From 7bed19e1bd1194a249a808f0ea8f3a9c1453843c Mon Sep 17 00:00:00 2001 From: simon Date: Wed, 26 May 2004 09:07:14 +0000 Subject: [PATCH] Richard B's utterly evil `netslide': cross between Net and Sixteen. git-svn-id: svn://svn.tartarus.org/sgt/puzzles@4257 cda61777-01e9-0310-a592-d414129be87e --- .cvsignore | 2 +- LICENCE | 2 + Recipe | 3 + netslide.c | 1514 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 1520 insertions(+), 1 deletion(-) create mode 100644 netslide.c diff --git a/.cvsignore b/.cvsignore index a869da5..3ebf3fa 100644 --- a/.cvsignore +++ b/.cvsignore @@ -1,5 +1,5 @@ Makefile* -net cube fifteen sixteen rect nullgame +net cube fifteen sixteen rect netslide nullgame *.exe *.obj *.o *.map *.rsp *notes diff --git a/LICENCE b/LICENCE index 7430b8b..a18a0b9 100644 --- a/LICENCE +++ b/LICENCE @@ -1,5 +1,7 @@ This software is copyright (c) 2004 Simon Tatham. +Portions copyright Richard Boulton. + Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, diff --git a/Recipe b/Recipe index f71a27f..c6ecd8d 100644 --- a/Recipe +++ b/Recipe @@ -15,8 +15,10 @@ WINDOWS = windows user32.lib gdi32.lib comctl32.lib COMMON = midend misc malloc random NET = net tree234 +NETSLIDE = netslide tree234 net : [X] gtk COMMON NET +netslide : [X] gtk COMMON NETSLIDE cube : [X] gtk COMMON cube fifteen : [X] gtk COMMON fifteen sixteen : [X] gtk COMMON sixteen @@ -25,6 +27,7 @@ rect : [X] gtk COMMON rect # The Windows Net shouldn't be called `net.exe' since Windows # already has a reasonably important utility program by that name! netgame : [G] WINDOWS COMMON NET +netslide : [G] WINDOWS COMMON NETSLIDE cube : [G] WINDOWS COMMON cube fifteen : [G] WINDOWS COMMON fifteen sixteen : [G] WINDOWS COMMON sixteen diff --git a/netslide.c b/netslide.c new file mode 100644 index 0000000..6bbd813 --- /dev/null +++ b/netslide.c @@ -0,0 +1,1514 @@ +/* + * netslide.c: cross between Net and Sixteen, courtesy of Richard + * Boulton. + */ + +#include +#include +#include +#include +#include +#include + +#include "puzzles.h" +#include "tree234.h" + +const char *const game_name = "Netslide"; +const int game_can_configure = TRUE; + +#define PI 3.141592653589793238462643383279502884197169399 + +#define MATMUL(xr,yr,m,x,y) do { \ + float rx, ry, xx = (x), yy = (y), *mat = (m); \ + rx = mat[0] * xx + mat[2] * yy; \ + ry = mat[1] * xx + mat[3] * yy; \ + (xr) = rx; (yr) = ry; \ +} while (0) + +/* Direction and other bitfields */ +#define R 0x01 +#define U 0x02 +#define L 0x04 +#define D 0x08 +#define FLASHING 0x10 +#define ACTIVE 0x20 +/* Corner flags go in the barriers array */ +#define RU 0x10 +#define UL 0x20 +#define LD 0x40 +#define DR 0x80 + +/* Get tile at given coordinate */ +#define T(state, x, y) ( (y) * (state)->width + (x) ) + +/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */ +#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) ) +#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) ) +#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) ) +#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \ + ((n)&3) == 1 ? A(x) : \ + ((n)&3) == 2 ? F(x) : C(x) ) + +/* X and Y displacements */ +#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 ) +#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 ) + +/* Bit count */ +#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \ + (((x) & 0x02) >> 1) + ((x) & 0x01) ) + +#define TILE_SIZE 48 +#define BORDER TILE_SIZE +#define TILE_BORDER 1 +#define WINDOW_OFFSET 0 + +#define ANIM_TIME 0.13F +#define FLASH_FRAME 0.07F + +enum { + COL_BACKGROUND, + COL_FLASHING, + COL_BORDER, + COL_WIRE, + COL_ENDPOINT, + COL_POWERED, + COL_BARRIER, + COL_LOWLIGHT, + COL_TEXT, + NCOLOURS +}; + +struct game_params { + int width; + int height; + int wrapping; + float barrier_probability; +}; + +struct game_state { + int width, height, cx, cy, wrapping, completed; + int move_count; + + /* position (row or col number, starting at 0) of last move. */ + int last_move_row, last_move_col; + + /* direction of last move: +1 or -1 */ + int last_move_dir; + + unsigned char *tiles; + unsigned char *barriers; +}; + +#define OFFSET(x2,y2,x1,y1,dir,state) \ + ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \ + (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height) + +#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] ) +#define tile(state, x, y) index(state, (state)->tiles, x, y) +#define barrier(state, x, y) index(state, (state)->barriers, x, y) + +struct xyd { + int x, y, direction; +}; + +static int xyd_cmp(void *av, void *bv) { + struct xyd *a = (struct xyd *)av; + struct xyd *b = (struct xyd *)bv; + if (a->x < b->x) + return -1; + if (a->x > b->x) + return +1; + if (a->y < b->y) + return -1; + if (a->y > b->y) + return +1; + if (a->direction < b->direction) + return -1; + if (a->direction > b->direction) + return +1; + return 0; +}; + +static struct xyd *new_xyd(int x, int y, int direction) +{ + struct xyd *xyd = snew(struct xyd); + xyd->x = x; + xyd->y = y; + xyd->direction = direction; + return xyd; +} + +void slide_col(game_state *state, int dir, int col); +void slide_row(game_state *state, int dir, int row); + +/* ---------------------------------------------------------------------- + * Manage game parameters. + */ +game_params *default_params(void) +{ + game_params *ret = snew(game_params); + + ret->width = 3; + ret->height = 3; + ret->wrapping = FALSE; + ret->barrier_probability = 1.0; + + return ret; +} + +int game_fetch_preset(int i, char **name, game_params **params) +{ + game_params *ret; + char str[80]; + static const struct { int x, y, wrap, bprob; const char* desc; } values[] = { + {3, 3, FALSE, 1.0, " easy"}, + {3, 3, FALSE, 0.0, " medium"}, + {3, 3, TRUE, 0.0, " hard"}, + {4, 4, FALSE, 1.0, " easy"}, + {4, 4, FALSE, 0.0, " medium"}, + {4, 4, TRUE, 0.0, " hard"}, + {5, 5, FALSE, 1.0, " easy"}, + {5, 5, FALSE, 0.0, " medium"}, + {5, 5, TRUE, 0.0, " hard"}, + }; + + if (i < 0 || i >= lenof(values)) + return FALSE; + + ret = snew(game_params); + ret->width = values[i].x; + ret->height = values[i].y; + ret->wrapping = values[i].wrap; + ret->barrier_probability = values[i].bprob; + + sprintf(str, "%dx%d%s", ret->width, ret->height, + values[i].desc); + + *name = dupstr(str); + *params = ret; + return TRUE; +} + +void free_params(game_params *params) +{ + sfree(params); +} + +game_params *dup_params(game_params *params) +{ + game_params *ret = snew(game_params); + *ret = *params; /* structure copy */ + return ret; +} + +game_params *decode_params(char const *string) +{ + game_params *ret = default_params(); + char const *p = string; + + ret->wrapping = FALSE; + ret->barrier_probability = 0.0; + + ret->width = atoi(p); + while (*p && isdigit(*p)) p++; + if (*p == 'x') { + p++; + ret->height = atoi(p); + while (*p && isdigit(*p)) p++; + if ( (ret->wrapping = (*p == 'w')) != 0 ) + p++; + if (*p == 'b') + ret->barrier_probability = atof(p+1); + } else { + ret->height = ret->width; + } + + return ret; +} + +char *encode_params(game_params *params) +{ + char ret[400]; + int len; + + len = sprintf(ret, "%dx%d", params->width, params->height); + if (params->wrapping) + ret[len++] = 'w'; + if (params->barrier_probability) + len += sprintf(ret+len, "b%g", params->barrier_probability); + assert(len < lenof(ret)); + ret[len] = '\0'; + + return dupstr(ret); +} + +config_item *game_configure(game_params *params) +{ + config_item *ret; + char buf[80]; + + ret = snewn(5, config_item); + + ret[0].name = "Width"; + ret[0].type = C_STRING; + sprintf(buf, "%d", params->width); + ret[0].sval = dupstr(buf); + ret[0].ival = 0; + + ret[1].name = "Height"; + ret[1].type = C_STRING; + sprintf(buf, "%d", params->height); + ret[1].sval = dupstr(buf); + ret[1].ival = 0; + + ret[2].name = "Walls wrap around"; + ret[2].type = C_BOOLEAN; + ret[2].sval = NULL; + ret[2].ival = params->wrapping; + + ret[3].name = "Barrier probability"; + ret[3].type = C_STRING; + sprintf(buf, "%g", params->barrier_probability); + ret[3].sval = dupstr(buf); + ret[3].ival = 0; + + ret[4].name = NULL; + ret[4].type = C_END; + ret[4].sval = NULL; + ret[4].ival = 0; + + return ret; +} + +game_params *custom_params(config_item *cfg) +{ + game_params *ret = snew(game_params); + + ret->width = atoi(cfg[0].sval); + ret->height = atoi(cfg[1].sval); + ret->wrapping = cfg[2].ival; + ret->barrier_probability = (float)atof(cfg[3].sval); + + return ret; +} + +char *validate_params(game_params *params) +{ + if (params->width <= 1 && params->height <= 1) + return "Width and height must both be greater than one"; + if (params->width <= 1) + return "Width must be greater than one"; + if (params->height <= 1) + return "Height must be greater than one"; + if (params->barrier_probability < 0) + return "Barrier probability may not be negative"; + if (params->barrier_probability > 1) + return "Barrier probability may not be greater than 1"; + return NULL; +} + +/* ---------------------------------------------------------------------- + * Randomly select a new game seed. + */ + +char *new_game_seed(game_params *params, random_state *rs) +{ + /* + * The full description of a Net game is far too large to + * encode directly in the seed, so by default we'll have to go + * for the simple approach of providing a random-number seed. + * + * (This does not restrict me from _later on_ inventing a seed + * string syntax which can never be generated by this code - + * for example, strings beginning with a letter - allowing me + * to type in a precise game, and have new_game detect it and + * understand it and do something completely different.) + */ + char buf[40]; + sprintf(buf, "%lu", random_bits(rs, 32)); + return dupstr(buf); +} + +char *validate_seed(game_params *params, char *seed) +{ + /* + * Since any string at all will suffice to seed the RNG, there + * is no validation required. + */ + return NULL; +} + +/* ---------------------------------------------------------------------- + * Construct an initial game state, given a seed and parameters. + */ + +game_state *new_game(game_params *params, char *seed) +{ + random_state *rs; + game_state *state; + tree234 *possibilities, *barriers; + int w, h, x, y, nbarriers; + + assert(params->width > 0 && params->height > 0); + assert(params->width > 1 || params->height > 1); + + /* + * Create a blank game state. + */ + state = snew(game_state); + w = state->width = params->width; + h = state->height = params->height; + state->cx = state->width / 2; + state->cy = state->height / 2; + state->wrapping = params->wrapping; + state->completed = 0; + state->move_count = 0; + state->last_move_row = -1; + state->last_move_col = -1; + state->last_move_dir = 0; + state->tiles = snewn(state->width * state->height, unsigned char); + memset(state->tiles, 0, state->width * state->height); + state->barriers = snewn(state->width * state->height, unsigned char); + memset(state->barriers, 0, state->width * state->height); + + /* + * Set up border barriers if this is a non-wrapping game. + */ + if (!state->wrapping) { + for (x = 0; x < state->width; x++) { + barrier(state, x, 0) |= U; + barrier(state, x, state->height-1) |= D; + } + for (y = 0; y < state->height; y++) { + barrier(state, 0, y) |= L; + barrier(state, state->width-1, y) |= R; + } + } + + /* + * Seed the internal random number generator. + */ + rs = random_init(seed, strlen(seed)); + + /* + * Construct the unshuffled grid. + * + * To do this, we simply start at the centre point, repeatedly + * choose a random possibility out of the available ways to + * extend a used square into an unused one, and do it. After + * extending the third line out of a square, we remove the + * fourth from the possibilities list to avoid any full-cross + * squares (which would make the game too easy because they + * only have one orientation). + * + * The slightly worrying thing is the avoidance of full-cross + * squares. Can this cause our unsophisticated construction + * algorithm to paint itself into a corner, by getting into a + * situation where there are some unreached squares and the + * only way to reach any of them is to extend a T-piece into a + * full cross? + * + * Answer: no it can't, and here's a proof. + * + * Any contiguous group of such unreachable squares must be + * surrounded on _all_ sides by T-pieces pointing away from the + * group. (If not, then there is a square which can be extended + * into one of the `unreachable' ones, and so it wasn't + * unreachable after all.) In particular, this implies that + * each contiguous group of unreachable squares must be + * rectangular in shape (any deviation from that yields a + * non-T-piece next to an `unreachable' square). + * + * So we have a rectangle of unreachable squares, with T-pieces + * forming a solid border around the rectangle. The corners of + * that border must be connected (since every tile connects all + * the lines arriving in it), and therefore the border must + * form a closed loop around the rectangle. + * + * But this can't have happened in the first place, since we + * _know_ we've avoided creating closed loops! Hence, no such + * situation can ever arise, and the naive grid construction + * algorithm will guaranteeably result in a complete grid + * containing no unreached squares, no full crosses _and_ no + * closed loops. [] + */ + possibilities = newtree234(xyd_cmp); + + if (state->cx+1 < state->width) + add234(possibilities, new_xyd(state->cx, state->cy, R)); + if (state->cy-1 >= 0) + add234(possibilities, new_xyd(state->cx, state->cy, U)); + if (state->cx-1 >= 0) + add234(possibilities, new_xyd(state->cx, state->cy, L)); + if (state->cy+1 < state->height) + add234(possibilities, new_xyd(state->cx, state->cy, D)); + + while (count234(possibilities) > 0) { + int i; + struct xyd *xyd; + int x1, y1, d1, x2, y2, d2, d; + + /* + * Extract a randomly chosen possibility from the list. + */ + i = random_upto(rs, count234(possibilities)); + xyd = delpos234(possibilities, i); + x1 = xyd->x; + y1 = xyd->y; + d1 = xyd->direction; + sfree(xyd); + + OFFSET(x2, y2, x1, y1, d1, state); + d2 = F(d1); +#ifdef DEBUG + printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n", + x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]); +#endif + + /* + * Make the connection. (We should be moving to an as yet + * unused tile.) + */ + tile(state, x1, y1) |= d1; + assert(tile(state, x2, y2) == 0); + tile(state, x2, y2) |= d2; + + /* + * If we have created a T-piece, remove its last + * possibility. + */ + if (COUNT(tile(state, x1, y1)) == 3) { + struct xyd xyd1, *xydp; + + xyd1.x = x1; + xyd1.y = y1; + xyd1.direction = 0x0F ^ tile(state, x1, y1); + + xydp = find234(possibilities, &xyd1, NULL); + + if (xydp) { +#ifdef DEBUG + printf("T-piece; removing (%d,%d,%c)\n", + xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); +#endif + del234(possibilities, xydp); + sfree(xydp); + } + } + + /* + * Remove all other possibilities that were pointing at the + * tile we've just moved into. + */ + for (d = 1; d < 0x10; d <<= 1) { + int x3, y3, d3; + struct xyd xyd1, *xydp; + + OFFSET(x3, y3, x2, y2, d, state); + d3 = F(d); + + xyd1.x = x3; + xyd1.y = y3; + xyd1.direction = d3; + + xydp = find234(possibilities, &xyd1, NULL); + + if (xydp) { +#ifdef DEBUG + printf("Loop avoidance; removing (%d,%d,%c)\n", + xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); +#endif + del234(possibilities, xydp); + sfree(xydp); + } + } + + /* + * Add new possibilities to the list for moving _out_ of + * the tile we have just moved into. + */ + for (d = 1; d < 0x10; d <<= 1) { + int x3, y3; + + if (d == d2) + continue; /* we've got this one already */ + + if (!state->wrapping) { + if (d == U && y2 == 0) + continue; + if (d == D && y2 == state->height-1) + continue; + if (d == L && x2 == 0) + continue; + if (d == R && x2 == state->width-1) + continue; + } + + OFFSET(x3, y3, x2, y2, d, state); + + if (tile(state, x3, y3)) + continue; /* this would create a loop */ + +#ifdef DEBUG + printf("New frontier; adding (%d,%d,%c)\n", + x2, y2, "0RU3L567D9abcdef"[d]); +#endif + add234(possibilities, new_xyd(x2, y2, d)); + } + } + /* Having done that, we should have no possibilities remaining. */ + assert(count234(possibilities) == 0); + freetree234(possibilities); + + /* + * Now compute a list of the possible barrier locations. + */ + barriers = newtree234(xyd_cmp); + for (y = 0; y < state->height; y++) { + for (x = 0; x < state->width; x++) { + + if (!(tile(state, x, y) & R) && + (state->wrapping || x < state->width-1)) + add234(barriers, new_xyd(x, y, R)); + if (!(tile(state, x, y) & D) && + (state->wrapping || y < state->height-1)) + add234(barriers, new_xyd(x, y, D)); + } + } + + /* + * Now shuffle the grid. + * FIXME - this simply does a set of random moves to shuffle the pieces. + * A better way would be to number all the pieces, generate a placement + * for all the numbers as for "sixteen", observing parity constraints if + * neccessary, and then place the pieces according to their numbering. + * BUT - I'm not sure if this will work, since we disallow movement of + * the middle row and column. + */ + { + int i; + int cols = state->width - 1; + int rows = state->height - 1; + for (i = 0; i < cols * rows * 2; i++) { + /* Choose a direction: 0,1,2,3 = up, right, down, left. */ + int dir = random_upto(rs, 4); + if (dir % 2 == 0) { + int col = random_upto(rs, cols); + if (col >= state->cx) col += 1; + slide_col(state, 1 - dir, col); + } else { + int row = random_upto(rs, rows); + if (row >= state->cy) row += 1; + slide_row(state, 2 - dir, row); + } + } + } + + /* + * And now choose barrier locations. (We carefully do this + * _after_ shuffling, so that changing the barrier rate in the + * params while keeping the game seed the same will give the + * same shuffled grid and _only_ change the barrier locations. + * Also the way we choose barrier locations, by repeatedly + * choosing one possibility from the list until we have enough, + * is designed to ensure that raising the barrier rate while + * keeping the seed the same will provide a superset of the + * previous barrier set - i.e. if you ask for 10 barriers, and + * then decide that's still too hard and ask for 20, you'll get + * the original 10 plus 10 more, rather than getting 20 new + * ones and the chance of remembering your first 10.) + */ + nbarriers = (int)(params->barrier_probability * count234(barriers)); + assert(nbarriers >= 0 && nbarriers <= count234(barriers)); + + while (nbarriers > 0) { + int i; + struct xyd *xyd; + int x1, y1, d1, x2, y2, d2; + + /* + * Extract a randomly chosen barrier from the list. + */ + i = random_upto(rs, count234(barriers)); + xyd = delpos234(barriers, i); + + assert(xyd != NULL); + + x1 = xyd->x; + y1 = xyd->y; + d1 = xyd->direction; + sfree(xyd); + + OFFSET(x2, y2, x1, y1, d1, state); + d2 = F(d1); + + barrier(state, x1, y1) |= d1; + barrier(state, x2, y2) |= d2; + + nbarriers--; + } + + /* + * Clean up the rest of the barrier list. + */ + { + struct xyd *xyd; + + while ( (xyd = delpos234(barriers, 0)) != NULL) + sfree(xyd); + + freetree234(barriers); + } + + /* + * Set up the barrier corner flags, for drawing barriers + * prettily when they meet. + */ + for (y = 0; y < state->height; y++) { + for (x = 0; x < state->width; x++) { + int dir; + + for (dir = 1; dir < 0x10; dir <<= 1) { + int dir2 = A(dir); + int x1, y1, x2, y2, x3, y3; + int corner = FALSE; + + if (!(barrier(state, x, y) & dir)) + continue; + + if (barrier(state, x, y) & dir2) + corner = TRUE; + + x1 = x + X(dir), y1 = y + Y(dir); + if (x1 >= 0 && x1 < state->width && + y1 >= 0 && y1 < state->height && + (barrier(state, x1, y1) & dir2)) + corner = TRUE; + + x2 = x + X(dir2), y2 = y + Y(dir2); + if (x2 >= 0 && x2 < state->width && + y2 >= 0 && y2 < state->height && + (barrier(state, x2, y2) & dir)) + corner = TRUE; + + if (corner) { + barrier(state, x, y) |= (dir << 4); + if (x1 >= 0 && x1 < state->width && + y1 >= 0 && y1 < state->height) + barrier(state, x1, y1) |= (A(dir) << 4); + if (x2 >= 0 && x2 < state->width && + y2 >= 0 && y2 < state->height) + barrier(state, x2, y2) |= (C(dir) << 4); + x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2); + if (x3 >= 0 && x3 < state->width && + y3 >= 0 && y3 < state->height) + barrier(state, x3, y3) |= (F(dir) << 4); + } + } + } + } + + random_free(rs); + + return state; +} + +game_state *dup_game(game_state *state) +{ + game_state *ret; + + ret = snew(game_state); + ret->width = state->width; + ret->height = state->height; + ret->cx = state->cx; + ret->cy = state->cy; + ret->wrapping = state->wrapping; + ret->completed = state->completed; + ret->move_count = state->move_count; + ret->last_move_row = state->last_move_row; + ret->last_move_col = state->last_move_col; + ret->last_move_dir = state->last_move_dir; + ret->tiles = snewn(state->width * state->height, unsigned char); + memcpy(ret->tiles, state->tiles, state->width * state->height); + ret->barriers = snewn(state->width * state->height, unsigned char); + memcpy(ret->barriers, state->barriers, state->width * state->height); + + return ret; +} + +void free_game(game_state *state) +{ + sfree(state->tiles); + sfree(state->barriers); + sfree(state); +} + +/* ---------------------------------------------------------------------- + * Utility routine. + */ + +/* + * Compute which squares are reachable from the centre square, as a + * quick visual aid to determining how close the game is to + * completion. This is also a simple way to tell if the game _is_ + * completed - just call this function and see whether every square + * is marked active. + * + * squares in the moving_row and moving_col are always inactive - this + * is so that "current" doesn't appear to jump across moving lines. + */ +static unsigned char *compute_active(game_state *state, + int moving_row, int moving_col) +{ + unsigned char *active; + tree234 *todo; + struct xyd *xyd; + + active = snewn(state->width * state->height, unsigned char); + memset(active, 0, state->width * state->height); + + /* + * We only store (x,y) pairs in todo, but it's easier to reuse + * xyd_cmp and just store direction 0 every time. + */ + todo = newtree234(xyd_cmp); + index(state, active, state->cx, state->cy) = ACTIVE; + add234(todo, new_xyd(state->cx, state->cy, 0)); + + while ( (xyd = delpos234(todo, 0)) != NULL) { + int x1, y1, d1, x2, y2, d2; + + x1 = xyd->x; + y1 = xyd->y; + sfree(xyd); + + for (d1 = 1; d1 < 0x10; d1 <<= 1) { + OFFSET(x2, y2, x1, y1, d1, state); + d2 = F(d1); + + /* + * If the next tile in this direction is connected to + * us, and there isn't a barrier in the way, and it + * isn't already marked active, then mark it active and + * add it to the to-examine list. + */ + if ((x2 != moving_col && y2 != moving_row) && + (tile(state, x1, y1) & d1) && + (tile(state, x2, y2) & d2) && + !(barrier(state, x1, y1) & d1) && + !index(state, active, x2, y2)) { + index(state, active, x2, y2) = ACTIVE; + add234(todo, new_xyd(x2, y2, 0)); + } + } + } + /* Now we expect the todo list to have shrunk to zero size. */ + assert(count234(todo) == 0); + freetree234(todo); + + return active; +} + +struct game_ui { + int cur_x, cur_y; + int cur_visible; +}; + +game_ui *new_ui(game_state *state) +{ + game_ui *ui = snew(game_ui); + ui->cur_x = state->width / 2; + ui->cur_y = state->height / 2; + ui->cur_visible = FALSE; + + return ui; +} + +void free_ui(game_ui *ui) +{ + sfree(ui); +} + +/* ---------------------------------------------------------------------- + * Process a move. + */ + +void slide_row(game_state *state, int dir, int row) +{ + int x = dir > 0 ? -1 : state->width; + int tx = x + dir; + int n = state->width - 1; + unsigned char endtile = state->tiles[T(state, tx, row)]; + do { + x = tx; + tx = (x + dir + state->width) % state->width; + state->tiles[T(state, x, row)] = state->tiles[T(state, tx, row)]; + } while (--n > 0); + state->tiles[T(state, tx, row)] = endtile; +} + +void slide_col(game_state *state, int dir, int col) +{ + int y = dir > 0 ? -1 : state->height; + int ty = y + dir; + int n = state->height - 1; + unsigned char endtile = state->tiles[T(state, col, ty)]; + do { + y = ty; + ty = (y + dir + state->height) % state->height; + state->tiles[T(state, col, y)] = state->tiles[T(state, col, ty)]; + } while (--n > 0); + state->tiles[T(state, col, ty)] = endtile; +} + +game_state *make_move(game_state *state, game_ui *ui, int x, int y, int button) +{ + int cx, cy; + int n, dx, dy; + game_state *ret; + + if (button != LEFT_BUTTON && button != RIGHT_BUTTON) + return NULL; + + cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2; + cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2; + + if (cy >= 0 && cy < state->height && cy != state->cy) + { + if (cx == -1) dx = +1; + else if (cx == state->width) dx = -1; + else return NULL; + n = state->width; + dy = 0; + } + else if (cx >= 0 && cx < state->width && cx != state->cx) + { + if (cy == -1) dy = +1; + else if (cy == state->height) dy = -1; + else return NULL; + n = state->height; + dx = 0; + } + else + return NULL; + + /* reverse direction if right hand button is pressed */ + if (button == RIGHT_BUTTON) + { + dx = -dx; + dy = -dy; + } + + ret = dup_game(state); + + if (dx == 0) slide_col(ret, dy, cx); + else slide_row(ret, dx, cy); + + ret->move_count++; + ret->last_move_row = dx ? cy : -1; + ret->last_move_col = dx ? -1 : cx; + ret->last_move_dir = dx + dy; + + /* + * See if the game has been completed. + */ + if (!ret->completed) { + unsigned char *active = compute_active(ret, -1, -1); + int x1, y1; + int complete = TRUE; + + for (x1 = 0; x1 < ret->width; x1++) + for (y1 = 0; y1 < ret->height; y1++) + if (!index(ret, active, x1, y1)) { + complete = FALSE; + goto break_label; /* break out of two loops at once */ + } + break_label: + + sfree(active); + + if (complete) + ret->completed = ret->move_count; + } + + return ret; +} + +/* ---------------------------------------------------------------------- + * Routines for drawing the game position on the screen. + */ + +struct game_drawstate { + int started; + int width, height; + unsigned char *visible; +}; + +game_drawstate *game_new_drawstate(game_state *state) +{ + game_drawstate *ds = snew(game_drawstate); + + ds->started = FALSE; + ds->width = state->width; + ds->height = state->height; + ds->visible = snewn(state->width * state->height, unsigned char); + memset(ds->visible, 0xFF, state->width * state->height); + + return ds; +} + +void game_free_drawstate(game_drawstate *ds) +{ + sfree(ds->visible); + sfree(ds); +} + +void game_size(game_params *params, int *x, int *y) +{ + *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER; + *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER; +} + +float *game_colours(frontend *fe, game_state *state, int *ncolours) +{ + float *ret; + + ret = snewn(NCOLOURS * 3, float); + *ncolours = NCOLOURS; + + /* + * Basic background colour is whatever the front end thinks is + * a sensible default. + */ + frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); + + /* + * Wires are black. + */ + ret[COL_WIRE * 3 + 0] = 0.0F; + ret[COL_WIRE * 3 + 1] = 0.0F; + ret[COL_WIRE * 3 + 2] = 0.0F; + + /* + * Powered wires and powered endpoints are cyan. + */ + ret[COL_POWERED * 3 + 0] = 0.0F; + ret[COL_POWERED * 3 + 1] = 1.0F; + ret[COL_POWERED * 3 + 2] = 1.0F; + + /* + * Barriers are red. + */ + ret[COL_BARRIER * 3 + 0] = 1.0F; + ret[COL_BARRIER * 3 + 1] = 0.0F; + ret[COL_BARRIER * 3 + 2] = 0.0F; + + /* + * Unpowered endpoints are blue. + */ + ret[COL_ENDPOINT * 3 + 0] = 0.0F; + ret[COL_ENDPOINT * 3 + 1] = 0.0F; + ret[COL_ENDPOINT * 3 + 2] = 1.0F; + + /* + * Tile borders are a darker grey than the background. + */ + ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; + ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; + ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; + + /* + * Flashing tiles are a grey in between those two. + */ + ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0]; + ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1]; + ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2]; + + ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F; + ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F; + ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F; + ret[COL_TEXT * 3 + 0] = 0.0; + ret[COL_TEXT * 3 + 1] = 0.0; + ret[COL_TEXT * 3 + 2] = 0.0; + + return ret; +} + +static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2, + int colour) +{ + draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE); + draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE); + draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE); + draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE); + draw_line(fe, x1, y1, x2, y2, colour); +} + +static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2, + int colour) +{ + int mx = (x1 < x2 ? x1 : x2); + int my = (y1 < y2 ? y1 : y2); + int dx = (x2 + x1 - 2*mx + 1); + int dy = (y2 + y1 - 2*my + 1); + + draw_rect(fe, mx, my, dx, dy, colour); +} + +static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase) +{ + int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x; + int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y; + int x1, y1, dx, dy, dir2; + + dir >>= 4; + + dir2 = A(dir); + dx = X(dir) + X(dir2); + dy = Y(dir) + Y(dir2); + x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); + y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); + + if (phase == 0) { + draw_rect_coords(fe, bx+x1, by+y1, + bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy, + COL_WIRE); + draw_rect_coords(fe, bx+x1, by+y1, + bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy, + COL_WIRE); + } else { + draw_rect_coords(fe, bx+x1, by+y1, + bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy, + COL_BARRIER); + } +} + +static void draw_barrier(frontend *fe, int x, int y, int dir, int phase) +{ + int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x; + int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y; + int x1, y1, w, h; + + x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0); + y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0); + w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); + h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); + + if (phase == 0) { + draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE); + } else { + draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER); + } +} + +static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile, + float xshift, float yshift) +{ + int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE); + int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE); + float cx, cy, ex, ey; + int dir, col; + + /* + * When we draw a single tile, we must draw everything up to + * and including the borders around the tile. This means that + * if the neighbouring tiles have connections to those borders, + * we must draw those connections on the borders themselves. + * + * This would be terribly fiddly if we ever had to draw a tile + * while its neighbour was in mid-rotate, because we'd have to + * arrange to _know_ that the neighbour was being rotated and + * hence had an anomalous effect on the redraw of this tile. + * Fortunately, the drawing algorithm avoids ever calling us in + * this circumstance: we're either drawing lots of straight + * tiles at game start or after a move is complete, or we're + * repeatedly drawing only the rotating tile. So no problem. + */ + + /* + * So. First blank the tile out completely: draw a big + * rectangle in border colour, and a smaller rectangle in + * background colour to fill it in. + */ + draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER, + COL_BORDER); + draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER, + TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER, + tile & FLASHING ? COL_FLASHING : COL_BACKGROUND); + + /* + * Draw the wires. + */ + cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F; + col = (tile & ACTIVE ? COL_POWERED : COL_WIRE); + for (dir = 1; dir < 0x10; dir <<= 1) { + if (tile & dir) { + ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); + ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); + draw_thick_line(fe, bx+(int)cx, by+(int)cy, + bx+(int)(cx+ex), by+(int)(cy+ey), + COL_WIRE); + } + } + for (dir = 1; dir < 0x10; dir <<= 1) { + if (tile & dir) { + ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); + ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); + draw_line(fe, bx+(int)cx, by+(int)cy, + bx+(int)(cx+ex), by+(int)(cy+ey), col); + } + } + + /* + * Draw the box in the middle. We do this in blue if the tile + * is an unpowered endpoint, in cyan if the tile is a powered + * endpoint, in black if the tile is the centrepiece, and + * otherwise not at all. + */ + col = -1; + if (x == state->cx && y == state->cy) + col = COL_WIRE; + else if (COUNT(tile) == 1) { + col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT); + } + if (col >= 0) { + int i, points[8]; + + points[0] = +1; points[1] = +1; + points[2] = +1; points[3] = -1; + points[4] = -1; points[5] = -1; + points[6] = -1; points[7] = +1; + + for (i = 0; i < 8; i += 2) { + ex = (TILE_SIZE * 0.24F) * points[i]; + ey = (TILE_SIZE * 0.24F) * points[i+1]; + points[i] = bx+(int)(cx+ex); + points[i+1] = by+(int)(cy+ey); + } + + draw_polygon(fe, points, 4, TRUE, col); + draw_polygon(fe, points, 4, FALSE, COL_WIRE); + } + + /* + * Draw the points on the border if other tiles are connected + * to us. + */ + for (dir = 1; dir < 0x10; dir <<= 1) { + int dx, dy, px, py, lx, ly, vx, vy, ox, oy; + + dx = X(dir); + dy = Y(dir); + + ox = x + dx; + oy = y + dy; + + if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height) + continue; + + if (!(tile(state, ox, oy) & F(dir))) + continue; + + px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx); + py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy); + lx = dx * (TILE_BORDER-1); + ly = dy * (TILE_BORDER-1); + vx = (dy ? 1 : 0); + vy = (dx ? 1 : 0); + + if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) { + /* + * If we are fully connected to the other tile, we must + * draw right across the tile border. (We can use our + * own ACTIVE state to determine what colour to do this + * in: if we are fully connected to the other tile then + * the two ACTIVE states will be the same.) + */ + draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE); + draw_rect_coords(fe, px, py, px+lx, py+ly, + (tile & ACTIVE) ? COL_POWERED : COL_WIRE); + } else { + /* + * The other tile extends into our border, but isn't + * actually connected to us. Just draw a single black + * dot. + */ + draw_rect_coords(fe, px, py, px, py, COL_WIRE); + } + } + + draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); +} + +static void draw_tile_barriers(frontend *fe, game_state *state, int x, int y) +{ + int phase; + int dir; + int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x; + int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y; + /* + * Draw barrier corners, and then barriers. + */ + for (phase = 0; phase < 2; phase++) { + for (dir = 1; dir < 0x10; dir <<= 1) + if (barrier(state, x, y) & (dir << 4)) + draw_barrier_corner(fe, x, y, dir << 4, phase); + for (dir = 1; dir < 0x10; dir <<= 1) + if (barrier(state, x, y) & dir) + draw_barrier(fe, x, y, dir, phase); + } + + draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); +} + +static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy) +{ + int coords[14]; + int ydy = -xdx, ydx = xdy; + + x = x * TILE_SIZE + BORDER + WINDOW_OFFSET; + y = y * TILE_SIZE + BORDER + WINDOW_OFFSET; + +#define POINT(n, xx, yy) ( \ + coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \ + coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy) + + POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */ + POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */ + POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */ + POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */ + POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */ + POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */ + POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */ + + draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT); + draw_polygon(fe, coords, 7, FALSE, COL_TEXT); +} + +void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, + game_state *state, game_ui *ui, float t, float ft) +{ + int x, y, tx, ty, frame; + unsigned char *active; + float xshift = 0.0; + float yshift = 0.0; + + /* + * Clear the screen and draw the exterior barrier lines if this + * is our first call. + */ + if (!ds->started) { + int phase; + + ds->started = TRUE; + + draw_rect(fe, 0, 0, + BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER, + BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER, + COL_BACKGROUND); + draw_update(fe, 0, 0, + BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER, + BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER); + + for (phase = 0; phase < 2; phase++) { + + for (x = 0; x < ds->width; x++) { + if (barrier(state, x, 0) & UL) + draw_barrier_corner(fe, x, -1, LD, phase); + if (barrier(state, x, 0) & RU) + draw_barrier_corner(fe, x, -1, DR, phase); + if (barrier(state, x, 0) & U) + draw_barrier(fe, x, -1, D, phase); + if (barrier(state, x, ds->height-1) & DR) + draw_barrier_corner(fe, x, ds->height, RU, phase); + if (barrier(state, x, ds->height-1) & LD) + draw_barrier_corner(fe, x, ds->height, UL, phase); + if (barrier(state, x, ds->height-1) & D) + draw_barrier(fe, x, ds->height, U, phase); + } + + for (y = 0; y < ds->height; y++) { + if (barrier(state, 0, y) & UL) + draw_barrier_corner(fe, -1, y, RU, phase); + if (barrier(state, 0, y) & LD) + draw_barrier_corner(fe, -1, y, DR, phase); + if (barrier(state, 0, y) & L) + draw_barrier(fe, -1, y, R, phase); + if (barrier(state, ds->width-1, y) & RU) + draw_barrier_corner(fe, ds->width, y, UL, phase); + if (barrier(state, ds->width-1, y) & DR) + draw_barrier_corner(fe, ds->width, y, LD, phase); + if (barrier(state, ds->width-1, y) & R) + draw_barrier(fe, ds->width, y, L, phase); + } + } + + /* + * Arrows for making moves. + */ + for (x = 0; x < ds->width; x++) { + if (x == state->cx) continue; + draw_arrow(fe, x, 0, +1, 0); + draw_arrow(fe, x+1, ds->height, -1, 0); + } + for (y = 0; y < ds->height; y++) { + if (y == state->cy) continue; + draw_arrow(fe, ds->width, y, 0, +1); + draw_arrow(fe, 0, y+1, 0, -1); + } + } + + /* Check if this is an undo. If so, we will need to run any animation + * backwards. + */ + if (oldstate && oldstate->move_count > state->move_count) { + game_state * tmpstate = state; + state = oldstate; + oldstate = tmpstate; + t = ANIM_TIME - t; + } + + tx = ty = -1; + if (oldstate && (t < ANIM_TIME)) { + /* + * We're animating a slide, of row/column number + * state->last_move_pos, in direction + * state->last_move_dir + */ + xshift = state->last_move_row == -1 ? 0.0 : + (1 - t / ANIM_TIME) * state->last_move_dir; + yshift = state->last_move_col == -1 ? 0.0 : + (1 - t / ANIM_TIME) * state->last_move_dir; + } + + frame = -1; + if (ft > 0) { + /* + * We're animating a completion flash. Find which frame + * we're at. + */ + frame = (int)(ft / FLASH_FRAME); + } + + /* + * Draw any tile which differs from the way it was last drawn. + */ + if (xshift != 0.0 || yshift != 0.0) { + active = compute_active(state, + state->last_move_row, state->last_move_col); + } else { + active = compute_active(state, -1, -1); + } + + clip(fe, + BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET, + TILE_SIZE * state->width + TILE_BORDER, + TILE_SIZE * state->height + TILE_BORDER); + + for (x = 0; x < ds->width; x++) + for (y = 0; y < ds->height; y++) { + unsigned char c = tile(state, x, y) | index(state, active, x, y); + + /* + * In a completion flash, we adjust the FLASHING bit + * depending on our distance from the centre point and + * the frame number. + */ + if (frame >= 0) { + int xdist, ydist, dist; + xdist = (x < state->cx ? state->cx - x : x - state->cx); + ydist = (y < state->cy ? state->cy - y : y - state->cy); + dist = (xdist > ydist ? xdist : ydist); + + if (frame >= dist && frame < dist+4) { + int flash = (frame - dist) & 1; + flash = flash ? FLASHING : 0; + c = (c &~ FLASHING) | flash; + } + } + + if (index(state, ds->visible, x, y) != c || + index(state, ds->visible, x, y) == 0xFF || + (x == state->last_move_col || y == state->last_move_row)) + { + float xs = (y == state->last_move_row ? xshift : 0.0); + float ys = (x == state->last_move_col ? yshift : 0.0); + + draw_tile(fe, state, x, y, c, xs, ys); + if (xs < 0 && x == 0) + draw_tile(fe, state, state->width, y, c, xs, ys); + else if (xs > 0 && x == state->width - 1) + draw_tile(fe, state, -1, y, c, xs, ys); + else if (ys < 0 && y == 0) + draw_tile(fe, state, x, state->height, c, xs, ys); + else if (ys > 0 && y == state->height - 1) + draw_tile(fe, state, x, -1, c, xs, ys); + + if (x == state->last_move_col || y == state->last_move_row) + index(state, ds->visible, x, y) = 0xFF; + else + index(state, ds->visible, x, y) = c; + } + } + + for (x = 0; x < ds->width; x++) + for (y = 0; y < ds->height; y++) + draw_tile_barriers(fe, state, x, y); + + unclip(fe); + + /* + * Update the status bar. + */ + { + char statusbuf[256]; + int i, n, a; + + n = state->width * state->height; + for (i = a = 0; i < n; i++) + if (active[i]) + a++; + + sprintf(statusbuf, "%sMoves: %d Active: %d/%d", + (state->completed ? "COMPLETED! " : ""), + (state->completed ? state->completed : state->move_count), + a, n); + + status_bar(fe, statusbuf); + } + + sfree(active); +} + +float game_anim_length(game_state *oldstate, game_state *newstate) +{ + return ANIM_TIME; +} + +float game_flash_length(game_state *oldstate, game_state *newstate) +{ + /* + * If the game has just been completed, we display a completion + * flash. + */ + if (!oldstate->completed && newstate->completed) { + int size; + size = 0; + if (size < newstate->cx+1) + size = newstate->cx+1; + if (size < newstate->cy+1) + size = newstate->cy+1; + if (size < newstate->width - newstate->cx) + size = newstate->width - newstate->cx; + if (size < newstate->height - newstate->cy) + size = newstate->height - newstate->cy; + return FLASH_FRAME * (size+4); + } + + return 0.0F; +} + +int game_wants_statusbar(void) +{ + return TRUE; +} -- 2.11.0