X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/9a6d429a8372cc31fb1aa7de8e5f079a47ecf148..HEAD:/pattern.c diff --git a/pattern.c b/pattern.c index 274fcdb..25cdd85 100644 --- a/pattern.c +++ b/pattern.c @@ -19,6 +19,7 @@ enum { COL_UNKNOWN, COL_GRID, COL_CURSOR, + COL_ERROR, NCOLOURS }; @@ -339,6 +340,10 @@ static int compute_rowdata(int *ret, unsigned char *start, int len, int step) #define DOT 2 #define STILL_UNKNOWN 3 +#ifdef STANDALONE_SOLVER +int verbose = FALSE; +#endif + static void do_recurse(unsigned char *known, unsigned char *deduced, unsigned char *row, int *data, int len, int freespace, int ndone, int lowest) @@ -367,7 +372,11 @@ static void do_recurse(unsigned char *known, unsigned char *deduced, static int do_row(unsigned char *known, unsigned char *deduced, unsigned char *row, - unsigned char *start, int len, int step, int *data) + unsigned char *start, int len, int step, int *data +#ifdef STANDALONE_SOLVER + , const char *rowcol, int index, int cluewid +#endif + ) { int rowlen, i, freespace, done_any; @@ -387,6 +396,27 @@ static int do_row(unsigned char *known, unsigned char *deduced, start[i*step] = deduced[i]; done_any = TRUE; } +#ifdef STANDALONE_SOLVER + if (verbose && done_any) { + char buf[80]; + int thiscluewid; + printf("%s %2d: [", rowcol, index); + for (thiscluewid = -1, i = 0; data[i]; i++) + thiscluewid += sprintf(buf, " %d", data[i]); + printf("%*s", cluewid - thiscluewid, ""); + for (i = 0; data[i]; i++) + printf(" %d", data[i]); + printf(" ] "); + for (i = 0; i < len; i++) + putchar(known[i] == BLOCK ? '#' : + known[i] == DOT ? '.' : '?'); + printf(" -> "); + for (i = 0; i < len; i++) + putchar(start[i*step] == BLOCK ? '#' : + start[i*step] == DOT ? '.' : '?'); + putchar('\n'); + } +#endif return done_any; } @@ -444,12 +474,20 @@ static unsigned char *generate_soluble(random_state *rs, int w, int h) for (i=0; irowlen[w+i]] = 0; done_any |= do_row(workspace, workspace+max, workspace+2*max, - matrix+i*w, w, 1, rowdata); + matrix+i*w, w, 1, rowdata +#ifdef STANDALONE_SOLVER + , NULL, 0, 0 /* never do diagnostics here */ +#endif + ); } for (i=0; irowdata + state->rowsize*i, max*sizeof(int)); rowdata[state->rowlen[i]] = 0; done_any |= do_row(workspace, workspace+max, workspace+2*max, - matrix+i, h, w, rowdata); + matrix+i, h, w, rowdata +#ifdef STANDALONE_SOLVER + , NULL, 0, 0 /* never do diagnostics here */ +#endif + ); } } while (done_any); @@ -783,11 +829,11 @@ struct game_drawstate { int started; int w, h; int tilesize; - unsigned char *visible; + unsigned char *visible, *numcolours; int cur_x, cur_y; }; -static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, +static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { button &= ~MOD_MASK; @@ -808,7 +854,7 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, ui->drag = LEFT_DRAG; ui->release = LEFT_RELEASE; #ifdef STYLUS_BASED - ui->state = currstate == GRID_FULL ? GRID_UNKNOWN : GRID_FULL; + ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */ #else ui->state = GRID_FULL; #endif @@ -816,7 +862,7 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, ui->drag = RIGHT_DRAG; ui->release = RIGHT_RELEASE; #ifdef STYLUS_BASED - ui->state = currstate == GRID_EMPTY ? GRID_UNKNOWN : GRID_EMPTY; + ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */ #else ui->state = GRID_EMPTY; #endif @@ -993,6 +1039,165 @@ static game_state *execute_move(game_state *from, char *move) } /* ---------------------------------------------------------------------- + * Error-checking during gameplay. + */ + +/* + * The difficulty in error-checking Pattern is to make the error check + * _weak_ enough. The most obvious way would be to check each row and + * column by calling (a modified form of) do_row() to recursively + * analyse the row contents against the clue set and see if the + * GRID_UNKNOWNs could be filled in in any way that would end up + * correct. However, this turns out to be such a strong error check as + * to constitute a spoiler in many situations: you make a typo while + * trying to fill in one row, and not only does the row light up to + * indicate an error, but several columns crossed by the move also + * light up and draw your attention to deductions you hadn't even + * noticed you could make. + * + * So instead I restrict error-checking to 'complete runs' within a + * row, by which I mean contiguous sequences of GRID_FULL bounded at + * both ends by either GRID_EMPTY or the ends of the row. We identify + * all the complete runs in a row, and verify that _those_ are + * consistent with the row's clue list. Sequences of complete runs + * separated by solid GRID_EMPTY are required to match contiguous + * sequences in the clue list, whereas if there's at least one + * GRID_UNKNOWN between any two complete runs then those two need not + * be contiguous in the clue list. + * + * To simplify the edge cases, I pretend that the clue list for the + * row is extended with a 0 at each end, and I also pretend that the + * grid data for the row is extended with a GRID_EMPTY and a + * zero-length run at each end. This permits the contiguity checker to + * handle the fiddly end effects (e.g. if the first contiguous + * sequence of complete runs in the grid matches _something_ in the + * clue list but not at the beginning, this is allowable iff there's a + * GRID_UNKNOWN before the first one) with minimal faff, since the end + * effects just drop out as special cases of the normal inter-run + * handling (in this code the above case is not 'at the end of the + * clue list' at all, but between the implicit initial zero run and + * the first nonzero one). + * + * We must also be a little careful about how we search for a + * contiguous sequence of runs. In the clue list (1 1 2 1 2 3), + * suppose we see a GRID_UNKNOWN and then a length-1 run. We search + * for 1 in the clue list and find it at the very beginning. But now + * suppose we find a length-2 run with no GRID_UNKNOWN before it. We + * can't naively look at the next clue from the 1 we found, because + * that'll be the second 1 and won't match. Instead, we must backtrack + * by observing that the 2 we've just found must be contiguous with + * the 1 we've already seen, so we search for the sequence (1 2) and + * find it starting at the second 1. Now if we see a 3, we must + * rethink again and search for (1 2 3). + */ + +struct errcheck_state { + /* + * rowdata and rowlen point at the clue data for this row in the + * game state. + */ + int *rowdata; + int rowlen; + /* + * rowpos indicates the lowest position where it would be valid to + * see our next run length. It might be equal to rowlen, + * indicating that the next run would have to be the terminating 0. + */ + int rowpos; + /* + * ncontig indicates how many runs we've seen in a contiguous + * block. This is taken into account when searching for the next + * run we find, unless ncontig is zeroed out first by encountering + * a GRID_UNKNOWN. + */ + int ncontig; +}; + +static int errcheck_found_run(struct errcheck_state *es, int r) +{ +/* Macro to handle the pretence that rowdata has a 0 at each end */ +#define ROWDATA(k) ((k)<0 || (k)>=es->rowlen ? 0 : es->rowdata[(k)]) + + /* + * See if we can find this new run length at a position where it + * also matches the last 'ncontig' runs we've seen. + */ + int i, newpos; + for (newpos = es->rowpos; newpos <= es->rowlen; newpos++) { + + if (ROWDATA(newpos) != r) + goto notfound; + + for (i = 1; i <= es->ncontig; i++) + if (ROWDATA(newpos - i) != ROWDATA(es->rowpos - i)) + goto notfound; + + es->rowpos = newpos+1; + es->ncontig++; + return TRUE; + + notfound:; + } + + return FALSE; + +#undef ROWDATA +} + +static int check_errors(game_state *state, int i) +{ + int start, step, end, j; + int val, runlen; + struct errcheck_state aes, *es = &aes; + + es->rowlen = state->rowlen[i]; + es->rowdata = state->rowdata + state->rowsize * i; + /* Pretend that we've already encountered the initial zero run */ + es->ncontig = 1; + es->rowpos = 0; + + if (i < state->w) { + start = i; + step = state->w; + end = start + step * state->h; + } else { + start = (i - state->w) * state->w; + step = 1; + end = start + step * state->w; + } + + runlen = -1; + for (j = start - step; j <= end; j += step) { + if (j < start || j == end) + val = GRID_EMPTY; + else + val = state->grid[j]; + + if (val == GRID_UNKNOWN) { + runlen = -1; + es->ncontig = 0; + } else if (val == GRID_FULL) { + if (runlen >= 0) + runlen++; + } else if (val == GRID_EMPTY) { + if (runlen > 0) { + if (!errcheck_found_run(es, runlen)) + return TRUE; /* error! */ + } + runlen = 0; + } + } + + /* Signal end-of-row by sending errcheck_found_run the terminating + * zero run, which will be marked as contiguous with the previous + * run if and only if there hasn't been a GRID_UNKNOWN before. */ + if (!errcheck_found_run(es, 0)) + return TRUE; /* error at the last minute! */ + + return FALSE; /* no error */ +} + +/* ---------------------------------------------------------------------- * Drawing routines. */ @@ -1030,6 +1235,9 @@ static float *game_colours(frontend *fe, int *ncolours) ret[COL_CURSOR * 3 + 0] = 1.0F; ret[COL_CURSOR * 3 + 1] = 0.25F; ret[COL_CURSOR * 3 + 2] = 0.25F; + ret[COL_ERROR * 3 + 0] = 1.0F; + ret[COL_ERROR * 3 + 1] = 0.0F; + ret[COL_ERROR * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; @@ -1045,6 +1253,9 @@ static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) ds->visible = snewn(ds->w * ds->h, unsigned char); ds->tilesize = 0; /* not decided yet */ memset(ds->visible, 255, ds->w * ds->h); + ds->numcolours = snewn(ds->w + ds->h, unsigned char); + memset(ds->numcolours, 255, ds->w + ds->h); + ds->cur_x = ds->cur_y = 0; return ds; } @@ -1085,46 +1296,66 @@ static void grid_square(drawing *dr, game_drawstate *ds, TILE_SIZE, TILE_SIZE); } +/* + * Draw the numbers for a single row or column. + */ static void draw_numbers(drawing *dr, game_drawstate *ds, game_state *state, - int colour) + int i, int erase, int colour) { - int i, j; + int rowlen = state->rowlen[i]; + int *rowdata = state->rowdata + state->rowsize * i; + int nfit; + int j; + + if (erase) { + if (i < state->w) { + draw_rect(dr, TOCOORD(state->w, i), 0, + TILE_SIZE, BORDER + TLBORDER(state->h) * TILE_SIZE, + COL_BACKGROUND); + } else { + draw_rect(dr, 0, TOCOORD(state->h, i - state->w), + BORDER + TLBORDER(state->w) * TILE_SIZE, TILE_SIZE, + COL_BACKGROUND); + } + } /* - * Draw the numbers. + * Normally I space the numbers out by the same distance as the + * tile size. However, if there are more numbers than available + * spaces, I have to squash them up a bit. */ - for (i = 0; i < state->w + state->h; i++) { - int rowlen = state->rowlen[i]; - int *rowdata = state->rowdata + state->rowsize * i; - int nfit; - - /* - * Normally I space the numbers out by the same - * distance as the tile size. However, if there are - * more numbers than available spaces, I have to squash - * them up a bit. - */ - nfit = max(rowlen, TLBORDER(state->h))-1; - assert(nfit > 0); - - for (j = 0; j < rowlen; j++) { - int x, y; - char str[80]; + if (i < state->w) + nfit = TLBORDER(state->h); + else + nfit = TLBORDER(state->w); + nfit = max(rowlen, nfit) - 1; + assert(nfit > 0); + + for (j = 0; j < rowlen; j++) { + int x, y; + char str[80]; + + if (i < state->w) { + x = TOCOORD(state->w, i); + y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1); + y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit; + } else { + y = TOCOORD(state->h, i - state->w); + x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1); + x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->w)-1) / nfit; + } - if (i < state->w) { - x = TOCOORD(state->w, i); - y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1); - y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit; - } else { - y = TOCOORD(state->h, i - state->w); - x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1); - x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit; - } + sprintf(str, "%d", rowdata[j]); + draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE, + TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str); + } - sprintf(str, "%d", rowdata[j]); - draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE, - TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str); - } + if (i < state->w) { + draw_update(dr, TOCOORD(state->w, i), 0, + TILE_SIZE, BORDER + TLBORDER(state->h) * TILE_SIZE); + } else { + draw_update(dr, 0, TOCOORD(state->h, i - state->w), + BORDER + TLBORDER(state->w) * TILE_SIZE, TILE_SIZE); } } @@ -1145,11 +1376,6 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, */ draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND); - /* - * Draw the numbers. - */ - draw_numbers(dr, ds, state, COL_TEXT); - /* * Draw the grid outline. */ @@ -1219,6 +1445,18 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, } } ds->cur_x = cx; ds->cur_y = cy; + + /* + * Redraw any numbers which have changed their colour due to error + * indication. + */ + for (i = 0; i < state->w + state->h; i++) { + int colour = check_errors(state, i) ? COL_ERROR : COL_TEXT; + if (ds->numcolours[i] != colour) { + draw_numbers(dr, ds, state, i, TRUE, colour); + ds->numcolours[i] = colour; + } + } } static float game_anim_length(game_state *oldstate, @@ -1236,6 +1474,11 @@ static float game_flash_length(game_state *oldstate, return 0.0F; } +static int game_status(game_state *state) +{ + return state->completed ? +1 : 0; +} + static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; @@ -1257,7 +1500,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize) { int w = state->w, h = state->h; int ink = print_mono_colour(dr, 0); - int x, y; + int x, y, i; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; @@ -1287,7 +1530,8 @@ static void game_print(drawing *dr, game_state *state, int tilesize) /* * Clues. */ - draw_numbers(dr, ds, state, ink); + for (i = 0; i < state->w + state->h; i++) + draw_numbers(dr, ds, state, i, FALSE, ink); /* * Solution. @@ -1340,6 +1584,7 @@ const struct game thegame = { game_redraw, game_anim_length, game_flash_length, + game_status, TRUE, FALSE, game_print_size, game_print, FALSE, /* wants_statusbar */ FALSE, game_timing_state, @@ -1357,8 +1602,12 @@ int main(int argc, char **argv) while (--argc > 0) { char *p = *++argv; if (*p == '-') { - fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); - return 1; + if (!strcmp(p, "-v")) { + verbose = TRUE; + } else { + fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); + return 1; + } } else { id = p; } @@ -1386,7 +1635,7 @@ int main(int argc, char **argv) s = new_game(NULL, p, desc); { - int w = p->w, h = p->h, i, j, done_any, max; + int w = p->w, h = p->h, i, j, done_any, max, cluewid = 0; unsigned char *matrix, *workspace; int *rowdata; @@ -1397,6 +1646,22 @@ int main(int argc, char **argv) memset(matrix, 0, w*h); + if (verbose) { + int thiswid; + /* + * Work out the maximum text width of the clue numbers + * in a row or column, so we can print the solver's + * working in a nicely lined up way. + */ + for (i = 0; i < (w+h); i++) { + char buf[80]; + for (thiswid = -1, j = 0; j < s->rowlen[i]; j++) + thiswid += sprintf(buf, " %d", s->rowdata[s->rowsize*i+j]); + if (cluewid < thiswid) + cluewid = thiswid; + } + } + do { done_any = 0; for (i=0; irowlen[w+i]] = 0; done_any |= do_row(workspace, workspace+max, workspace+2*max, - matrix+i*w, w, 1, rowdata); + matrix+i*w, w, 1, rowdata +#ifdef STANDALONE_SOLVER + , "row", i+1, cluewid +#endif + ); } for (i=0; irowdata + s->rowsize*i, max*sizeof(int)); rowdata[s->rowlen[i]] = 0; done_any |= do_row(workspace, workspace+max, workspace+2*max, - matrix+i, h, w, rowdata); + matrix+i, h, w, rowdata +#ifdef STANDALONE_SOLVER + , "col", i+1, cluewid +#endif + ); } } while (done_any);