From 492d2d5a09a54bd94c8be5011128a307dbb04769 Mon Sep 17 00:00:00 2001 From: Fredrik Fornwall Date: Wed, 13 Apr 2016 18:42:14 -0400 Subject: [PATCH] libcrypt: Update with routines from FreeBSD This brings in support for MD5, SHA-256 and SHA-512 encryption. --- packages/libcrypt/build.sh | 5 +- packages/libcrypt/crypt3.c | 1778 +++++++++++++++++++++++++++++++++----------- 2 files changed, 1359 insertions(+), 424 deletions(-) diff --git a/packages/libcrypt/build.sh b/packages/libcrypt/build.sh index 0e3bf1ff..c93d4ce9 100644 --- a/packages/libcrypt/build.sh +++ b/packages/libcrypt/build.sh @@ -1,9 +1,10 @@ TERMUX_PKG_HOMEPAGE=http://michael.dipperstein.com/crypt/ TERMUX_PKG_DESCRIPTION="A crypt(3) implementation" -TERMUX_PKG_VERSION=0.1 +TERMUX_PKG_VERSION=0.2 +TERMUX_PKG_DEPENDS="openssl" termux_step_make_install () { - $CC $CFLAGS $LDFLAGS -fPIC -shared $TERMUX_PKG_BUILDER_DIR/crypt3.c -o $TERMUX_PREFIX/lib/libcrypt.so + $CC $CFLAGS $CPPFLAGS $LDFLAGS -Wall -Wextra -fPIC -shared $TERMUX_PKG_BUILDER_DIR/crypt3.c -lcrypto -o $TERMUX_PREFIX/lib/libcrypt.so mkdir -p $TERMUX_PREFIX/include/ cp $TERMUX_PKG_BUILDER_DIR/crypt.h $TERMUX_PREFIX/include/ } diff --git a/packages/libcrypt/crypt3.c b/packages/libcrypt/crypt3.c index c685f1bc..a9de4d2f 100644 --- a/packages/libcrypt/crypt3.c +++ b/packages/libcrypt/crypt3.c @@ -1,460 +1,1394 @@ /************************************************************************** -* Unix-like crypt(3) Algorithm for Password Encryption +* Implementation of crypt(3) using routines in libcrypto from openssl for +* use on Android in Termux. * -* File : crypt3.c -* Purpose : Provides crypt(3) functionality to ANSI C compilers -* without a need for the crypt library. -* Author : Michael Dipperstein -* Date : November 3, 1998 +* https://www.freebsd.org/cgi/man.cgi?crypt(3) +* http://man7.org/linux/man-pages/man3/crypt.3.html * -*************************************************************************** -* The source in this file is heavily borrowed from the crypt3.c file -* found on several ftp sites on the Internet. The original source -* claimed to be BSD, but was not distributed with any BSD license or -* copyright claims. I am releasing the source that I have provided into -* public domain without any restrictions, warranties, or copyright -* claims of my own. -* -* The code below has been cleaned and compiles correctly under, gcc, -* lcc, and Borland's bcc C compilers. A bug involving the left and -* right halves of the encrypted data block in the widely published -* crypt3.c source has been fixed by this version. All implicit register -* declarations have been removed, because they generated suboptimal code. -* All constant data has been explicitly declared as const and all -* declarations have been given a minimal scope, because I'm paranoid. -* -* Caution: crypt() returns a pointer to static data. I left it this way -* to maintain backward compatibility. The downside is that -* successive calls will cause previous results to be lost. -* This can easily be changed with only minor modifications to -* the function crypt(). +* Relevant code is from FreeBSD with license given below. **************************************************************************/ -/* Initial permutation */ -static const char IP[] = +/* + * Copyright (c) 2011 The FreeBSD Project. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* START: Freebsd compat */ +typedef unsigned long u_long; +#define MIN(a,b) (((a)<(b))?(a):(b)) +#define MAX(a,b) (((a)>(b))?(a):(b)) +#define MD5_SIZE 16 +#define _PASSWORD_EFMT1 '_' +#define DES_SALT_ALPHABET \ + "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" +#define MD5Init MD5_Init +#define MD5Update MD5_Update +#define MD5Final MD5_Final +/* END: Freebsd compat */ + + +/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/misc.c */ +static char itoa64[] = /* 0 ... 63 => ascii - 64 */ + "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + +void +_crypt_to64(char *s, u_long v, int n) { - 58, 50, 42, 34, 26, 18, 10, 2, - 60, 52, 44, 36, 28, 20, 12, 4, - 62, 54, 46, 38, 30, 22, 14, 6, - 64, 56, 48, 40, 32, 24, 16, 8, - 57, 49, 41, 33, 25, 17, 9, 1, - 59, 51, 43, 35, 27, 19, 11, 3, - 61, 53, 45, 37, 29, 21, 13, 5, - 63, 55, 47, 39, 31, 23, 15, 7, + while (--n >= 0) { + *s++ = itoa64[v&0x3f]; + v >>= 6; + } +} + +void +b64_from_24bit(uint8_t B2, uint8_t B1, uint8_t B0, int n, int *buflen, char **cp) +{ + uint32_t w; + int i; + + w = (B2 << 16) | (B1 << 8) | B0; + for (i = 0; i < n; i++) { + **cp = itoa64[w&0x3f]; + (*cp)++; + if ((*buflen)-- < 0) + break; + w >>= 6; + } +} +/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/misc.c */ + + +/* START: https://github.com/freebsd/freebsd/blob/master/secure/lib/libcrypt/crypt-des.c */ +#if defined(__GNUC__) && !defined(lint) +#define INLINE inline +#else +#define INLINE +#endif + +static u_char IP[64] = { + 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, + 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, + 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, + 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; -/* Final permutation, FP = IP^(-1) */ -static const char FP[] = { - 40, 8, 48, 16, 56, 24, 64, 32, - 39, 7, 47, 15, 55, 23, 63, 31, - 38, 6, 46, 14, 54, 22, 62, 30, - 37, 5, 45, 13, 53, 21, 61, 29, - 36, 4, 44, 12, 52, 20, 60, 28, - 35, 3, 43, 11, 51, 19, 59, 27, - 34, 2, 42, 10, 50, 18, 58, 26, - 33, 1, 41, 9, 49, 17, 57, 25, +static u_char inv_key_perm[64]; +static u_char key_perm[56] = { + 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, + 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, + 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, + 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; -/************************************************************************** -* Permuted-choice 1 from the key bits to yield C and D. -* Note that bits 8,16... are left out: -* They are intended for a parity check. -**************************************************************************/ -static const char PC1_C[] = -{ - 57, 49, 41, 33, 25, 17, 9, - 1, 58, 50, 42, 34, 26, 18, - 10, 2, 59, 51, 43, 35, 27, - 19, 11, 3, 60, 52, 44, 36, +static u_char key_shifts[16] = { + 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; -static const char PC1_D[] = -{ - 63, 55, 47, 39, 31, 23, 15, - 7, 62, 54, 46, 38, 30, 22, - 14, 6, 61, 53, 45, 37, 29, - 21, 13, 5, 28, 20, 12, 4, +static u_char inv_comp_perm[56]; +static u_char comp_perm[48] = { + 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, + 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, + 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, + 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; -/* Sequence of shifts used for the key schedule. */ -static const char shifts[] = - {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1}; +/* + * No E box is used, as it's replaced by some ANDs, shifts, and ORs. + */ -/************************************************************************** -* Permuted-choice 2, to pick out the bits from the CD array that generate -* the key schedule. -**************************************************************************/ -static const char PC2_C[] = -{ - 14, 17, 11, 24, 1, 5, - 3, 28, 15, 6, 21, 10, - 23, 19, 12, 4, 26, 8, - 16, 7, 27, 20, 13, 2, +static u_char u_sbox[8][64]; +static u_char sbox[8][64] = { + { + 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, + 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, + 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, + 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 + }, + { + 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, + 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, + 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, + 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 + }, + { + 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, + 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, + 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, + 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 + }, + { + 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, + 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, + 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, + 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 + }, + { + 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, + 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, + 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, + 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 + }, + { + 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, + 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, + 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, + 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 + }, + { + 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, + 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, + 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, + 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 + }, + { + 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, + 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, + 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, + 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 + } }; -static const char PC2_D[] = +static u_char un_pbox[32]; +static u_char pbox[32] = { + 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, + 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 +}; + +static u_int32_t bits32[32] = { - 41, 52, 31, 37, 47, 55, - 30, 40, 51, 45, 33, 48, - 44, 49, 39, 56, 34, 53, - 46, 42, 50, 36, 29, 32, + 0x80000000, 0x40000000, 0x20000000, 0x10000000, + 0x08000000, 0x04000000, 0x02000000, 0x01000000, + 0x00800000, 0x00400000, 0x00200000, 0x00100000, + 0x00080000, 0x00040000, 0x00020000, 0x00010000, + 0x00008000, 0x00004000, 0x00002000, 0x00001000, + 0x00000800, 0x00000400, 0x00000200, 0x00000100, + 0x00000080, 0x00000040, 0x00000020, 0x00000010, + 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; -/* The C and D arrays used to calculate the key schedule. */ -static char C[28]; -static char D[28]; +static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; + +static u_int32_t saltbits; +static u_int32_t old_salt; +static u_int32_t *bits28, *bits24; +static u_char init_perm[64], final_perm[64]; +static u_int32_t en_keysl[16], en_keysr[16]; +static u_int32_t de_keysl[16], de_keysr[16]; +static int des_initialised = 0; +static u_char m_sbox[4][4096]; +static u_int32_t psbox[4][256]; +static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; +static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; +static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; +static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; +static u_int32_t old_rawkey0, old_rawkey1; -/* The key schedule. Generated from the key. */ -static char KS[16][48]; +static u_char ascii64[] = + "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; +/* 0000000000111111111122222222223333333333444444444455555555556666 */ +/* 0123456789012345678901234567890123456789012345678901234567890123 */ -/* The E bit-selection table. */ -static char E[48]; -static const char e2[] = +static INLINE int +ascii_to_bin(char ch) { - 32, 1, 2, 3, 4, 5, - 4, 5, 6, 7, 8, 9, - 8, 9, 10, 11, 12, 13, - 12, 13, 14, 15, 16, 17, - 16, 17, 18, 19, 20, 21, - 20, 21, 22, 23, 24, 25, - 24, 25, 26, 27, 28, 29, - 28, 29, 30, 31, 32, 1, -}; + if (ch > 'z') + return(0); + if (ch >= 'a') + return(ch - 'a' + 38); + if (ch > 'Z') + return(0); + if (ch >= 'A') + return(ch - 'A' + 12); + if (ch > '9') + return(0); + if (ch >= '.') + return(ch - '.'); + return(0); +} -/************************************************************************** -* Function: setkey -* -* Description: Set up the key schedule from the encryption key. -* -* Inputs: char *key -* pointer to 64 character array. Each character represents a -* bit in the key. -* -* Returns: none -**************************************************************************/ -void setkey(char *key) +static void +des_init(void) { - int i, j, k, temp; - - /********************************************************************** - * First, generate C and D by permuting the key. The low order bit of - * each 8-bit char is not used, so C and D are only 28 bits apiece. - **********************************************************************/ - for(i = 0; i < 28; i++) - { - C[i] = key[PC1_C[i] - 1]; - D[i] = key[PC1_D[i] - 1]; - } - - /********************************************************************** - * To generate Ki, rotate C and D according to schedule and pick up a - * permutation using PC2. - **********************************************************************/ - for(i = 0; i < 16; i++) - { - /* rotate */ - for(k = 0; k < shifts[i]; k++) - { - temp = C[0]; - - for(j = 0; j < 28 - 1; j++) - C[j] = C[j+1]; - - C[27] = temp; - temp = D[0]; - for(j = 0; j < 28 - 1; j++) - D[j] = D[j+1]; - - D[27] = temp; - } - - /* get Ki. Note C and D are concatenated */ - for(j = 0; j < 24; j++) - { - KS[i][j] = C[PC2_C[j] - 1]; - KS[i][j + 24] = D[PC2_D[j] - 28 -1]; - } - } - - /* load E with the initial E bit selections */ - for(i=0; i < 48; i++) - E[i] = e2[i]; + int i, j, b, k, inbit, obit; + u_int32_t *p, *il, *ir, *fl, *fr; + + old_rawkey0 = old_rawkey1 = 0L; + saltbits = 0L; + old_salt = 0L; + bits24 = (bits28 = bits32 + 4) + 4; + + /* + * Invert the S-boxes, reordering the input bits. + */ + for (i = 0; i < 8; i++) + for (j = 0; j < 64; j++) { + b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); + u_sbox[i][j] = sbox[i][b]; + } + + /* + * Convert the inverted S-boxes into 4 arrays of 8 bits. + * Each will handle 12 bits of the S-box input. + */ + for (b = 0; b < 4; b++) + for (i = 0; i < 64; i++) + for (j = 0; j < 64; j++) + m_sbox[b][(i << 6) | j] = + (u_char)((u_sbox[(b << 1)][i] << 4) | + u_sbox[(b << 1) + 1][j]); + + /* + * Set up the initial & final permutations into a useful form, and + * initialise the inverted key permutation. + */ + for (i = 0; i < 64; i++) { + init_perm[final_perm[i] = IP[i] - 1] = (u_char)i; + inv_key_perm[i] = 255; + } + + /* + * Invert the key permutation and initialise the inverted key + * compression permutation. + */ + for (i = 0; i < 56; i++) { + inv_key_perm[key_perm[i] - 1] = (u_char)i; + inv_comp_perm[i] = 255; + } + + /* + * Invert the key compression permutation. + */ + for (i = 0; i < 48; i++) { + inv_comp_perm[comp_perm[i] - 1] = (u_char)i; + } + + /* + * Set up the OR-mask arrays for the initial and final permutations, + * and for the key initial and compression permutations. + */ + for (k = 0; k < 8; k++) { + for (i = 0; i < 256; i++) { + *(il = &ip_maskl[k][i]) = 0L; + *(ir = &ip_maskr[k][i]) = 0L; + *(fl = &fp_maskl[k][i]) = 0L; + *(fr = &fp_maskr[k][i]) = 0L; + for (j = 0; j < 8; j++) { + inbit = 8 * k + j; + if (i & bits8[j]) { + if ((obit = init_perm[inbit]) < 32) + *il |= bits32[obit]; + else + *ir |= bits32[obit-32]; + if ((obit = final_perm[inbit]) < 32) + *fl |= bits32[obit]; + else + *fr |= bits32[obit - 32]; + } + } + } + for (i = 0; i < 128; i++) { + *(il = &key_perm_maskl[k][i]) = 0L; + *(ir = &key_perm_maskr[k][i]) = 0L; + for (j = 0; j < 7; j++) { + inbit = 8 * k + j; + if (i & bits8[j + 1]) { + if ((obit = inv_key_perm[inbit]) == 255) + continue; + if (obit < 28) + *il |= bits28[obit]; + else + *ir |= bits28[obit - 28]; + } + } + *(il = &comp_maskl[k][i]) = 0L; + *(ir = &comp_maskr[k][i]) = 0L; + for (j = 0; j < 7; j++) { + inbit = 7 * k + j; + if (i & bits8[j + 1]) { + if ((obit=inv_comp_perm[inbit]) == 255) + continue; + if (obit < 24) + *il |= bits24[obit]; + else + *ir |= bits24[obit - 24]; + } + } + } + } + + /* + * Invert the P-box permutation, and convert into OR-masks for + * handling the output of the S-box arrays setup above. + */ + for (i = 0; i < 32; i++) + un_pbox[pbox[i] - 1] = (u_char)i; + + for (b = 0; b < 4; b++) + for (i = 0; i < 256; i++) { + *(p = &psbox[b][i]) = 0L; + for (j = 0; j < 8; j++) { + if (i & bits8[j]) + *p |= bits32[un_pbox[8 * b + j]]; + } + } + + des_initialised = 1; } -/************************************************************************** -* The 8 selection functions. For some reason, they give a 0-origin -* index, unlike everything else. -**************************************************************************/ +static void +setup_salt(u_int32_t salt) +{ + u_int32_t obit, saltbit; + int i; -static const char S[8][64] = + if (salt == old_salt) + return; + old_salt = salt; + + saltbits = 0L; + saltbit = 1; + obit = 0x800000; + for (i = 0; i < 24; i++) { + if (salt & saltbit) + saltbits |= obit; + saltbit <<= 1; + obit >>= 1; + } +} + +static int +des_setkey(const char *key) { - { - 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, - 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, - 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, - 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 - }, - - { - 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, - 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, - 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, - 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 - }, - - { - 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, - 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, - 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, - 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 - }, - - { - 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, - 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, - 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, - 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 - }, - - { - 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, - 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, - 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, - 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 - }, - - { - 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, - 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, - 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, - 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 - }, - - { - 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, - 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, - 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, - 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 - }, - - { - 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, - 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, - 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, - 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 - } -}; + u_int32_t k0, k1, rawkey0, rawkey1; + int shifts, round; -/************************************************************************** -* P is a permutation on the selected combination of the current L and key. -**************************************************************************/ -static const char P[] = + if (!des_initialised) + des_init(); + + rawkey0 = ntohl(*(const u_int32_t *) key); + rawkey1 = ntohl(*(const u_int32_t *) (key + 4)); + + if ((rawkey0 | rawkey1) + && rawkey0 == old_rawkey0 + && rawkey1 == old_rawkey1) { + /* + * Already setup for this key. + * This optimisation fails on a zero key (which is weak and + * has bad parity anyway) in order to simplify the starting + * conditions. + */ + return(0); + } + old_rawkey0 = rawkey0; + old_rawkey1 = rawkey1; + + /* + * Do key permutation and split into two 28-bit subkeys. + */ + k0 = key_perm_maskl[0][rawkey0 >> 25] + | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskl[4][rawkey1 >> 25] + | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; + k1 = key_perm_maskr[0][rawkey0 >> 25] + | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskr[4][rawkey1 >> 25] + | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; + /* + * Rotate subkeys and do compression permutation. + */ + shifts = 0; + for (round = 0; round < 16; round++) { + u_int32_t t0, t1; + + shifts += key_shifts[round]; + + t0 = (k0 << shifts) | (k0 >> (28 - shifts)); + t1 = (k1 << shifts) | (k1 >> (28 - shifts)); + + de_keysl[15 - round] = + en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] + | comp_maskl[1][(t0 >> 14) & 0x7f] + | comp_maskl[2][(t0 >> 7) & 0x7f] + | comp_maskl[3][t0 & 0x7f] + | comp_maskl[4][(t1 >> 21) & 0x7f] + | comp_maskl[5][(t1 >> 14) & 0x7f] + | comp_maskl[6][(t1 >> 7) & 0x7f] + | comp_maskl[7][t1 & 0x7f]; + + de_keysr[15 - round] = + en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] + | comp_maskr[1][(t0 >> 14) & 0x7f] + | comp_maskr[2][(t0 >> 7) & 0x7f] + | comp_maskr[3][t0 & 0x7f] + | comp_maskr[4][(t1 >> 21) & 0x7f] + | comp_maskr[5][(t1 >> 14) & 0x7f] + | comp_maskr[6][(t1 >> 7) & 0x7f] + | comp_maskr[7][t1 & 0x7f]; + } + return(0); +} + +static int +do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) { - 16, 7, 20, 21, - 29, 12, 28, 17, - 1, 15, 23, 26, - 5, 18, 31, 10, - 2, 8, 24, 14, - 32, 27, 3, 9, - 19, 13, 30, 6, - 22, 11, 4, 25, -}; + /* + * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. + */ + u_int32_t l, r, *kl, *kr, *kl1, *kr1; + u_int32_t f, r48l, r48r; + int round; -/* The combination of the key and the input, before selection. */ -static char preS[48]; + if (count == 0) { + return(1); + } else if (count > 0) { + /* + * Encrypting + */ + kl1 = en_keysl; + kr1 = en_keysr; + } else { + /* + * Decrypting + */ + count = -count; + kl1 = de_keysl; + kr1 = de_keysr; + } -/************************************************************************** -* Function: encrypt -* -* Description: Uses DES to encrypt a 64 bit block of data. Requires -* setkey to be invoked with the encryption key before it may -* be used. The results of the encryption are stored in block. -* -* Inputs: char *block -* pointer to 64 character array. Each character represents a -* bit in the data block. -* -* Returns: none -**************************************************************************/ -void encrypt(char *block) + /* + * Do initial permutation (IP). + */ + l = ip_maskl[0][l_in >> 24] + | ip_maskl[1][(l_in >> 16) & 0xff] + | ip_maskl[2][(l_in >> 8) & 0xff] + | ip_maskl[3][l_in & 0xff] + | ip_maskl[4][r_in >> 24] + | ip_maskl[5][(r_in >> 16) & 0xff] + | ip_maskl[6][(r_in >> 8) & 0xff] + | ip_maskl[7][r_in & 0xff]; + r = ip_maskr[0][l_in >> 24] + | ip_maskr[1][(l_in >> 16) & 0xff] + | ip_maskr[2][(l_in >> 8) & 0xff] + | ip_maskr[3][l_in & 0xff] + | ip_maskr[4][r_in >> 24] + | ip_maskr[5][(r_in >> 16) & 0xff] + | ip_maskr[6][(r_in >> 8) & 0xff] + | ip_maskr[7][r_in & 0xff]; + + while (count--) { + /* + * Do each round. + */ + kl = kl1; + kr = kr1; + round = 16; + while (round--) { + /* + * Expand R to 48 bits (simulate the E-box). + */ + r48l = ((r & 0x00000001) << 23) + | ((r & 0xf8000000) >> 9) + | ((r & 0x1f800000) >> 11) + | ((r & 0x01f80000) >> 13) + | ((r & 0x001f8000) >> 15); + + r48r = ((r & 0x0001f800) << 7) + | ((r & 0x00001f80) << 5) + | ((r & 0x000001f8) << 3) + | ((r & 0x0000001f) << 1) + | ((r & 0x80000000) >> 31); + /* + * Do salting for crypt() and friends, and + * XOR with the permuted key. + */ + f = (r48l ^ r48r) & saltbits; + r48l ^= f ^ *kl++; + r48r ^= f ^ *kr++; + /* + * Do sbox lookups (which shrink it back to 32 bits) + * and do the pbox permutation at the same time. + */ + f = psbox[0][m_sbox[0][r48l >> 12]] + | psbox[1][m_sbox[1][r48l & 0xfff]] + | psbox[2][m_sbox[2][r48r >> 12]] + | psbox[3][m_sbox[3][r48r & 0xfff]]; + /* + * Now that we've permuted things, complete f(). + */ + f ^= l; + l = r; + r = f; + } + r = l; + l = f; + } + /* + * Do final permutation (inverse of IP). + */ + *l_out = fp_maskl[0][l >> 24] + | fp_maskl[1][(l >> 16) & 0xff] + | fp_maskl[2][(l >> 8) & 0xff] + | fp_maskl[3][l & 0xff] + | fp_maskl[4][r >> 24] + | fp_maskl[5][(r >> 16) & 0xff] + | fp_maskl[6][(r >> 8) & 0xff] + | fp_maskl[7][r & 0xff]; + *r_out = fp_maskr[0][l >> 24] + | fp_maskr[1][(l >> 16) & 0xff] + | fp_maskr[2][(l >> 8) & 0xff] + | fp_maskr[3][l & 0xff] + | fp_maskr[4][r >> 24] + | fp_maskr[5][(r >> 16) & 0xff] + | fp_maskr[6][(r >> 8) & 0xff] + | fp_maskr[7][r & 0xff]; + return(0); +} + +static int +des_cipher(const char *in, char *out, u_long salt, int count) { - int i, ii, temp, j, k; - - char left[32], right[32]; /* block in two halves */ - char old[32]; - char f[32]; - - /* First, permute the bits in the input */ - for(j = 0; j < 32; j++) - left[j] = block[IP[j] - 1]; - - for(;j < 64; j++) - right[j - 32] = block[IP[j] - 1]; - - /* Perform an encryption operation 16 times. */ - for(ii= 0; ii < 16; ii++) - { - i = ii; - /* Save the right array, which will be the new left. */ - for(j = 0; j < 32; j++) - old[j] = right[j]; - - /****************************************************************** - * Expand right to 48 bits using the E selector and - * exclusive-or with the current key bits. - ******************************************************************/ - for(j =0 ; j < 48; j++) - preS[j] = right[E[j] - 1] ^ KS[i][j]; - - /****************************************************************** - * The pre-select bits are now considered in 8 groups of 6 bits ea. - * The 8 selection functions map these 6-bit quantities into 4-bit - * quantities and the results are permuted to make an f(R, K). - * The indexing into the selection functions is peculiar; - * it could be simplified by rewriting the tables. - ******************************************************************/ - for(j = 0; j < 8; j++) - { - temp = 6 * j; - k = S[j][(preS[temp + 0] << 5) + - (preS[temp + 1] << 3) + - (preS[temp + 2] << 2) + - (preS[temp + 3] << 1) + - (preS[temp + 4] << 0) + - (preS[temp + 5] << 4)]; - - temp = 4 * j; - - f[temp + 0] = (k >> 3) & 01; - f[temp + 1] = (k >> 2) & 01; - f[temp + 2] = (k >> 1) & 01; - f[temp + 3] = (k >> 0) & 01; - } - - /****************************************************************** - * The new right is left ^ f(R, K). - * The f here has to be permuted first, though. - ******************************************************************/ - for(j = 0; j < 32; j++) - right[j] = left[j] ^ f[P[j] - 1]; - - /* Finally, the new left (the original right) is copied back. */ - for(j = 0; j < 32; j++) - left[j] = old[j]; - } - - /* The output left and right are reversed. */ - for(j = 0; j < 32; j++) - { - temp = left[j]; - left[j] = right[j]; - right[j] = temp; - } - - /* The final output gets the inverse permutation of the very original. */ - for(j = 0; j < 64; j++) - { - i = FP[j]; - if (i < 33) - block[j] = left[FP[j] - 1]; - else - block[j] = right[FP[j] - 33]; - } + u_int32_t l_out, r_out, rawl, rawr; + int retval; + union { + u_int32_t *ui32; + const char *c; + } trans; + + if (!des_initialised) + des_init(); + + setup_salt(salt); + + trans.c = in; + rawl = ntohl(*trans.ui32++); + rawr = ntohl(*trans.ui32); + + retval = do_des(rawl, rawr, &l_out, &r_out, count); + + trans.c = out; + *trans.ui32++ = htonl(l_out); + *trans.ui32 = htonl(r_out); + return(retval); } -/************************************************************************** -* Function: crypt -* -* Description: Clone of Unix crypt(3) function. -* -* Inputs: char *pw -* pointer to 8 character encryption key (user password) -* char *salt -* pointer to 2 character salt used to modify the DES results. -* -* Returns: Pointer to static array containing the salt concatenated -* on to the encrypted results. Same as stored in passwd file. -**************************************************************************/ -char *crypt(char *pw, char *salt) +char * +crypt_des(const char *key, const char *setting) { - int i, j, temp; - char c, - block[66]; /* 1st store key, then results */ - static char iobuf[16]; /* encrypted results */ - - for(i = 0; i < 66; i++) - block[i] = 0; - - /* break pw into 64 bits */ - for(i = 0, c = *pw; c && (i < 64); i++) - { - for(j = 0; j < 7; j++, i++) - block[i] = (c >> (6 - j)) & 01; - pw++; - c = *pw; - } - - /* set key based on pw */ - setkey(block); - - for(i = 0; i < 66; i++) - block[i] = 0; - - for(i = 0; i < 2; i++) - { - /* store salt at beginning of results */ - c = *salt++; - iobuf[i] = c; - - if(c > 'Z') - c -= 6; - - if(c > '9') - c -= 7; - - c -= '.'; - - /* use salt to effect the E-bit selection */ - for(j = 0; j < 6; j++) - { - if((c >> j) & 01) - { - temp = E[6 * i + j]; - E[6 * i +j] = E[6 * i + j + 24]; - E[6 * i + j + 24] = temp; - } - } - } - - /* call DES encryption 25 times using pw as key and initial data = 0 */ - for(i = 0; i < 25; i++) - encrypt(block); - - /* format encrypted block for standard crypt(3) output */ - for(i=0; i < 11; i++) - { - c = 0; - for(j = 0; j < 6; j++) - { - c <<= 1; - c |= block[6 * i + j]; - } - - c += '.'; - if(c > '9') - c += 7; - - if(c > 'Z') - c += 6; - - iobuf[i + 2] = c; - } - - iobuf[i + 2] = '\0'; - - /* prevent premature NULL terminator */ - if(iobuf[1] == '\0') - iobuf[1] = iobuf[0]; - - return(iobuf); + int i; + u_int32_t count, salt, l, r0, r1, keybuf[2]; + u_char *p, *q; + static char output[21]; + + if (!des_initialised) + des_init(); + + /* + * Copy the key, shifting each character up by one bit + * and padding with zeros. + */ + q = (u_char *)keybuf; + while (q - (u_char *)keybuf - 8) { + *q++ = *key << 1; + if (*key != '\0') + key++; + } + if (des_setkey((char *)keybuf)) + return(NULL); + + if (*setting == _PASSWORD_EFMT1) { + /* + * "new"-style: + * setting - underscore, 4 bytes of count, 4 bytes of salt + * key - unlimited characters + */ + for (i = 1, count = 0L; i < 5; i++) + count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); + + for (i = 5, salt = 0L; i < 9; i++) + salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); + + while (*key) { + /* + * Encrypt the key with itself. + */ + if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) + return(NULL); + /* + * And XOR with the next 8 characters of the key. + */ + q = (u_char *)keybuf; + while (q - (u_char *)keybuf - 8 && *key) + *q++ ^= *key++ << 1; + + if (des_setkey((char *)keybuf)) + return(NULL); + } + strncpy(output, setting, 9); + + /* + * Double check that we weren't given a short setting. + * If we were, the above code will probably have created + * wierd values for count and salt, but we don't really care. + * Just make sure the output string doesn't have an extra + * NUL in it. + */ + output[9] = '\0'; + p = (u_char *)output + strlen(output); + } else { + /* + * "old"-style: + * setting - 2 bytes of salt + * key - up to 8 characters + */ + count = 25; + + salt = (ascii_to_bin(setting[1]) << 6) + | ascii_to_bin(setting[0]); + + output[0] = setting[0]; + /* + * If the encrypted password that the salt was extracted from + * is only 1 character long, the salt will be corrupted. We + * need to ensure that the output string doesn't have an extra + * NUL in it! + */ + output[1] = setting[1] ? setting[1] : output[0]; + + p = (u_char *)output + 2; + } + setup_salt(salt); + /* + * Do it. + */ + if (do_des(0L, 0L, &r0, &r1, (int)count)) + return(NULL); + /* + * Now encode the result... + */ + l = (r0 >> 8); + *p++ = ascii64[(l >> 18) & 0x3f]; + *p++ = ascii64[(l >> 12) & 0x3f]; + *p++ = ascii64[(l >> 6) & 0x3f]; + *p++ = ascii64[l & 0x3f]; + + l = (r0 << 16) | ((r1 >> 16) & 0xffff); + *p++ = ascii64[(l >> 18) & 0x3f]; + *p++ = ascii64[(l >> 12) & 0x3f]; + *p++ = ascii64[(l >> 6) & 0x3f]; + *p++ = ascii64[l & 0x3f]; + + l = r1 << 2; + *p++ = ascii64[(l >> 12) & 0x3f]; + *p++ = ascii64[(l >> 6) & 0x3f]; + *p++ = ascii64[l & 0x3f]; + *p = 0; + + return(output); +} +/* END: https://github.com/freebsd/freebsd/blob/master/secure/lib/libcrypt/crypt-des.c */ + + +/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-md5.c */ +char * +crypt_md5(const char *pw, const char *salt) +{ + MD5_CTX ctx,ctx1; + unsigned long l; + int sl, pl; + u_int i; + u_char final[MD5_SIZE]; + static const char *sp, *ep; + static char passwd[120], *p; + static const char *magic = "$1$"; + + /* Refine the Salt first */ + sp = salt; + + /* If it starts with the magic string, then skip that */ + if(!strncmp(sp, magic, strlen(magic))) + sp += strlen(magic); + + /* It stops at the first '$', max 8 chars */ + for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++) + continue; + + /* get the length of the true salt */ + sl = ep - sp; + + MD5Init(&ctx); + + /* The password first, since that is what is most unknown */ + MD5Update(&ctx, (const u_char *)pw, strlen(pw)); + + /* Then our magic string */ + MD5Update(&ctx, (const u_char *)magic, strlen(magic)); + + /* Then the raw salt */ + MD5Update(&ctx, (const u_char *)sp, (u_int)sl); + + /* Then just as many characters of the MD5(pw,salt,pw) */ + MD5Init(&ctx1); + MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); + MD5Update(&ctx1, (const u_char *)sp, (u_int)sl); + MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); + MD5Final(final, &ctx1); + for(pl = (int)strlen(pw); pl > 0; pl -= MD5_SIZE) + MD5Update(&ctx, (const u_char *)final, + (u_int)(pl > MD5_SIZE ? MD5_SIZE : pl)); + + /* Don't leave anything around in vm they could use. */ + memset(final, 0, sizeof(final)); + + /* Then something really weird... */ + for (i = strlen(pw); i; i >>= 1) + if(i & 1) + MD5Update(&ctx, (const u_char *)final, 1); + else + MD5Update(&ctx, (const u_char *)pw, 1); + + /* Now make the output string */ + strcpy(passwd, magic); + strncat(passwd, sp, (u_int)sl); + strcat(passwd, "$"); + + MD5Final(final, &ctx); + + /* + * and now, just to make sure things don't run too fast + * On a 60 Mhz Pentium this takes 34 msec, so you would + * need 30 seconds to build a 1000 entry dictionary... + */ + for(i = 0; i < 1000; i++) { + MD5Init(&ctx1); + if(i & 1) + MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); + else + MD5Update(&ctx1, (const u_char *)final, MD5_SIZE); + + if(i % 3) + MD5Update(&ctx1, (const u_char *)sp, (u_int)sl); + + if(i % 7) + MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); + + if(i & 1) + MD5Update(&ctx1, (const u_char *)final, MD5_SIZE); + else + MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); + MD5Final(final, &ctx1); + } + + p = passwd + strlen(passwd); + + l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; + _crypt_to64(p, l, 4); p += 4; + l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; + _crypt_to64(p, l, 4); p += 4; + l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; + _crypt_to64(p, l, 4); p += 4; + l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; + _crypt_to64(p, l, 4); p += 4; + l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; + _crypt_to64(p, l, 4); p += 4; + l = final[11]; + _crypt_to64(p, l, 2); p += 2; + *p = '\0'; + + /* Don't leave anything around in vm they could use. */ + memset(final, 0, sizeof(final)); + + return (passwd); +} +/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-md5.c */ + + +/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha256.c */ +static const char sha256_salt_prefix[] = "$5$"; + +/* Prefix for optional rounds specification. */ +static const char sha256_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16 +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000 +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000 +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999 + +static char * +crypt_sha256_r(const char *key, const char *salt, char *buffer, int buflen) +{ + u_long srounds; + int n; + uint8_t alt_result[32], temp_result[32]; + SHA256_CTX ctx, alt_ctx; + size_t salt_len, key_len, cnt, rounds; + char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; + const char *num; + bool rounds_custom; + + copied_key = NULL; + copied_salt = NULL; + + /* Default number of rounds. */ + rounds = ROUNDS_DEFAULT; + rounds_custom = false; + + /* Find beginning of salt string. The prefix should normally always + * be present. Just in case it is not. */ + if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) + /* Skip salt prefix. */ + salt += sizeof(sha256_salt_prefix) - 1; + + if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) + == 0) { + num = salt + sizeof(sha256_rounds_prefix) - 1; + srounds = strtoul(num, &endp, 10); + + if (*endp == '$') { + salt = endp + 1; + rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); + rounds_custom = true; + } + } + + salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); + key_len = strlen(key); + + /* Prepare for the real work. */ + SHA256_Init(&ctx); + + /* Add the key string. */ + SHA256_Update(&ctx, key, key_len); + + /* The last part is the salt string. This must be at most 8 + * characters and it ends at the first `$' character (for + * compatibility with existing implementations). */ + SHA256_Update(&ctx, salt, salt_len); + + /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The + * final result will be added to the first context. */ + SHA256_Init(&alt_ctx); + + /* Add key. */ + SHA256_Update(&alt_ctx, key, key_len); + + /* Add salt. */ + SHA256_Update(&alt_ctx, salt, salt_len); + + /* Add key again. */ + SHA256_Update(&alt_ctx, key, key_len); + + /* Now get result of this (32 bytes) and add it to the other context. */ + SHA256_Final(alt_result, &alt_ctx); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 32; cnt -= 32) + SHA256_Update(&ctx, alt_result, 32); + SHA256_Update(&ctx, alt_result, cnt); + + /* Take the binary representation of the length of the key and for + * every 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt > 0; cnt >>= 1) + if ((cnt & 1) != 0) + SHA256_Update(&ctx, alt_result, 32); + else + SHA256_Update(&ctx, key, key_len); + + /* Create intermediate result. */ + SHA256_Final(alt_result, &ctx); + + /* Start computation of P byte sequence. */ + SHA256_Init(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) + SHA256_Update(&alt_ctx, key, key_len); + + /* Finish the digest. */ + SHA256_Final(temp_result, &alt_ctx); + + /* Create byte sequence P. */ + cp = p_bytes = alloca(key_len); + for (cnt = key_len; cnt >= 32; cnt -= 32) { + memcpy(cp, temp_result, 32); + cp += 32; + } + memcpy(cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + SHA256_Init(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) + SHA256_Update(&alt_ctx, salt, salt_len); + + /* Finish the digest. */ + SHA256_Final(temp_result, &alt_ctx); + + /* Create byte sequence S. */ + cp = s_bytes = alloca(salt_len); + for (cnt = salt_len; cnt >= 32; cnt -= 32) { + memcpy(cp, temp_result, 32); + cp += 32; + } + memcpy(cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA256 to burn CPU + * cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) { + /* New context. */ + SHA256_Init(&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + SHA256_Update(&ctx, p_bytes, key_len); + else + SHA256_Update(&ctx, alt_result, 32); + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) + SHA256_Update(&ctx, s_bytes, salt_len); + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) + SHA256_Update(&ctx, p_bytes, key_len); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + SHA256_Update(&ctx, alt_result, 32); + else + SHA256_Update(&ctx, p_bytes, key_len); + + /* Create intermediate result. */ + SHA256_Final(alt_result, &ctx); + } + + /* Now we can construct the result string. It consists of three + * parts. */ + cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); + buflen -= sizeof(sha256_salt_prefix) - 1; + + if (rounds_custom) { + n = snprintf(cp, MAX(0, buflen), "%s%zu$", + sha256_rounds_prefix, rounds); + + cp += n; + buflen -= n; + } + + cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); + buflen -= MIN((size_t)MAX(0, buflen), salt_len); + + if (buflen > 0) { + *cp++ = '$'; + --buflen; + } + + b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp); + b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp); + b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp); + b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp); + b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp); + b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp); + b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp); + b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp); + b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp); + b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp); + b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp); + if (buflen <= 0) { + errno = ERANGE; + buffer = NULL; + } + else + *cp = '\0'; /* Terminate the string. */ + + /* Clear the buffer for the intermediate result so that people + * attaching to processes or reading core dumps cannot get any + * information. We do it in this way to clear correct_words[] inside + * the SHA256 implementation as well. */ + SHA256_Init(&ctx); + SHA256_Final(alt_result, &ctx); + memset(temp_result, '\0', sizeof(temp_result)); + memset(p_bytes, '\0', key_len); + memset(s_bytes, '\0', salt_len); + memset(&ctx, '\0', sizeof(ctx)); + memset(&alt_ctx, '\0', sizeof(alt_ctx)); + if (copied_key != NULL) + memset(copied_key, '\0', key_len); + if (copied_salt != NULL) + memset(copied_salt, '\0', salt_len); + + return buffer; +} + +/* This entry point is equivalent to crypt(3). */ +char* crypt_sha256(const char *key, const char *salt) +{ + /* We don't want to have an arbitrary limit in the size of the + * password. We can compute an upper bound for the size of the + * result in advance and so we can prepare the buffer we pass to + * `crypt_sha256_r'. */ + static char *buffer; + static int buflen; + int needed; + char *new_buffer; + + needed = (sizeof(sha256_salt_prefix) - 1 + + sizeof(sha256_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 43 + 1); + + if (buflen < needed) { + new_buffer = (char *)realloc(buffer, needed); + + if (new_buffer == NULL) + return NULL; + + buffer = new_buffer; + buflen = needed; + } + + return crypt_sha256_r(key, salt, buffer, buflen); +} +/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha256.c */ + + +/* START: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha512.c */ +/* Define our magic string to mark salt for SHA512 "encryption" replacement. */ +static const char sha512_salt_prefix[] = "$6$"; + +/* Prefix for optional rounds specification. */ +static const char sha512_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16 +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000 +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000 +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999 + +static char * +crypt_sha512_r(const char *key, const char *salt, char *buffer, int buflen) +{ + u_long srounds; + int n; + uint8_t alt_result[64], temp_result[64]; + SHA512_CTX ctx, alt_ctx; + size_t salt_len, key_len, cnt, rounds; + char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp; + const char *num; + bool rounds_custom; + + copied_key = NULL; + copied_salt = NULL; + + /* Default number of rounds. */ + rounds = ROUNDS_DEFAULT; + rounds_custom = false; + + /* Find beginning of salt string. The prefix should normally always + * be present. Just in case it is not. */ + if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) + /* Skip salt prefix. */ + salt += sizeof(sha512_salt_prefix) - 1; + + if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) + == 0) { + num = salt + sizeof(sha512_rounds_prefix) - 1; + srounds = strtoul(num, &endp, 10); + + if (*endp == '$') { + salt = endp + 1; + rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); + rounds_custom = true; + } + } + + salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); + key_len = strlen(key); + + /* Prepare for the real work. */ + SHA512_Init(&ctx); + + /* Add the key string. */ + SHA512_Update(&ctx, key, key_len); + + /* The last part is the salt string. This must be at most 8 + * characters and it ends at the first `$' character (for + * compatibility with existing implementations). */ + SHA512_Update(&ctx, salt, salt_len); + + /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The + * final result will be added to the first context. */ + SHA512_Init(&alt_ctx); + + /* Add key. */ + SHA512_Update(&alt_ctx, key, key_len); + + /* Add salt. */ + SHA512_Update(&alt_ctx, salt, salt_len); + + /* Add key again. */ + SHA512_Update(&alt_ctx, key, key_len); + + /* Now get result of this (64 bytes) and add it to the other context. */ + SHA512_Final(alt_result, &alt_ctx); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 64; cnt -= 64) + SHA512_Update(&ctx, alt_result, 64); + SHA512_Update(&ctx, alt_result, cnt); + + /* Take the binary representation of the length of the key and for + * every 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt > 0; cnt >>= 1) + if ((cnt & 1) != 0) + SHA512_Update(&ctx, alt_result, 64); + else + SHA512_Update(&ctx, key, key_len); + + /* Create intermediate result. */ + SHA512_Final(alt_result, &ctx); + + /* Start computation of P byte sequence. */ + SHA512_Init(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) + SHA512_Update(&alt_ctx, key, key_len); + + /* Finish the digest. */ + SHA512_Final(temp_result, &alt_ctx); + + /* Create byte sequence P. */ + cp = p_bytes = alloca(key_len); + for (cnt = key_len; cnt >= 64; cnt -= 64) { + memcpy(cp, temp_result, 64); + cp += 64; + } + memcpy(cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + SHA512_Init(&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) + SHA512_Update(&alt_ctx, salt, salt_len); + + /* Finish the digest. */ + SHA512_Final(temp_result, &alt_ctx); + + /* Create byte sequence S. */ + cp = s_bytes = alloca(salt_len); + for (cnt = salt_len; cnt >= 64; cnt -= 64) { + memcpy(cp, temp_result, 64); + cp += 64; + } + memcpy(cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA512 to burn CPU + * cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) { + /* New context. */ + SHA512_Init(&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + SHA512_Update(&ctx, p_bytes, key_len); + else + SHA512_Update(&ctx, alt_result, 64); + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) + SHA512_Update(&ctx, s_bytes, salt_len); + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) + SHA512_Update(&ctx, p_bytes, key_len); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + SHA512_Update(&ctx, alt_result, 64); + else + SHA512_Update(&ctx, p_bytes, key_len); + + /* Create intermediate result. */ + SHA512_Final(alt_result, &ctx); + } + + /* Now we can construct the result string. It consists of three + * parts. */ + cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); + buflen -= sizeof(sha512_salt_prefix) - 1; + + if (rounds_custom) { + n = snprintf(cp, MAX(0, buflen), "%s%zu$", + sha512_rounds_prefix, rounds); + + cp += n; + buflen -= n; + } + + cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len)); + buflen -= MIN((size_t)MAX(0, buflen), salt_len); + + if (buflen > 0) { + *cp++ = '$'; + --buflen; + } + + b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &buflen, &cp); + b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &buflen, &cp); + b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &buflen, &cp); + b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &buflen, &cp); + b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &buflen, &cp); + b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &buflen, &cp); + b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &buflen, &cp); + b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &buflen, &cp); + b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &buflen, &cp); + b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &buflen, &cp); + b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &buflen, &cp); + b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &buflen, &cp); + b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &buflen, &cp); + b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &buflen, &cp); + b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &buflen, &cp); + b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &buflen, &cp); + b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &buflen, &cp); + b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &buflen, &cp); + b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &buflen, &cp); + b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &buflen, &cp); + b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &buflen, &cp); + b64_from_24bit(0, 0, alt_result[63], 2, &buflen, &cp); + + if (buflen <= 0) { + errno = ERANGE; + buffer = NULL; + } + else + *cp = '\0'; /* Terminate the string. */ + + /* Clear the buffer for the intermediate result so that people + * attaching to processes or reading core dumps cannot get any + * information. We do it in this way to clear correct_words[] inside + * the SHA512 implementation as well. */ + SHA512_Init(&ctx); + SHA512_Final(alt_result, &ctx); + memset(temp_result, '\0', sizeof(temp_result)); + memset(p_bytes, '\0', key_len); + memset(s_bytes, '\0', salt_len); + memset(&ctx, '\0', sizeof(ctx)); + memset(&alt_ctx, '\0', sizeof(alt_ctx)); + if (copied_key != NULL) + memset(copied_key, '\0', key_len); + if (copied_salt != NULL) + memset(copied_salt, '\0', salt_len); + + return buffer; +} + +/* This entry point is equivalent to crypt(3). */ +char * +crypt_sha512(const char *key, const char *salt) +{ + /* We don't want to have an arbitrary limit in the size of the + * password. We can compute an upper bound for the size of the + * result in advance and so we can prepare the buffer we pass to + * `crypt_sha512_r'. */ + static char *buffer; + static int buflen; + int needed; + char *new_buffer; + + needed = (sizeof(sha512_salt_prefix) - 1 + + sizeof(sha512_rounds_prefix) + 9 + 1 + + strlen(salt) + 1 + 86 + 1); + + if (buflen < needed) { + new_buffer = (char *)realloc(buffer, needed); + + if (new_buffer == NULL) + return NULL; + + buffer = new_buffer; + buflen = needed; + } + + return crypt_sha512_r(key, salt, buffer, buflen); +} +/* END: https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt-sha512.c */ + + +/** From https://github.com/freebsd/freebsd/blob/master/lib/libcrypt/crypt.c */ +static const struct crypt_format { + const char* const name; + const char* const magic; + char* (*const func)(char const*, char const*); +} crypt_formats[] = { + { "des", "_", crypt_des }, + { "md5", "$1$", crypt_md5 }, + { "sha256", "$5$", crypt_sha256 }, + { "sha512", "$6$", crypt_sha512 }, + { NULL, NULL, NULL } +}; + + +char* crypt(const char* key, const char* salt) +{ + int len; + const struct crypt_format *cf; + + for (cf = crypt_formats; cf->name != NULL; ++cf) { + if (cf->magic != NULL && strstr(salt, cf->magic) == salt) { + return cf->func(key, salt); + } + } + + len = strlen(salt); + if ((len == 13 || len == 2) && strspn(salt, DES_SALT_ALPHABET) == len) { + return (crypt_des(key, salt)); + } + + return crypt_formats[0].func(key, salt); } -- 2.11.0