X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/ccda7394b8c9e892b6da20eb028bd6dda25345e7..HEAD:/slant.c diff --git a/slant.c b/slant.c index 1730409..2f9de52 100644 --- a/slant.c +++ b/slant.c @@ -24,6 +24,7 @@ #include #include +#include #include #include #include @@ -37,6 +38,9 @@ enum { COL_INK, COL_SLANT1, COL_SLANT2, + COL_ERROR, + COL_CURSOR, + COL_FILLEDSQUARE, NCOLOURS }; @@ -75,14 +79,18 @@ struct game_params { typedef struct game_clues { int w, h; signed char *clues; - int *dsf; /* scratch space for completion check */ + int *tmpdsf; int refcount; } game_clues; +#define ERR_VERTEX 1 +#define ERR_SQUARE 2 + struct game_state { struct game_params p; game_clues *clues; signed char *soln; + unsigned char *errors; int completed; int used_solve; /* used to suppress completion flash */ }; @@ -267,6 +275,30 @@ struct solver_scratch { signed char *slashval; /* + * Stores possible v-shapes. This array is w by h in size, but + * not every bit of every entry is meaningful. The bits mean: + * + * - bit 0 for a square means that that square and the one to + * its right might form a v-shape between them + * - bit 1 for a square means that that square and the one to + * its right might form a ^-shape between them + * - bit 2 for a square means that that square and the one + * below it might form a >-shape between them + * - bit 3 for a square means that that square and the one + * below it might form a <-shape between them + * + * Any starting 1 or 3 clue rules out four bits in this array + * immediately; a 2 clue propagates any ruled-out bit past it + * (if the two squares on one side of a 2 cannot be a v-shape, + * then neither can the two on the other side be the same + * v-shape); we can rule out further bits during play using + * partially filled 2 clues; whenever a pair of squares is + * known not to be _either_ kind of v-shape, we can mark them + * as equivalent. + */ + unsigned char *vbitmap; + + /* * Useful to have this information automatically passed to * solver subroutines. (This pointer is not dynamically * allocated by new_scratch and free_scratch.) @@ -283,11 +315,13 @@ static struct solver_scratch *new_scratch(int w, int h) ret->border = snewn(W*H, unsigned char); ret->equiv = snewn(w*h, int); ret->slashval = snewn(w*h, signed char); + ret->vbitmap = snewn(w*h, unsigned char); return ret; } static void free_scratch(struct solver_scratch *sc) { + sfree(sc->vbitmap); sfree(sc->slashval); sfree(sc->equiv); sfree(sc->border); @@ -382,6 +416,36 @@ static void fill_square(int w, int h, int x, int y, int v, } } +static int vbitmap_clear(int w, int h, struct solver_scratch *sc, + int x, int y, int vbits, char *reason, ...) +{ + int done_something = FALSE; + int vbit; + + for (vbit = 1; vbit <= 8; vbit <<= 1) + if (vbits & sc->vbitmap[y*w+x] & vbit) { + done_something = TRUE; +#ifdef SOLVER_DIAGNOSTICS + if (verbose) { + va_list ap; + + printf("ruling out %c shape at (%d,%d)-(%d,%d) (", + "!v^!>!!!<"[vbit], x, y, + x+((vbit&0x3)!=0), y+((vbit&0xC)!=0)); + + va_start(ap, reason); + vprintf(reason, ap); + va_end(ap); + + printf(")\n"); + } +#endif + sc->vbitmap[y*w+x] &= ~vbit; + } + + return done_something; +} + /* * Solver. Returns 0 for impossibility, 1 for success, 2 for * ambiguity or failure to converge. @@ -405,15 +469,13 @@ static int slant_solve(int w, int h, const signed char *clues, * Establish a disjoint set forest for tracking connectedness * between grid points. */ - for (i = 0; i < W*H; i++) - sc->connected[i] = i; /* initially all distinct */ + dsf_init(sc->connected, W*H); /* * Establish a disjoint set forest for tracking which squares * are known to slant in the same direction. */ - for (i = 0; i < w*h; i++) - sc->equiv[i] = i; /* initially all distinct */ + dsf_init(sc->equiv, w*h); /* * Clear the slashval array. @@ -421,7 +483,12 @@ static int slant_solve(int w, int h, const signed char *clues, memset(sc->slashval, 0, w*h); /* - * Initialise the `exits' and `border' arrays. Theses is used + * Set up the vbitmap array. Initially all types of v are possible. + */ + memset(sc->vbitmap, 0xF, w*h); + + /* + * Initialise the `exits' and `border' arrays. These are used * to do second-order loop avoidance: the dual of the no loops * constraint is that every point must be somehow connected to * the border of the grid (otherwise there would be a solid @@ -448,69 +515,6 @@ static int slant_solve(int w, int h, const signed char *clues, } /* - * Make a one-off preliminary pass over the grid looking for - * starting-point arrangements. The ones we need to spot are: - * - * - two adjacent 1s in the centre of the grid imply that each - * one's single line points towards the other. (If either 1 - * were connected on the far side, the two squares shared - * between the 1s would both link to the other 1 as a - * consequence of neither linking to the first.) Thus, we - * can fill in the four squares around them. - * - * - dually, two adjacent 3s imply that each one's _non_-line - * points towards the other. - * - * - if the pair of 1s and 3s is not _adjacent_ but is - * separated by one or more 2s, the reasoning still applies. - * - * This is more advanced than just spotting obvious starting - * squares such as central 4s and edge 2s, so we disable it on - * DIFF_EASY. - * - * (I don't like this loop; it feels grubby to me. My - * mathematical intuition feels there ought to be some more - * general deductive form which contains this loop as a special - * case, but I can't bring it to mind right now.) - */ - if (difficulty > DIFF_EASY) { - for (y = 1; y+1 < H; y++) - for (x = 1; x+1 < W; x++) { - int v = clues[y*W+x], s, x2, y2, dx, dy; - if (v != 1 && v != 3) - continue; - /* Slash value of the square up and left of (x,y). */ - s = (v == 1 ? +1 : -1); - - /* Look in each direction once. */ - for (dy = 0; dy < 2; dy++) { - dx = 1 - dy; - x2 = x+dx; - y2 = y+dy; - if (x2+1 >= W || y2+1 >= H) - continue; /* too close to the border */ - while (x2+dx+1 < W && y2+dy+1 < H && clues[y2*W+x2] == 2) - x2 += dx, y2 += dy; - if (clues[y2*W+x2] == v) { -#ifdef SOLVER_DIAGNOSTICS - if (verbose) - printf("found adjacent %ds at %d,%d and %d,%d\n", - v, x, y, x2, y2); -#endif - fill_square(w, h, x-1, y-1, s, soln, - sc->connected, sc); - fill_square(w, h, x-1+dy, y-1+dx, -s, soln, - sc->connected, sc); - fill_square(w, h, x2, y2, s, soln, - sc->connected, sc); - fill_square(w, h, x2-dy, y2-dx, -s, soln, - sc->connected, sc); - } - } - } - } - - /* * Repeatedly try to deduce something until we can't. */ do { @@ -831,6 +835,147 @@ static int slant_solve(int w, int h, const signed char *clues, } } + if (done_something) + continue; + + /* + * Now see what we can do with the vbitmap array. All + * vbitmap deductions are disabled at Easy level. + */ + if (difficulty <= DIFF_EASY) + continue; + + for (y = 0; y < h; y++) + for (x = 0; x < w; x++) { + int s, c; + + /* + * Any line already placed in a square must rule + * out any type of v which contradicts it. + */ + if ((s = soln[y*w+x]) != 0) { + if (x > 0) + done_something |= + vbitmap_clear(w, h, sc, x-1, y, (s < 0 ? 0x1 : 0x2), + "contradicts known edge at (%d,%d)",x,y); + if (x+1 < w) + done_something |= + vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x2 : 0x1), + "contradicts known edge at (%d,%d)",x,y); + if (y > 0) + done_something |= + vbitmap_clear(w, h, sc, x, y-1, (s < 0 ? 0x4 : 0x8), + "contradicts known edge at (%d,%d)",x,y); + if (y+1 < h) + done_something |= + vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x8 : 0x4), + "contradicts known edge at (%d,%d)",x,y); + } + + /* + * If both types of v are ruled out for a pair of + * adjacent squares, mark them as equivalent. + */ + if (x+1 < w && !(sc->vbitmap[y*w+x] & 0x3)) { + int n1 = y*w+x, n2 = y*w+(x+1); + if (dsf_canonify(sc->equiv, n1) != + dsf_canonify(sc->equiv, n2)) { + dsf_merge(sc->equiv, n1, n2); + done_something = TRUE; +#ifdef SOLVER_DIAGNOSTICS + if (verbose) + printf("(%d,%d) and (%d,%d) must be equivalent" + " because both v-shapes are ruled out\n", + x, y, x+1, y); +#endif + } + } + if (y+1 < h && !(sc->vbitmap[y*w+x] & 0xC)) { + int n1 = y*w+x, n2 = (y+1)*w+x; + if (dsf_canonify(sc->equiv, n1) != + dsf_canonify(sc->equiv, n2)) { + dsf_merge(sc->equiv, n1, n2); + done_something = TRUE; +#ifdef SOLVER_DIAGNOSTICS + if (verbose) + printf("(%d,%d) and (%d,%d) must be equivalent" + " because both v-shapes are ruled out\n", + x, y, x, y+1); +#endif + } + } + + /* + * The remaining work in this loop only works + * around non-edge clue points. + */ + if (y == 0 || x == 0) + continue; + if ((c = clues[y*W+x]) < 0) + continue; + + /* + * x,y marks a clue point not on the grid edge. See + * if this clue point allows us to rule out any v + * shapes. + */ + + if (c == 1) { + /* + * A 1 clue can never have any v shape pointing + * at it. + */ + done_something |= + vbitmap_clear(w, h, sc, x-1, y-1, 0x5, + "points at 1 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x-1, y, 0x2, + "points at 1 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x, y-1, 0x8, + "points at 1 clue at (%d,%d)", x, y); + } else if (c == 3) { + /* + * A 3 clue can never have any v shape pointing + * away from it. + */ + done_something |= + vbitmap_clear(w, h, sc, x-1, y-1, 0xA, + "points away from 3 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x-1, y, 0x1, + "points away from 3 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x, y-1, 0x4, + "points away from 3 clue at (%d,%d)", x, y); + } else if (c == 2) { + /* + * If a 2 clue has any kind of v ruled out on + * one side of it, the same v is ruled out on + * the other side. + */ + done_something |= + vbitmap_clear(w, h, sc, x-1, y-1, + (sc->vbitmap[(y )*w+(x-1)] & 0x3) ^ 0x3, + "propagated by 2 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x-1, y-1, + (sc->vbitmap[(y-1)*w+(x )] & 0xC) ^ 0xC, + "propagated by 2 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x-1, y, + (sc->vbitmap[(y-1)*w+(x-1)] & 0x3) ^ 0x3, + "propagated by 2 clue at (%d,%d)", x, y); + done_something |= + vbitmap_clear(w, h, sc, x, y-1, + (sc->vbitmap[(y-1)*w+(x-1)] & 0xC) ^ 0xC, + "propagated by 2 clue at (%d,%d)", x, y); + } + +#undef CLEARBITS + + } + } while (done_something); /* @@ -860,9 +1005,7 @@ static void slant_generate(int w, int h, signed char *soln, random_state *rs) * Establish a disjoint set forest for tracking connectedness * between grid points. */ - connected = snewn(W*H, int); - for (i = 0; i < W*H; i++) - connected[i] = i; /* initially all distinct */ + connected = snew_dsf(W*H); /* * Prepare a list of the squares in the grid, and fill them in @@ -1098,7 +1241,7 @@ static char *validate_desc(game_params *params, char *desc) return NULL; } -static game_state *new_game(midend_data *me, game_params *params, char *desc) +static game_state *new_game(midend *me, game_params *params, char *desc) { int w = params->w, h = params->h, W = w+1, H = h+1; game_state *state = snew(game_state); @@ -1109,13 +1252,15 @@ static game_state *new_game(midend_data *me, game_params *params, char *desc) state->soln = snewn(w*h, signed char); memset(state->soln, 0, w*h); state->completed = state->used_solve = FALSE; + state->errors = snewn(W*H, unsigned char); + memset(state->errors, 0, W*H); state->clues = snew(game_clues); state->clues->w = w; state->clues->h = h; state->clues->clues = snewn(W*H, signed char); state->clues->refcount = 1; - state->clues->dsf = snewn(W*H, int); + state->clues->tmpdsf = snewn(W*H*2+W+H, int); memset(state->clues->clues, -1, W*H); while (*desc) { int n = *desc++; @@ -1133,7 +1278,7 @@ static game_state *new_game(midend_data *me, game_params *params, char *desc) static game_state *dup_game(game_state *state) { - int w = state->p.w, h = state->p.h; + int w = state->p.w, h = state->p.h, W = w+1, H = h+1; game_state *ret = snew(game_state); ret->p = state->p; @@ -1145,84 +1290,196 @@ static game_state *dup_game(game_state *state) ret->soln = snewn(w*h, signed char); memcpy(ret->soln, state->soln, w*h); + ret->errors = snewn(W*H, unsigned char); + memcpy(ret->errors, state->errors, W*H); + return ret; } static void free_game(game_state *state) { + sfree(state->errors); sfree(state->soln); assert(state->clues); if (--state->clues->refcount <= 0) { sfree(state->clues->clues); - sfree(state->clues->dsf); + sfree(state->clues->tmpdsf); sfree(state->clues); } sfree(state); } +/* + * Utility function to return the current degree of a vertex. If + * `anti' is set, it returns the number of filled-in edges + * surrounding the point which _don't_ connect to it; thus 4 minus + * its anti-degree is the maximum degree it could have if all the + * empty spaces around it were filled in. + * + * (Yes, _4_ minus its anti-degree even if it's a border vertex.) + * + * If ret > 0, *sx and *sy are set to the coordinates of one of the + * squares that contributed to it. + */ +static int vertex_degree(int w, int h, signed char *soln, int x, int y, + int anti, int *sx, int *sy) +{ + int ret = 0; + + assert(x >= 0 && x <= w && y >= 0 && y <= h); + if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] - anti < 0) { + if (sx) *sx = x-1; + if (sy) *sy = y-1; + ret++; + } + if (x > 0 && y < h && soln[y*w+(x-1)] + anti > 0) { + if (sx) *sx = x-1; + if (sy) *sy = y; + ret++; + } + if (x < w && y > 0 && soln[(y-1)*w+x] + anti > 0) { + if (sx) *sx = x; + if (sy) *sy = y-1; + ret++; + } + if (x < w && y < h && soln[y*w+x] - anti < 0) { + if (sx) *sx = x; + if (sy) *sy = y; + ret++; + } + + return anti ? 4 - ret : ret; +} + static int check_completion(game_state *state) { int w = state->p.w, h = state->p.h, W = w+1, H = h+1; - int i, x, y; + int x, y, err = FALSE; + int *dsf; - /* - * Establish a disjoint set forest for tracking connectedness - * between grid points. Use the dsf scratch space in the shared - * clues structure, to avoid mallocing too often. - */ - for (i = 0; i < W*H; i++) - state->clues->dsf[i] = i; /* initially all distinct */ + memset(state->errors, 0, W*H); /* - * Now go through the grid checking connectedness. While we're - * here, also check that everything is filled in. + * To detect loops in the grid, we iterate through each edge + * building up a dsf of connected components of the space + * around the edges; if there's more than one such component, + * we have a loop, and in particular we can then easily + * identify and highlight every edge forming part of a loop + * because it separates two nonequivalent regions. + * + * We use the `tmpdsf' scratch space in the shared clues + * structure, to avoid mallocing too often. + * + * For these purposes, the grid is considered to be divided + * into diamond-shaped regions surrounding an orthogonal edge. + * This means we have W*h vertical edges and w*H horizontal + * ones; so our vertical edges are indexed in the dsf as + * (y*W+x) (0<=yclues->tmpdsf; + dsf_init(dsf, W*h + w*H); + /* Start by identifying all the outer edges with each other. */ + for (y = 0; y < h; y++) { + dsf_merge(dsf, 0, y*W+0); + dsf_merge(dsf, 0, y*W+w); + } + for (x = 0; x < w; x++) { + dsf_merge(dsf, 0, W*h + 0*w+x); + dsf_merge(dsf, 0, W*h + h*w+x); + } + /* Now go through the actual grid. */ for (y = 0; y < h; y++) - for (x = 0; x < w; x++) { - int i1, i2; - - if (state->soln[y*w+x] == 0) - return FALSE; - if (state->soln[y*w+x] < 0) { - i1 = y*W+x; - i2 = (y+1)*W+(x+1); - } else { - i1 = (y+1)*W+x; - i2 = y*W+(x+1); + for (x = 0; x < w; x++) { + if (state->soln[y*w+x] >= 0) { + /* + * There isn't a \ in this square, so we can unify + * the top edge with the left, and the bottom with + * the right. + */ + dsf_merge(dsf, y*W+x, W*h + y*w+x); + dsf_merge(dsf, y*W+(x+1), W*h + (y+1)*w+x); } - - /* - * Our edge connects i1 with i2. If they're already - * connected, return failure. Otherwise, link them. - */ - if (dsf_canonify(state->clues->dsf, i1) == - dsf_canonify(state->clues->dsf, i2)) - return FALSE; - else - dsf_merge(state->clues->dsf, i1, i2); - } + if (state->soln[y*w+x] <= 0) { + /* + * There isn't a / in this square, so we can unify + * the top edge with the right, and the bottom + * with the left. + */ + dsf_merge(dsf, y*W+x, W*h + (y+1)*w+x); + dsf_merge(dsf, y*W+(x+1), W*h + y*w+x); + } + } + /* Now go through again and mark the appropriate edges as erroneous. */ + for (y = 0; y < h; y++) + for (x = 0; x < w; x++) { + int erroneous = 0; + if (state->soln[y*w+x] > 0) { + /* + * A / separates the top and left edges (which + * must already have been identified with each + * other) from the bottom and right (likewise). + * Hence it is erroneous if and only if the top + * and right edges are nonequivalent. + */ + erroneous = (dsf_canonify(dsf, y*W+(x+1)) != + dsf_canonify(dsf, W*h + y*w+x)); + } else if (state->soln[y*w+x] < 0) { + /* + * A \ separates the top and right edges (which + * must already have been identified with each + * other) from the bottom and left (likewise). + * Hence it is erroneous if and only if the top + * and left edges are nonequivalent. + */ + erroneous = (dsf_canonify(dsf, y*W+x) != + dsf_canonify(dsf, W*h + y*w+x)); + } + if (erroneous) { + state->errors[y*W+x] |= ERR_SQUARE; + err = TRUE; + } + } /* - * The grid is _a_ valid grid; let's see if it matches the - * clues. + * Now go through and check the degree of each clue vertex, and + * mark it with ERR_VERTEX if it cannot be fulfilled. */ for (y = 0; y < H; y++) - for (x = 0; x < W; x++) { - int v, c; + for (x = 0; x < W; x++) { + int c; if ((c = state->clues->clues[y*W+x]) < 0) continue; - v = 0; + /* + * Check to see if there are too many connections to + * this vertex _or_ too many non-connections. Either is + * grounds for marking the vertex as erroneous. + */ + if (vertex_degree(w, h, state->soln, x, y, + FALSE, NULL, NULL) > c || + vertex_degree(w, h, state->soln, x, y, + TRUE, NULL, NULL) > 4-c) { + state->errors[y*W+x] |= ERR_VERTEX; + err = TRUE; + } + } - if (x > 0 && y > 0 && state->soln[(y-1)*w+(x-1)] == -1) v++; - if (x > 0 && y < h && state->soln[y*w+(x-1)] == +1) v++; - if (x < w && y > 0 && state->soln[(y-1)*w+x] == +1) v++; - if (x < w && y < h && state->soln[y*w+x] == -1) v++; + /* + * Now our actual victory condition is that (a) none of the + * above code marked anything as erroneous, and (b) every + * square has an edge in it. + */ + + if (err) + return FALSE; - if (c != v) + for (y = 0; y < h; y++) + for (x = 0; x < w; x++) + if (state->soln[y*w+x] == 0) return FALSE; - } return TRUE; } @@ -1292,6 +1549,11 @@ static char *solve_game(game_state *state, game_state *currstate, return move; } +static int game_can_format_as_text_now(game_params *params) +{ + return TRUE; +} + static char *game_text_format(game_state *state) { int w = state->p.w, h = state->p.h, W = w+1, H = h+1; @@ -1334,13 +1596,20 @@ static char *game_text_format(game_state *state) return ret; } +struct game_ui { + int cur_x, cur_y, cur_visible; +}; + static game_ui *new_ui(game_state *state) { - return NULL; + game_ui *ui = snew(game_ui); + ui->cur_x = ui->cur_y = ui->cur_visible = 0; + return ui; } static void free_ui(game_ui *ui) { + sfree(ui); } static char *encode_ui(game_ui *ui) @@ -1370,38 +1639,42 @@ static void game_changed_state(game_ui *ui, game_state *oldstate, /* * Bit fields in the `grid' and `todraw' elements of the drawstate. */ -#define BACKSLASH 0x0001 -#define FORWSLASH 0x0002 -#define L_T 0x0004 -#define L_B 0x0008 -#define T_L 0x0010 -#define T_R 0x0020 -#define R_T 0x0040 -#define R_B 0x0080 -#define B_L 0x0100 -#define B_R 0x0200 -#define C_TL 0x0400 -#define C_TR 0x0800 -#define C_BL 0x1000 -#define C_BR 0x2000 -#define FLASH 0x4000 +#define BACKSLASH 0x00000001L +#define FORWSLASH 0x00000002L +#define L_T 0x00000004L +#define ERR_L_T 0x00000008L +#define L_B 0x00000010L +#define ERR_L_B 0x00000020L +#define T_L 0x00000040L +#define ERR_T_L 0x00000080L +#define T_R 0x00000100L +#define ERR_T_R 0x00000200L +#define C_TL 0x00000400L +#define ERR_C_TL 0x00000800L +#define FLASH 0x00001000L +#define ERRSLASH 0x00002000L +#define ERR_TL 0x00004000L +#define ERR_TR 0x00008000L +#define ERR_BL 0x00010000L +#define ERR_BR 0x00020000L +#define CURSOR 0x00040000L struct game_drawstate { int tilesize; int started; - int *grid; - int *todraw; + long *grid; + long *todraw; }; -static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, +static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->p.w, h = state->p.h; + int v; + char buf[80]; + enum { CLOCKWISE, ANTICLOCKWISE, NONE } action = NONE; if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { - int v; - char buf[80]; - /* * This is an utterly awful hack which I should really sort out * by means of a proper configuration mechanism. One Slant @@ -1424,13 +1697,29 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, button = LEFT_BUTTON; } } + action = (button == LEFT_BUTTON) ? CLOCKWISE : ANTICLOCKWISE; x = FROMCOORD(x); y = FROMCOORD(y); if (x < 0 || y < 0 || x >= w || y >= h) return NULL; + } else if (IS_CURSOR_SELECT(button)) { + if (!ui->cur_visible) { + ui->cur_visible = 1; + return ""; + } + x = ui->cur_x; + y = ui->cur_y; + + action = (button == CURSOR_SELECT2) ? ANTICLOCKWISE : CLOCKWISE; + } else if (IS_CURSOR_MOVE(button)) { + move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, 0); + ui->cur_visible = 1; + return ""; + } - if (button == LEFT_BUTTON) { + if (action != NONE) { + if (action == CLOCKWISE) { /* * Left-clicking cycles blank -> \ -> / -> blank. */ @@ -1486,8 +1775,12 @@ static game_state *execute_move(game_state *state, char *move) } } - if (!ret->completed) - ret->completed = check_completion(ret); + /* + * We never clear the `completed' flag, but we must always + * re-run the completion check because it also highlights + * errors in the grid. + */ + ret->completed = check_completion(ret) || ret->completed; return ret; } @@ -1500,23 +1793,29 @@ static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { /* fool the macros */ - struct dummy { int tilesize; } dummy = { tilesize }, *ds = &dummy; + struct dummy { int tilesize; } dummy, *ds = &dummy; + dummy.tilesize = tilesize; *x = 2 * BORDER + params->w * TILESIZE + 1; *y = 2 * BORDER + params->h * TILESIZE + 1; } -static void game_set_size(game_drawstate *ds, game_params *params, - int tilesize) +static void game_set_size(drawing *dr, game_drawstate *ds, + game_params *params, int tilesize) { ds->tilesize = tilesize; } -static float *game_colours(frontend *fe, game_state *state, int *ncolours) +static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); - frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); + /* CURSOR colour is a background highlight. */ + game_mkhighlight(fe, ret, COL_BACKGROUND, COL_CURSOR, -1); + + ret[COL_FILLEDSQUARE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0]; + ret[COL_FILLEDSQUARE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1]; + ret[COL_FILLEDSQUARE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2]; ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.7F; ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.7F; @@ -1534,11 +1833,15 @@ static float *game_colours(frontend *fe, game_state *state, int *ncolours) ret[COL_SLANT2 * 3 + 1] = 0.0F; ret[COL_SLANT2 * 3 + 2] = 0.0F; + ret[COL_ERROR * 3 + 0] = 1.0F; + ret[COL_ERROR * 3 + 1] = 0.0F; + ret[COL_ERROR * 3 + 2] = 0.0F; + *ncolours = NCOLOURS; return ret; } -static game_drawstate *game_new_drawstate(game_state *state) +static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) { int w = state->p.w, h = state->p.h; int i; @@ -1546,118 +1849,132 @@ static game_drawstate *game_new_drawstate(game_state *state) ds->tilesize = 0; ds->started = FALSE; - ds->grid = snewn(w*h, int); - ds->todraw = snewn(w*h, int); - for (i = 0; i < w*h; i++) + ds->grid = snewn((w+2)*(h+2), long); + ds->todraw = snewn((w+2)*(h+2), long); + for (i = 0; i < (w+2)*(h+2); i++) ds->grid[i] = ds->todraw[i] = -1; return ds; } -static void game_free_drawstate(game_drawstate *ds) +static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->todraw); sfree(ds->grid); sfree(ds); } -static void draw_clue(frontend *fe, game_drawstate *ds, - int x, int y, int v) +static void draw_clue(drawing *dr, game_drawstate *ds, + int x, int y, long v, long err, int bg, int colour) { char p[2]; - int col = ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2; + int ccol = colour >= 0 ? colour : ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2; + int tcol = colour >= 0 ? colour : err ? COL_ERROR : COL_INK; if (v < 0) return; - p[0] = v + '0'; + p[0] = (char)v + '0'; p[1] = '\0'; - draw_circle(fe, COORD(x), COORD(y), CLUE_RADIUS, COL_BACKGROUND, col); - draw_text(fe, COORD(x), COORD(y), FONT_VARIABLE, - CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, - COL_INK, p); + draw_circle(dr, COORD(x), COORD(y), CLUE_RADIUS, + bg >= 0 ? bg : COL_BACKGROUND, ccol); + draw_text(dr, COORD(x), COORD(y), FONT_VARIABLE, + CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, tcol, p); } -static void draw_tile(frontend *fe, game_drawstate *ds, game_clues *clues, - int x, int y, int v) +static void draw_tile(drawing *dr, game_drawstate *ds, game_clues *clues, + int x, int y, long v) { - int w = clues->w /*, h = clues->h*/, W = w+1 /*, H = h+1 */; - int xx, yy; + int w = clues->w, h = clues->h, W = w+1 /*, H = h+1 */; int chesscolour = (x ^ y) & 1; int fscol = chesscolour ? COL_SLANT2 : COL_SLANT1; int bscol = chesscolour ? COL_SLANT1 : COL_SLANT2; - clip(fe, COORD(x), COORD(y), TILESIZE+1, TILESIZE+1); + clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE); - draw_rect(fe, COORD(x), COORD(y), TILESIZE, TILESIZE, - (v & FLASH) ? COL_GRID : COL_BACKGROUND); + draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE, + (v & FLASH) ? COL_GRID : + (v & CURSOR) ? COL_CURSOR : + (v & (BACKSLASH | FORWSLASH)) ? COL_FILLEDSQUARE : + COL_BACKGROUND); /* * Draw the grid lines. */ - draw_line(fe, COORD(x), COORD(y), COORD(x+1), COORD(y), COL_GRID); - draw_line(fe, COORD(x), COORD(y+1), COORD(x+1), COORD(y+1), COL_GRID); - draw_line(fe, COORD(x), COORD(y), COORD(x), COORD(y+1), COL_GRID); - draw_line(fe, COORD(x+1), COORD(y), COORD(x+1), COORD(y+1), COL_GRID); + if (x >= 0 && x < w && y >= 0) + draw_rect(dr, COORD(x), COORD(y), TILESIZE+1, 1, COL_GRID); + if (x >= 0 && x < w && y < h) + draw_rect(dr, COORD(x), COORD(y+1), TILESIZE+1, 1, COL_GRID); + if (y >= 0 && y < h && x >= 0) + draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE+1, COL_GRID); + if (y >= 0 && y < h && x < w) + draw_rect(dr, COORD(x+1), COORD(y), 1, TILESIZE+1, COL_GRID); + if (x == -1 && y == -1) + draw_rect(dr, COORD(x+1), COORD(y+1), 1, 1, COL_GRID); + if (x == -1 && y == h) + draw_rect(dr, COORD(x+1), COORD(y), 1, 1, COL_GRID); + if (x == w && y == -1) + draw_rect(dr, COORD(x), COORD(y+1), 1, 1, COL_GRID); + if (x == w && y == h) + draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID); /* * Draw the slash. */ if (v & BACKSLASH) { - draw_line(fe, COORD(x), COORD(y), COORD(x+1), COORD(y+1), bscol); - draw_line(fe, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1, - bscol); - draw_line(fe, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1), - bscol); + int scol = (v & ERRSLASH) ? COL_ERROR : bscol; + draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y+1), scol); + draw_line(dr, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1, + scol); + draw_line(dr, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1), + scol); } else if (v & FORWSLASH) { - draw_line(fe, COORD(x+1), COORD(y), COORD(x), COORD(y+1), fscol); - draw_line(fe, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1, - fscol); - draw_line(fe, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1), - fscol); + int scol = (v & ERRSLASH) ? COL_ERROR : fscol; + draw_line(dr, COORD(x+1), COORD(y), COORD(x), COORD(y+1), scol); + draw_line(dr, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1, + scol); + draw_line(dr, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1), + scol); } /* * Draw dots on the grid corners that appear if a slash is in a * neighbouring cell. */ - if (v & L_T) - draw_rect(fe, COORD(x), COORD(y)+1, 1, 1, bscol); - if (v & L_B) - draw_rect(fe, COORD(x), COORD(y+1)-1, 1, 1, fscol); - if (v & R_T) - draw_rect(fe, COORD(x+1), COORD(y)+1, 1, 1, fscol); - if (v & R_B) - draw_rect(fe, COORD(x+1), COORD(y+1)-1, 1, 1, bscol); - if (v & T_L) - draw_rect(fe, COORD(x)+1, COORD(y), 1, 1, bscol); - if (v & T_R) - draw_rect(fe, COORD(x+1)-1, COORD(y), 1, 1, fscol); - if (v & B_L) - draw_rect(fe, COORD(x)+1, COORD(y+1), 1, 1, fscol); - if (v & B_R) - draw_rect(fe, COORD(x+1)-1, COORD(y+1), 1, 1, bscol); - if (v & C_TL) - draw_rect(fe, COORD(x), COORD(y), 1, 1, bscol); - if (v & C_TR) - draw_rect(fe, COORD(x+1), COORD(y), 1, 1, fscol); - if (v & C_BL) - draw_rect(fe, COORD(x), COORD(y+1), 1, 1, fscol); - if (v & C_BR) - draw_rect(fe, COORD(x+1), COORD(y+1), 1, 1, bscol); + if (v & (L_T | BACKSLASH)) + draw_rect(dr, COORD(x), COORD(y)+1, 1, 1, + (v & ERR_L_T ? COL_ERROR : bscol)); + if (v & (L_B | FORWSLASH)) + draw_rect(dr, COORD(x), COORD(y+1)-1, 1, 1, + (v & ERR_L_B ? COL_ERROR : fscol)); + if (v & (T_L | BACKSLASH)) + draw_rect(dr, COORD(x)+1, COORD(y), 1, 1, + (v & ERR_T_L ? COL_ERROR : bscol)); + if (v & (T_R | FORWSLASH)) + draw_rect(dr, COORD(x+1)-1, COORD(y), 1, 1, + (v & ERR_T_R ? COL_ERROR : fscol)); + if (v & (C_TL | BACKSLASH)) + draw_rect(dr, COORD(x), COORD(y), 1, 1, + (v & ERR_C_TL ? COL_ERROR : bscol)); /* * And finally the clues at the corners. */ - for (xx = x; xx <= x+1; xx++) - for (yy = y; yy <= y+1; yy++) - draw_clue(fe, ds, xx, yy, clues->clues[yy*W+xx]); - - unclip(fe); - draw_update(fe, COORD(x), COORD(y), TILESIZE+1, TILESIZE+1); + if (x >= 0 && y >= 0) + draw_clue(dr, ds, x, y, clues->clues[y*W+x], v & ERR_TL, -1, -1); + if (x < w && y >= 0) + draw_clue(dr, ds, x+1, y, clues->clues[y*W+(x+1)], v & ERR_TR, -1, -1); + if (x >= 0 && y < h) + draw_clue(dr, ds, x, y+1, clues->clues[(y+1)*W+x], v & ERR_BL, -1, -1); + if (x < w && y < h) + draw_clue(dr, ds, x+1, y+1, clues->clues[(y+1)*W+(x+1)], v & ERR_BR, + -1, -1); + + unclip(dr); + draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE); } -static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, +static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { @@ -1673,22 +1990,8 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, if (!ds->started) { int ww, wh; game_compute_size(&state->p, TILESIZE, &ww, &wh); - draw_rect(fe, 0, 0, ww, wh, COL_BACKGROUND); - draw_update(fe, 0, 0, ww, wh); - - /* - * Draw any clues on the very edges (since normal tile - * redraw won't draw the bits outside the grid boundary). - */ - for (y = 0; y < H; y++) { - draw_clue(fe, ds, 0, y, state->clues->clues[y*W+0]); - draw_clue(fe, ds, w, y, state->clues->clues[y*W+w]); - } - for (x = 0; x < W; x++) { - draw_clue(fe, ds, x, 0, state->clues->clues[0*W+x]); - draw_clue(fe, ds, x, h, state->clues->clues[h*W+x]); - } - + draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND); + draw_update(dr, 0, 0, ww, wh); ds->started = TRUE; } @@ -1697,52 +2000,64 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, * We need to do this because a slash in one square affects the * drawing of the next one along. */ - for (y = 0; y < h; y++) - for (x = 0; x < w; x++) - ds->todraw[y*w+x] = flashing ? FLASH : 0; + for (y = -1; y <= h; y++) + for (x = -1; x <= w; x++) { + if (x >= 0 && x < w && y >= 0 && y < h) + ds->todraw[(y+1)*(w+2)+(x+1)] = flashing ? FLASH : 0; + else + ds->todraw[(y+1)*(w+2)+(x+1)] = 0; + } for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { + int err = state->errors[y*W+x] & ERR_SQUARE; + if (state->soln[y*w+x] < 0) { - ds->todraw[y*w+x] |= BACKSLASH; - if (x > 0) - ds->todraw[y*w+(x-1)] |= R_T | C_TR; - if (x+1 < w) - ds->todraw[y*w+(x+1)] |= L_B | C_BL; - if (y > 0) - ds->todraw[(y-1)*w+x] |= B_L | C_BL; - if (y+1 < h) - ds->todraw[(y+1)*w+x] |= T_R | C_TR; - if (x > 0 && y > 0) - ds->todraw[(y-1)*w+(x-1)] |= C_BR; - if (x+1 < w && y+1 < h) - ds->todraw[(y+1)*w+(x+1)] |= C_TL; + ds->todraw[(y+1)*(w+2)+(x+1)] |= BACKSLASH; + ds->todraw[(y+2)*(w+2)+(x+1)] |= T_R; + ds->todraw[(y+1)*(w+2)+(x+2)] |= L_B; + ds->todraw[(y+2)*(w+2)+(x+2)] |= C_TL; + if (err) { + ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH | + ERR_T_L | ERR_L_T | ERR_C_TL; + ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_R; + ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_B; + ds->todraw[(y+2)*(w+2)+(x+2)] |= ERR_C_TL; + } } else if (state->soln[y*w+x] > 0) { - ds->todraw[y*w+x] |= FORWSLASH; - if (x > 0) - ds->todraw[y*w+(x-1)] |= R_B | C_BR; - if (x+1 < w) - ds->todraw[y*w+(x+1)] |= L_T | C_TL; - if (y > 0) - ds->todraw[(y-1)*w+x] |= B_R | C_BR; - if (y+1 < h) - ds->todraw[(y+1)*w+x] |= T_L | C_TL; - if (x > 0 && y+1 < h) - ds->todraw[(y+1)*w+(x-1)] |= C_TR; - if (x+1 < w && y > 0) - ds->todraw[(y-1)*w+(x+1)] |= C_BL; + ds->todraw[(y+1)*(w+2)+(x+1)] |= FORWSLASH; + ds->todraw[(y+1)*(w+2)+(x+2)] |= L_T | C_TL; + ds->todraw[(y+2)*(w+2)+(x+1)] |= T_L | C_TL; + if (err) { + ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH | + ERR_L_B | ERR_T_R; + ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_T | ERR_C_TL; + ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_L | ERR_C_TL; + } } + if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y) + ds->todraw[(y+1)*(w+2)+(x+1)] |= CURSOR; } } + for (y = 0; y < H; y++) + for (x = 0; x < W; x++) + if (state->errors[y*W+x] & ERR_VERTEX) { + ds->todraw[y*(w+2)+x] |= ERR_BR; + ds->todraw[y*(w+2)+(x+1)] |= ERR_BL; + ds->todraw[(y+1)*(w+2)+x] |= ERR_TR; + ds->todraw[(y+1)*(w+2)+(x+1)] |= ERR_TL; + } + /* * Now go through and draw the grid squares. */ - for (y = 0; y < h; y++) { - for (x = 0; x < w; x++) { - if (ds->todraw[y*w+x] != ds->grid[y*w+x]) { - draw_tile(fe, ds, state->clues, x, y, ds->todraw[y*w+x]); - ds->grid[y*w+x] = ds->todraw[y*w+x]; + for (y = -1; y <= h; y++) { + for (x = -1; x <= w; x++) { + if (ds->todraw[(y+1)*(w+2)+(x+1)] != ds->grid[(y+1)*(w+2)+(x+1)]) { + draw_tile(dr, ds, state->clues, x, y, + ds->todraw[(y+1)*(w+2)+(x+1)]); + ds->grid[(y+1)*(w+2)+(x+1)] = ds->todraw[(y+1)*(w+2)+(x+1)]; } } } @@ -1764,9 +2079,9 @@ static float game_flash_length(game_state *oldstate, game_state *newstate, return 0.0F; } -static int game_wants_statusbar(void) +static int game_status(game_state *state) { - return FALSE; + return state->completed ? +1 : 0; } static int game_timing_state(game_state *state, game_ui *ui) @@ -1774,12 +2089,83 @@ static int game_timing_state(game_state *state, game_ui *ui) return TRUE; } +static void game_print_size(game_params *params, float *x, float *y) +{ + int pw, ph; + + /* + * I'll use 6mm squares by default. + */ + game_compute_size(params, 600, &pw, &ph); + *x = pw / 100.0F; + *y = ph / 100.0F; +} + +static void game_print(drawing *dr, game_state *state, int tilesize) +{ + int w = state->p.w, h = state->p.h, W = w+1; + int ink = print_mono_colour(dr, 0); + int paper = print_mono_colour(dr, 1); + int x, y; + + /* Ick: fake up `ds->tilesize' for macro expansion purposes */ + game_drawstate ads, *ds = &ads; + game_set_size(dr, ds, NULL, tilesize); + + /* + * Border. + */ + print_line_width(dr, TILESIZE / 16); + draw_rect_outline(dr, COORD(0), COORD(0), w*TILESIZE, h*TILESIZE, ink); + + /* + * Grid. + */ + print_line_width(dr, TILESIZE / 24); + for (x = 1; x < w; x++) + draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink); + for (y = 1; y < h; y++) + draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink); + + /* + * Solution. + */ + print_line_width(dr, TILESIZE / 12); + for (y = 0; y < h; y++) + for (x = 0; x < w; x++) + if (state->soln[y*w+x]) { + int ly, ry; + /* + * To prevent nasty line-ending artefacts at + * corners, I'll do something slightly cunning + * here. + */ + clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE); + if (state->soln[y*w+x] < 0) + ly = y-1, ry = y+2; + else + ry = y-1, ly = y+2; + draw_line(dr, COORD(x-1), COORD(ly), COORD(x+2), COORD(ry), + ink); + unclip(dr); + } + + /* + * Clues. + */ + print_line_width(dr, TILESIZE / 24); + for (y = 0; y <= h; y++) + for (x = 0; x <= w; x++) + draw_clue(dr, ds, x, y, state->clues->clues[y*W+x], + FALSE, paper, ink); +} + #ifdef COMBINED #define thegame slant #endif const struct game thegame = { - "Slant", "games.slant", + "Slant", "games.slant", "slant", default_params, game_fetch_preset, decode_params, @@ -1794,7 +2180,7 @@ const struct game thegame = { dup_game, free_game, TRUE, solve_game, - TRUE, game_text_format, + TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, @@ -1809,54 +2195,17 @@ const struct game thegame = { game_redraw, game_anim_length, game_flash_length, - game_wants_statusbar, + game_status, + TRUE, FALSE, game_print_size, game_print, + FALSE, /* wants_statusbar */ FALSE, game_timing_state, - 0, /* mouse_priorities */ + 0, /* flags */ }; #ifdef STANDALONE_SOLVER #include -/* - * gcc -DSTANDALONE_SOLVER -o slantsolver slant.c malloc.c - */ - -void frontend_default_colour(frontend *fe, float *output) {} -void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize, - int align, int colour, char *text) {} -void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {} -void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {} -void draw_polygon(frontend *fe, int *coords, int npoints, - int fillcolour, int outlinecolour) {} -void draw_circle(frontend *fe, int cx, int cy, int radius, - int fillcolour, int outlinecolour) {} -void clip(frontend *fe, int x, int y, int w, int h) {} -void unclip(frontend *fe) {} -void start_draw(frontend *fe) {} -void draw_update(frontend *fe, int x, int y, int w, int h) {} -void end_draw(frontend *fe) {} -unsigned long random_bits(random_state *state, int bits) -{ assert(!"Shouldn't get randomness"); return 0; } -unsigned long random_upto(random_state *state, unsigned long limit) -{ assert(!"Shouldn't get randomness"); return 0; } -void shuffle(void *array, int nelts, int eltsize, random_state *rs) -{ assert(!"Shouldn't get randomness"); } - -void fatal(char *fmt, ...) -{ - va_list ap; - - fprintf(stderr, "fatal error: "); - - va_start(ap, fmt); - vfprintf(stderr, fmt, ap); - va_end(ap); - - fprintf(stderr, "\n"); - exit(1); -} - int main(int argc, char **argv) { game_params *p; @@ -1908,6 +2257,7 @@ int main(int argc, char **argv) * user with Hard-level deductions. For this reason, we grade * the puzzle internally before doing anything else. */ + ret = -1; /* placate optimiser */ for (diff = 0; diff < DIFFCOUNT; diff++) { ret = slant_solve(p->w, p->h, s->clues->clues, s->soln, sc, diff); @@ -1941,3 +2291,5 @@ int main(int argc, char **argv) } #endif + +/* vim: set shiftwidth=4 tabstop=8: */