storin.{tests,debug}-ref: Ancient versions of the test output.
[storin] / storin.tex
... / ...
CommitLineData
1%%% -*-latex-*-
2%%%
3%%% $Id$
4%%%
5%%% Definition of the cipher
6%%%
7%%% (c) 2000 Mark Wooding
8%%%
9
10%%%----- Revision history ---------------------------------------------------
11%%%
12%%% $Log: storin.tex,v $
13%%% Revision 1.7 2001/03/11 23:46:56 mdw
14%%% Fixing to BibTeX stuff.
15%%%
16%%% Revision 1.6 2001/03/11 23:22:53 mdw
17%%% Use BibTeX for the paper bibliography.
18%%%
19%%% Revision 1.5 2000/07/02 15:22:34 mdw
20%%% Overhaul of differential cryptanalysis, including a new attack.
21%%%
22%%% Revision 1.4 2000/05/28 00:39:32 mdw
23%%% Fix some errors.
24%%%
25%%% Revision 1.3 2000/05/25 19:46:22 mdw
26%%% Improve analysis section.
27%%%
28%%% Revision 1.2 2000/05/21 21:43:26 mdw
29%%% Fix a couple of typos.
30%%%
31%%% Revision 1.1 2000/05/21 11:28:30 mdw
32%%% Initial check-in.
33%%%
34
35%%%----- Preamble -----------------------------------------------------------
36
37\documentclass[a4paper]{article}
38\usepackage[palatino, helvetica, courier, maths=cmr]{mdwfonts}
39\usepackage{mdwtab}
40\usepackage{mathenv}
41\usepackage{amsfonts}
42\usepackage{mdwmath}
43\usepackage{url}
44\usepackage[all, dvips]{xy}
45
46\def\ror{\mathbin{>\!\!>\!\!>}}
47\def\rol{\mathbin{<\!\!<\!\!<}}
48\def\lsr{\mathbin{>\!\!>}}
49\def\lsl{\mathbin{<\!\!<}}
50\def\xor{\oplus}
51\def\seq#1{{\langle #1 \rangle}}
52
53\def\hex#1{\texttt{#1}_{16}}
54\let\msgid=\url
55
56\sloppy
57
58\title{Storin: A block cipher for digital signal processors}
59\author{Mark Wooding (\texttt{mdw@nsict.org})}
60
61%% --- The cipher diagrams ---
62
63\def\figkeymix#1#2#3#4{%
64 \ar "a"; p-(0, 0.5)*{\xor} ="a" \ar "a"+(1, 0) *+[r]{k_{#1}}; "a"%
65 \ar "b"; p-(0, 0.5)*{\xor} ="b" \ar "b"+(1, 0) *+[r]{k_{#2}}; "b"%
66 \ar "c"; p-(0, 0.5)*{\xor} ="c" \ar "c"+(1, 0) *+[r]{k_{#3}}; "c"%
67 \ar "d"; p-(0, 0.5)*{\xor} ="d" \ar "d"+(1, 0) *+[r]{k_{#4}}; "d"%
68}
69
70\def\figmatrix{%
71 \POS "a"+(3, -1) *++=(7, 0)[F]u\txt{Matrix multiply} ="m"%
72 \ar "a"; "m"+U-(3, 0) \ar "b"; "m"+U-(1, 0)%
73 \ar "c"; "m"+U+(1, 0) \ar "d"; "m"+U+(3, 0)%
74}
75
76\def\figlintrans{%
77 \ar "m"+D-(3, 0); "a"-(0, 2.25)*{\xor} ="a"%
78 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
79 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
80 \ar "m"+D-(1, 0); "b"-(0, 2.25)*{\xor} ="b"%
81 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
82 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
83 \ar "m"+D+(1, 0); "c"-(0, 2.25)*{\xor} ="c"%
84 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
85 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
86 \ar "m"+D+(3, 0); "d"-(0, 2.25)*{\xor} ="d"%
87 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
88 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
89}
90
91\def\figilintrans{%
92 \ar "a"; "a"-(0, 1)*{\xor} ="a"%
93 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
94 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
95 \ar "b"; "b"-(0, 1)*{\xor} ="b"%
96 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
97 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
98 \ar "c"; "c"-(0, 1)*{\xor} ="c"%
99 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
100 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
101 \ar "d"; "d"-(0, 1)*{\xor} ="d"%
102 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
103 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
104}
105
106\def\figstart#1{%
107 \POS 0;<1cm,0cm>:%
108 \turnradius{4pt}%
109 \ar @{-} (0, 0) *+{a#1}; p-(0, 0.5) ="a"
110 \ar @{-} (2, 0) *+{b#1}; p-(0, 0.5) ="b"
111 \ar @{-} (4, 0) *+{c#1}; p-(0, 0.5) ="c"
112 \ar @{-} (6, 0) *+{d#1}; p-(0, 0.5) ="d"
113}
114
115\def\figround#1#2#3#4#5{%
116 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
117 \POS "a"+(8, -1.75) *[r]\txt{#5}%
118 \figkeymix{#1}{#2}{#3}{#4}%
119 \figmatrix%
120 \figlintrans%
121 \ar @{-} "a"; p-(0, .5) ="a"
122 \ar @{-} "b"; p-(0, .5) ="b"
123 \ar @{-} "c"; p-(0, .5) ="c"
124 \ar @{-} "d"; p-(0, .5) ="d"
125}
126
127\def\figiround#1#2#3#4#5{%
128 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
129 \POS "a"+(8, -1.75) *[r]\txt{#5}%
130 \figkeymix{#1}{#2}{#3}{#4}%
131 \figilintrans%
132 \figmatrix%
133 \ar @{-} "m"+D-(3, 0); p-(0, .5) ="a"
134 \ar @{-} "m"+D-(1, 0); p-(0, .5) ="b"
135 \ar @{-} "m"+D+(1, 0); p-(0, .5) ="c"
136 \ar @{-} "m"+D+(3, 0); p-(0, .5) ="d"
137}
138
139\def\figgap{%
140 \ar @{.} "a"-(0.5, 0); p+(8, 0)
141 \POS "a"+(8, -1)*[r]\txt{Six more rounds}
142 \ar @{--} "a"; "a"-(0, 2) ="a"
143 \ar @{--} "b"; "b"-(0, 2) ="b"
144 \ar @{--} "c"; "c"-(0, 2) ="c"
145 \ar @{--} "d"; "d"-(0, 2) ="d"
146}
147
148\def\figwhite#1#2#3#4#5{%
149 \ar @{.} "a"-(0.5, 0); p+(8, 0)
150 \POS "a"+(8, -1)*[r]\txt{Postwhitening}
151 \figkeymix{#1}{#2}{#3}{#4}
152 \ar "a"; p-(0, 1) *+{a#5}
153 \ar "b"; p-(0, 1) *+{b#5}
154 \ar "c"; p-(0, 1) *+{c#5}
155 \ar "d"; p-(0, 1) *+{d#5}
156}
157
158\begin{document}
159\maketitle
160
161%%%----- The main text ------------------------------------------------------
162
163\begin{abstract}
164 We present Storin: a new 96-bit block cipher designed to play to the
165 strengths of current digital signal processors (DSPs). In particular, DSPs
166 tend to provide single-cycle multiply-and-accumulate operations, making
167 matrix multiplications very cheap. Working in an environment where
168 multiplication is as fast as exclusive-or changes the usual perceptions
169 about which operations provide good cryptographic strength cheaply. The
170 scarcity of available memory, for code and for tables, and a penalty for
171 nonsequential access to data also make traditional block ciphers based
172 around substitution tables unsuitable.
173\end{abstract}
174
175\tableofcontents
176
177\section{Definition of the cipher}
178
179\subsection{Overview}
180
181Storin is an eight-round SP network operating on 96-bit blocks. The block
182cipher uses 36 24-bit subkey words, derived from a user key by the key
183schedule.
184
185The 96-bit input is split into four 24-bit words. Each round then processes
186these four words, using the following three steps:
187\begin{enumerate}
188\item Mixing in of some key material. Four 24-bit subkey words are XORed
189 with the four data words.
190\item A matrix multiplication mod $2^{24}$. The four words are treated as a
191 column vector and premultiplied by a $4 \times 4$ vector using addition and
192 multiplication mod $2^{24}$. This is the main nonlinear step in the
193 cipher, and it also provides most of the cipher's diffusion.
194\item A simple linear transformation, which replaces each word $x$ by $x \xor
195 (x \lsr 12)$.
196\end{enumerate}
197The four data words output by the final round are XORed with the last four
198subkey words in a final postwhitening stage and combined to form the 96-bit
199ciphertext.
200
201The cipher structure is shown diagrammatically in figure~\ref{fig:cipher}.
202
203\begin{figure}
204\centering
205\leavevmode
206\begin{xy}
207 \xycompile{
208 \figstart{}
209 \figround{0}{1}{2}{3}{Round 1}
210 \figround{4}{5}{6}{7}{Round 2}
211 \figgap
212 \figwhite{32}{33}{34}{35}{'}}
213\end{xy}
214\caption{The Storin encryption function}
215\label{fig:cipher}
216\end{figure}
217
218Since the matrix used in step 2 is chosen to be invertible, the cipher can be
219inverted readily, simply by performing the inverse steps in the reverse
220order. Since the postwhitening stage is the same as a key mixing stage,
221decryption can be viewed as eight rounds consisting of key mixing, linear
222transformation and matrix multiplication, followed by a postwhitening stage.
223Thus, the structure of the inverse cipher is very similar to the forwards
224cipher, and uses the same components. The decryption function is shown
225diagrammatically in figure~\ref{fig:decipher}.
226
227\begin{figure}
228\centering
229\leavevmode
230\begin{xy}
231 \xycompile{
232 \figstart{'}
233 \figiround{32}{33}{34}{35}{Round 1}
234 \figiround{28}{29}{30}{31}{Round 2}
235 \figgap
236 \figwhite{0}{1}{2}{3}{}}
237\end{xy}
238\caption{The Storin decryption function}
239\label{fig:decipher}
240\end{figure}
241
242The key schedule is designed to be simple and to reuse the cipher components
243already available. Given a user key, which is a sequence of one or more
24424-bit words, it produces the 36 subkey words required by the cipher. The
245key schedule is very similar to Blowfish \cite{Schneier:1994:DNV}. The
246subkey array is assigned an initial constant value derived from the matrix
247used in the cipher. Words from the user key are XORed into the array,
248starting from the beginning, and restarting from the beginning of the user
249key when all the user key words are exhausted. A 96-bit block is initialized
250to zero, and enciphered with Storin, using the subkeys currently in the
251array. The first four subkey words are then replaced with the resulting
252ciphertext, which is then encrypted again using the new subkeys. The next
253four subkey words are replaced with the ciphertext, and the process
254continues, nine times in all, until all of the subkey words have been
255replaced.
256
257The Storin key schedule can in theory accept user keys up to 36 words (864
258bits) long. However, there are known problems with keys longer than 28 words
259(672 bits), and these large keys are forbidden. We expect that with long
260keys, attacks will be found which are more efficient than an exhaustive
261search of the keyspace; we therefore (conservatively) recommend 5 word
262(120-bit) keys as a practical maximum.
263
264
265\subsection{Encryption}
266
267We define $\mathcal{W} = \mathbb{Z}_{2^{24}}$ to be set of 24-bit words, and
268$\mathcal{P} = \mathcal{W}^4$ to be the set of four-entry column vectors over
269$\mathcal{W}$. Storin plaintext blocks are members of $\mathcal{P}$.
270
271The Storin encryption function uses 36 24-bit words of key material $k_0$,
272$k_1$, \ldots, $k_{35}$, which are produced from the user key by the key
273schedule, described below. The key-mixing operation $K_i \colon \mathcal{P}
274\to \mathcal{P}$ is defined for $0 \le i < 9$ by:
275\[
276 K_i \begin{pmatrix} a \\ b \\ c \\d \end{pmatrix}
277 =
278 \begin{pmatrix}
279 a \xor k_{4i} \\ b \xor k_{4i+1} \\ c \xor k_{4i+2} \\ d \xor k_{4i+3}
280 \end{pmatrix}
281\]
282
283The matrix multiplication operation $M \colon \mathcal{P} \to \mathcal{P}$
284is described by $M(\mathbf{x}) = \mathbf{M} \mathbf{x}$, where $\mathbf{M}$
285is a fixed invertible $4 \times 4$ matrix over $\mathcal{W}$. The value of
286$\mathbf{M}$ is defined below.
287
288The linear transformation $L \colon \mathcal{P} \to \mathcal{P}$ is defined by:
289\[
290 L \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
291 =
292 \begin{pmatrix}
293 a \xor (a \lsr 12) \\
294 b \xor (b \lsr 12) \\
295 c \xor (c \lsr 12) \\
296 d \xor (d \lsr 12)
297 \end{pmatrix}
298\]
299
300The round function $R_i \colon \mathcal{P} \to \mathcal{P}$ is defined for $0
301\le i < 8$ by
302\[ \bigl(\mathbf{M} K_i(\mathbf{x}) \bigr) \]
303
304The cipher $C \colon \mathcal{P} \to \mathcal{P}$ is defined in terms of $R_i$ and
305$K_i$. Let $\mathbf{x}_0 \in \mathcal{P}$ be a plaintext vector. Let
306$\mathbf{x}_{i+1} = R_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
307$C(\mathbf{x})$ by setting $C(\mathbf{x}_0) = K_8(\mathbf{x}_8)$.
308
309
310\subsection{Key schedule}
311
312The key schedule converts a user key, which is a sequence of 24-bit words,
313into the 36 subkeys required by the cipher.
314
315For $i \ge 0$, we define that
316\[
317\begin{pmatrix}
318 m_{16i + 0} & m_{16i + 1} & m_{16i + 2} & m_{16i + 3} \\
319 m_{16i + 4} & m_{16i + 5} & m_{16i + 6} & m_{16i + 7} \\
320 m_{16i + 8} & m_{16i + 9} & m_{16i + 10} & m_{16i + 11} \\
321 m_{16i + 12} & m_{16i + 13} & m_{16i + 14} & m_{16i + 15}
322\end{pmatrix}
323= \mathbf{M}^{i + 2}
324\]
325
326Let the user-supplied key be $u_0$, $u_1$, \ldots, $u_{n-1}$, for some $n >
3270$. We define the sequence $z_0$, $z_1$, \ldots\ by
328\[ z_i = m_i \xor u_{i \bmod n} \]
329for $i \ge 0$.
330
331Denote the result of encrypting vector $\mathbf{x}$ using subkeys from the
332sequence $\seq{w} = w_0, w_1, \ldots, w_{35}$ as $C_{\seq{w}}(\mathbf{x})$.
333We define the key schedule to be $k_0$, $k_1$, \ldots, $k_{35}$, where:
334\begin{eqlines*}
335 \seq{p^{(i)}} = k_0, k_1, \ldots, k_{4i-1}, z_{4i}, z_{4i+1}, \ldots \\
336 \mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \qquad
337 \begin{pmatrix} k_{4i} \\ k_{4i+1} \\ k_{4i+2} \\ k_{4i+3} \end{pmatrix}
338 = \mathbf{x}_{i+1} = C_{\seq{p^{(i)}}}(\mathbf{x}_i)
339\end{eqlines*}
340
341
342\subsection{Decryption}
343
344The individual operations used during encryption are all invertible. Key
345mixing is inverted by taking keys from the other end of the array:
346\[ K^{-1}_i(\mathbf{x}) = K_{8-i}(\mathbf{x}) \]
347The matrix multiplication may be inverted simply by using the inverse matrix
348$\mathbf{M}^{-1}$:
349\[ M^{-1}(\mathbf{x}) = \mathbf{M}^{-1} \mathbf{x} \]
350Finally, the linear transformation is its own inverse:
351\[ L^{-1}(\mathbf{x}) = L(\mathbf{x}) \]
352The inverse round function can now be defined as:
353\[ R^{-1}_i(\mathbf{x}) =
354 \mathbf{M}^{-1} L\bigl(K^{-1}_i(\mathbf{x})\bigr) \]
355
356The decryption function $C^{-1}: \mathcal{P} \to \mathcal{P}$ is defined
357in terms of $R^{-1}$ and $K^{-1}$ in a very similar way to encryption. Let
358$\mathbf{x}_0$ be a ciphertext vector. Let $\mathbf{x}_{i+1} =
359R^{-1}_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
360$C^{-1}(\mathbf{x}_0) = K^{-1}_8(\mathbf{x}_8)$.
361
362
363\subsection{Constants}
364
365The matrix $\mathbf{M}$ and its inverse $\mathbf{M}^{-1}$ are:
366\begin{eqnarray*}[rl]
367 \mathbf{M} = &
368 \begin{pmatrix}
369 \hex{f7a413} & \hex{54bd81} & \hex{447550} & \hex{ff4449} \\
370 \hex{f31e87} & \hex{d85388} & \hex{de32cb} & \hex{40e3d7} \\
371 \hex{d9db1d} & \hex{551b45} & \hex{e9d19f} & \hex{e443de} \\
372 \hex{4b949a} & \hex{4d435d} & \hex{ef0a17} & \hex{b784e1}
373 \end{pmatrix} \\
374 \mathbf{M}^{-1} = &
375 \begin{pmatrix}
376 \hex{17391b} & \hex{fafb4b} & \hex{a66823} & \hex{f2efb6} \\
377 \hex{13e0e5} & \hex{2ed5e4} & \hex{b2cfff} & \hex{d9cdb5} \\
378 \hex{2af462} & \hex{33826d} & \hex{de66a1} & \hex{eb6c85} \\
379 \hex{c2f423} & \hex{e904a3} & \hex{e772d8} & \hex{d791f1}
380 \end{pmatrix}
381\end{eqnarray*}
382
383
384
385\section{Rationale and analysis}
386
387\subsection{Design decisions}
388
389The initial objective was to produce a cipher which played to the particular
390strengths of digital signal processors. DSPs tend to have good multipliers,
391and are particularly good at matrix multiplication. The decision to use a
392matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
39324 bits is a commonly offered word size.
394
395The choice of a 96-bit block is also fairly natural. A 2 word (48-bit) block
396is clearly too small, and a 3 word (72-bit) block is a little on the small
397side too.
398
399
400\subsection{Matrix multiplication over $\mathbb{Z}_{2^{24}}$}
401
402Integer multiplication on a DSP is a cheap source of nonlinearity. Note that
403bit $i$ of the result depends on all of the bits in the operands of lesser or
404equal significance.position $i$ downwards.
405
406The decision to make the $4 \times 4$ matrix fixed was taken fairly early on.
407Generating invertible matrices from key material seemed like too much work to
408expect from the DSP.
409
410The matrix is generated pseudorandomly from a seed string, using SHA-1. The
411criteria we used to choose the matrix are:
412\begin{enumerate}
413\item The matrix must be invertible.
414\item Exactly one entry in each row and column of the matrix must be even.
415\end{enumerate}
416Criterion 1 is obvious. Criterion 2 encourages diffusion between the entries
417in the block vector. Note that if a matrix satisfies the second criterion,
418its inverse also does.
419
420Consider a vector $\mathbf{x}$ and its product with the matrix $\mathbf{M}
421\mathbf{x}$. Whether the top bit of entry $i$ in $\mathbf{x}$ affects
422entry $j$ in the product depends on whether the entry in row $j$, column $i$
423of $\mathbf{M}$ is even. Criterion 2 ensures the following:
424\begin{itemize}
425\item A top-bit change in a single word affects three words in the output.
426\item A top-bit change in two words affects two words in the output.
427\end{itemize}
428
429The seed string used is \texttt{matrix-seed-string}. The program which
430generates the matrix is included with the Storin example source code.
431
432\subsection{The linear transformation}
433
434A bit change in one of the inputs to the matrix can only affect bits at that
435position and higher in the output. The linear transformation at the end of
436the round aims to provide diffusion from the high-order bits back to the
437low-order bits.
438
439A single high-order bit change in the input to a round will affect the
440high-order bits of three words in the output of the matrix multiply. The
441linear transformation causes it to affect bits in the low halves of each of
442these words. The second round's multiplication causes these bits to affect
443the whole top halves of all of the output words. The linear transformation
444propagates this change to the bottom halves. Complete avalanche is therefore
445achieved after three rounds of Storin.
446
447
448\subsection{Key schedule notes}
449
450The key schedule is intended to be adequate for bulk encryption; it doesn't
451provide good key agility, and isn't intended to. The key schedule accepts up
452to 28 words of user key, although expecting 672 bits of security from the
453cipher is not realistic. The suggested maximum of 5 words (120 bits) seems
454more sensible. This maximum can be raised easily when our understanding of
455the cipher increases our confidence in it.
456
457The key schedule is strongly reminiscent of Blowfish
458\cite{Schneier:1994:DNV}. Use of existing components of the cipher, such as
459the matrix multiplication and the cipher itself, help reduce the amount of
460code required in the implementation.
461
462The restriction of the key schedule to 28 words is due to an interesting
463property, also shared by Blowfish (see figure~\ref{fig:bfkeysched}): the
464output of the first round of the second encryption doesn't depend on the
465previous round. To see why this is so, it is enough to note that the first
466round key has just been set equal to what is now the plaintext; the result of
467the key mixing stage is zero, which is unaffected by the matrix and linear
468transformation.
469
470A limit of 28 words is chosen to ensure that the round-1 key affects the
471round-2 key in a part of the cipher earlier than the postwhitening stage.
472
473\begin{figure}
474\centering
475\leavevmode
476\begin{xy}
477 \xycompile{
478 \POS 0; <0.7cm, 0cm>:
479 \POS (0, 0) ="o" +(3, 0) ="w"
480 \ar "o" *+{P[0]}; p-(0, 1) *{\xor} ="x"
481 \ar "x" -(1, 0) *+[l]{P[0]}; "x"
482 \ar@{-} "x"; p-(0, 2) ="as"
483 \ar "w" *+{P[1]}; p-(0, 2) *{\xor} ="x"
484 \ar "o"-(0, 2); "x" |-*+[F]{F}
485 \ar@{-} "x"; p-(0, 1) ="bs"
486 \ar@{-} "as"; "bs"-(0, 1) ="w"
487 \ar@{-} "bs"; "as"-(0, 1) ="o"
488 \ar "o"; p-(0, 1) *+{P[1] \xor F(0)} ="x"
489 \ar "x"; p-(0, 1) *{\xor} ="x"
490 \ar "x" -(1, 0) *+[l]{P[1]}; "x"
491 \ar "x"; p-(0, 2) *+{F(0)}
492 \ar "w"; p-(0, 1) *+{0} ="x"
493 \ar "x"; p-(0, 2) *{\xor} ="x"
494 \ar "o"-(0, 3); "x" |-*+[F]{F}
495 \ar "x"; p-(0, 1) *+{F^2(0)}}
496\end{xy}
497\caption{Blowfish key schedule: $P[2]$ and $P[3]$ don't depend on $P[0]$ and
498 $P[1]$.}
499\label{fig:bfkeysched}
500\end{figure}
501
502\subsection{Attacking Storin}
503
504\subsubsection{Differential cryptanalysis}
505
506There is a two-round truncated differential \cite{Wooding:2000:Storin-diff},
507which can be used to break Storin reduced to only 2 rounds. The differential
508\[ \begin{pmatrix}
509 1 \lsl 23 \\ 1 \lsl 23 \\ 1 \lsl 23 \\ 0
510 \end{pmatrix} \to
511 \begin{pmatrix}
512 0 \\ 0 \\ 1 \lsl 23 \\ 0
513 \end{pmatrix}
514\]
515holds with probability 1 through the matrix multiplication.
516Differentials in the linear transform are easy to find; for example:
517\[ \begin{pmatrix}
518 0 \\ 0 \\ 1 \lsl 23 \\ 0
519 \end{pmatrix} \to
520 \begin{pmatrix}
521 0 \\ 0 \\ (1 \lsl 23) \xor (1 \lsl 11) \\ 0
522 \end{pmatrix}
523\]
524We can continue through the second round's matrix multiplication with a
525truncated differential, again with probability 1:
526\[ \begin{pmatrix}
527 0 \\ 0 \\ (1 \lsl 23) \xor (1 \lsl 11) \\ 0
528 \end{pmatrix} \to
529 \begin{pmatrix}
530 \delta_0 \lsl 12 \\
531 (\delta_1 \lsl 12) \xor (1 \lsl 11) \\
532 (\delta_2 \lsl 12) \xor (1 \lsl 11) \\
533 (\delta_3 \lsl 12) \xor (1 \lsl 11) \\
534 \end{pmatrix}
535\]
536where the $\delta_i$ are unknown 12-bit values. Applying the linear
537transformation to this output difference gives us
538\[ \begin{pmatrix}
539 \delta_0 \lsl 12 \\
540 (\delta_1 \lsl 12) \xor (1 \lsl 11) \\
541 (\delta_2 \lsl 12) \xor (1 \lsl 11) \\
542 (\delta_3 \lsl 12) \xor (1 \lsl 11) \\
543 \end{pmatrix} \to
544 \begin{pmatrix}
545 (\delta_0 \lsl 12) \xor \delta_0 \\
546 (\delta_1 \lsl 12) \xor \delta_1 \xor (1 \lsl 11) \\
547 (\delta_2 \lsl 12) \xor \delta_2 \xor (1 \lsl 11) \\
548 (\delta_3 \lsl 12) \xor \delta_3 \xor (1 \lsl 11) \\
549 \end{pmatrix}
550\]
551A subsequent key-mixing or postwhitening stage won't affect the difference.
552We can therefore combine the differentials above to construct a probability-1
553truncated differential for a 2-round variant of Storin:
554\[ \begin{pmatrix}
555 1 \lsl 23 \\ 1 \lsl 23 \\ 1 \lsl 23 \\ 0
556 \end{pmatrix} \to
557 \begin{pmatrix}
558 (\delta_0 \lsl 12) \xor \delta_0 \\
559 (\delta_1 \lsl 12) \xor \delta_1 \xor (1 \lsl 11) \\
560 (\delta_2 \lsl 12) \xor \delta_2 \xor (1 \lsl 11) \\
561 (\delta_3 \lsl 12) \xor \delta_3 \xor (1 \lsl 11) \\
562 \end{pmatrix}
563\]
564This characteristic is non-iterative, and can't be extended to more rounds.
565
566The differential can be converted into a key-recovery attack against $n$
567rounds fairly easily, by obtaining the ciphertext for an appropriate
568plaintext pair and guessing the $n - 2$ round keys, testing the guesses by
569working backwards and finding out whether the expected output difference is
570visible. The attack requires a pair of chosen plaintexts, and
571$O(2^{96(n - 2)})$ work. It is only more efficient than exhaustive search
572when the key is longer than $96(n - 2)$ bits.
573
574This attack can be improved. Consider a 3-round variant of Storin, where the
575objective is to discover the postwhitening keys. The postwhitening stage can
576be commuted with the linear transform simply by applying the transform to the
577postwhitening keys. We do this, and guess the least significant 12 bits of
578each of the (transformed) postwhitening key words. Working through the
579matrix multiplication mod $2^{12}$ rather than mod $2^{24}$ then gives us the
58012 least significant bits of the state words on input to the matrix. Further
581key bits can then be guessed and tested, four at a time, to recover the
582remaining postwhitening key bits, by ensuring that the differences in the
583more significant bits of the third round matrix input obey the characteristic
584described above. This requires only about $2^{48}$ work, and may be extended
585to further rounds by exhaustively searching for the extra round keys.
586
587This attack can break Storin with $n$ rounds ($n \ge 3$) with minimal chosen
588plaintext and $O(2^{48 + 96(n - 3)})$ work. This is the best attack known
589against Storin.
590
591\subsubsection{Other attacks}
592
593In \cite{Fisher:2000:Storin-collide}, Matthew Fisher speculates on breaking 2
594rounds of Storin by forcing collisions in the matrix multiplication outputs.
595This attack doesn't extend to more than two rounds either.
596
597One possible avenue of attack worth exploring is to attempt to cause zero
598words to be input into the first-round matrix by choosing plaintext words
599identical to subkey words for the first round. Causing $n$ matrix input
600words to be zero clearly takes $O(2^{24n})$ time. If a method can be found
601to detect when zero words have been input to the matrix, this can be used to
602discover the subkey words rather more rapidly than exhaustive search. We
603can't see a way to exploit this at the moment, but it could be a fruitful
604place to look for cryptanalysis.
605
606
607\section{Conclusion}
608
609We have presented a new block cipher, Storin. Any cryptanalysis will be
610received with interest.
611
612\bibliographystyle{alpha}
613\bibliography{cryptography,mdw}
614
615%%%----- That's all, folks --------------------------------------------------
616
617\end{document}
618
619%%% Local Variables:
620%%% mode: latex
621%%% TeX-master: t
622%%% End: