bad things happen otherwise.
485 */
486
487void ksl_link(keyset **ksroot, keyset *ks)
488{
489 assert(!(ks->f & KSF_LINK));
490 ks->next = *ksroot;
491 *ksroot = ks;
492 ks->f |= KSF_LINK;
493 ks->ref++;
494}
495
496/* --- @ksl_prune@ --- *
497 *
498 * Arguments: @keyset **ksroot@ = pointer to keyset list head
499 *
500 * Returns: ---
501 *
502 * Use: Prunes the keyset list by removing keys which mustn't be used
503 * any more.
504 */
505
506void ksl_prune(keyset **ksroot)
507{
508 time_t now = time(0);
509
510 while (*ksroot) {
511 keyset *ks = *ksroot;
512
513 if (ks->t_exp <= now) {
514 T( trace(T_KEYSET, "keyset: expiring keyset %u (time limit reached)",
515 ks->seq); )
516 goto kill;
517 } else if (ks->sz_exp == 0) {
518 T( trace(T_KEYSET, "keyset: expiring keyset %u (data limit reached)",
519 ks->seq); )
520 goto kill;
521 } else {
522 ksroot = &ks->next;
523 continue;
524 }
525
526 kill:
527 *ksroot = ks->next;
528 ks->f &= ~KSF_LINK;
529 ks_drop(ks);
530 }
531}
532
533/* --- @ksl_encrypt@ --- *
534 *
410c8acf 535 * Arguments: @keyset **ksroot@ = pointer to keyset list head
7ed14135 536 * @unsigned ty@ = message type
410c8acf 537 * @buf *b@ = pointer to input buffer
538 * @buf *bb@ = pointer to output buffer
539 *
a50f9a0e
MW
540 * Returns: Zero if successful; @KSERR_REGEN@ if it's time to negotiate a
541 * new key; @KSERR_NOKEYS@ if there are no suitable keys
542 * available. Also returns zero if there was insufficient
543 * buffer space (but the output buffer is broken in this case).
410c8acf 544 *
545 * Use: Encrypts a packet.
546 */
547
7ed14135 548int ksl_encrypt(keyset **ksroot, unsigned ty, buf *b, buf *bb)
410c8acf 549{
550 time_t now = time(0);
426c0bc6 551 keyset *ks = *ksroot;
410c8acf 552
410c8acf 553 for (;;) {
554 if (!ks) {
426c0bc6 555 T( trace(T_KEYSET, "keyset: no suitable keysets found"); )
410c8acf 556 buf_break(bb);
a50f9a0e 557 return (KSERR_NOKEYS);
410c8acf 558 }
426c0bc6 559 if (KEYOK(ks, now) && !(ks->f & KSF_LISTEN))
410c8acf 560 break;
561 ks = ks->next;
562 }
563
7ed14135 564 return (doencrypt(ks, ty, b, bb));
410c8acf 565}
566
426c0bc6 567/* --- @ksl_decrypt@ --- *
410c8acf 568 *
569 * Arguments: @keyset **ksroot@ = pointer to keyset list head
7ed14135 570 * @unsigned ty@ = expected type code
410c8acf 571 * @buf *b@ = pointer to input buffer
572 * @buf *bb@ = pointer to output buffer
573 *
a50f9a0e
MW
574 * Returns: Zero on success; @KSERR_DECRYPT@ on failure. Also returns
575 * zero if there was insufficient buffer (but the output buffer
576 * is broken in this case).
410c8acf 577 *
578 * Use: Decrypts a packet.
579 */
580
7ed14135 581int ksl_decrypt(keyset **ksroot, unsigned ty, buf *b, buf *bb)
410c8acf 582{
583 time_t now = time(0);
410c8acf 584 keyset *ks;
426c0bc6 585 uint32 seq;
410c8acf 586
426c0bc6 587 if (buf_ensure(bb, BLEN(b)))
a50f9a0e 588 return (KSERR_DECRYPT);
09585a65 589
410c8acf 590 for (ks = *ksroot; ks; ks = ks->next) {
410c8acf 591 if (!KEYOK(ks, now))
592 continue;
7ed14135 593 if (!dodecrypt(ks, ty, b, bb, &seq)) {
426c0bc6 594 if (ks->f & KSF_LISTEN) {
595 T( trace(T_KEYSET, "keyset: implicitly activating keyset %u",
596 ks->seq); )
597 ks->f &= ~KSF_LISTEN;
598 }
a50f9a0e
MW
599 if (seq_check(&ks->iseq, seq, "SYMM"))
600 return (KSERR_DECRYPT);
601 else
602 return (0);
410c8acf 603 }
410c8acf 604 }
e945d6e4 605 T( trace(T_KEYSET, "keyset: no matching keys, or incorrect MAC"); )
a50f9a0e 606 return (KSERR_DECRYPT);
410c8acf 607}
608
609/*----- That's all, folks -------------------------------------------------*/