X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/8266f3fccfd8621ac980d6209cbeac94e0a9c69b..6bb2af847d3bad4f2a544ad7a428f7063fd1991a:/solo.c diff --git a/solo.c b/solo.c index 0e24481..cbf00c5 100644 --- a/solo.c +++ b/solo.c @@ -110,6 +110,7 @@ typedef unsigned char digit; #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) +#define GRIDEXTRA (TILE_SIZE / 32) #define FLASH_TIME 0.4F @@ -121,6 +122,7 @@ enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME, enum { COL_BACKGROUND, + COL_XDIAGONALS, COL_GRID, COL_CLUE, COL_USER, @@ -131,11 +133,65 @@ enum { }; struct game_params { + /* + * For a square puzzle, `c' and `r' indicate the puzzle + * parameters as described above. + * + * A jigsaw-style puzzle is indicated by r==1, in which case c + * can be whatever it likes (there is no constraint on + * compositeness - a 7x7 jigsaw sudoku makes perfect sense). + */ int c, r, symm, diff; + int xtype; /* require all digits in X-diagonals */ }; -struct game_state { +struct block_structure { + int refcount; + + /* + * For text formatting, we do need c and r here. + */ int c, r; + + /* + * For any square index, whichblock[i] gives its block index. + * + * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith + * square in block b. + * + * whichblock and blocks are each dynamically allocated in + * their own right, but the subarrays in blocks are appended + * to the whichblock array, so shouldn't be freed + * individually. + */ + int *whichblock, **blocks; + +#ifdef STANDALONE_SOLVER + /* + * Textual descriptions of each block. For normal Sudoku these + * are of the form "(1,3)"; for jigsaw they are "starting at + * (5,7)". So the sensible usage in both cases is to say + * "elimination within block %s" with one of these strings. + * + * Only blocknames itself needs individually freeing; it's all + * one block. + */ + char **blocknames; +#endif +}; + +struct game_state { + /* + * For historical reasons, I use `cr' to denote the overall + * width/height of the puzzle. It was a natural notation when + * all puzzles were divided into blocks in a grid, but doesn't + * really make much sense given jigsaw puzzles. However, the + * obvious `n' is heavily used in the solver to describe the + * index of a number being placed, so `cr' will have to stay. + */ + int cr; + struct block_structure *blocks; + int xtype; digit *grid; unsigned char *pencil; /* c*r*c*r elements */ unsigned char *immutable; /* marks which digits are clues */ @@ -147,6 +203,7 @@ static game_params *default_params(void) game_params *ret = snew(game_params); ret->c = ret->r = 3; + ret->xtype = FALSE; ret->symm = SYMM_ROT2; /* a plausible default */ ret->diff = DIFF_BLOCK; /* so is this */ @@ -171,17 +228,22 @@ static int game_fetch_preset(int i, char **name, game_params **params) char *title; game_params params; } presets[] = { - { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } }, - { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } }, - { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } }, - { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } }, - { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } }, - { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } }, - { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME } }, - { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } }, + { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, FALSE } }, + { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, FALSE } }, + { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, FALSE } }, + { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, FALSE } }, + { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, TRUE } }, + { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, FALSE } }, + { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, FALSE } }, + { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, TRUE } }, + { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, FALSE } }, + { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, FALSE } }, + { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, FALSE } }, + { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, TRUE } }, + { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, FALSE } }, #ifndef SLOW_SYSTEM - { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } }, - { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } }, + { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, FALSE } }, + { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, FALSE } }, #endif }; @@ -196,18 +258,30 @@ static int game_fetch_preset(int i, char **name, game_params **params) static void decode_params(game_params *ret, char const *string) { + int seen_r = FALSE; + ret->c = ret->r = atoi(string); + ret->xtype = FALSE; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->r = atoi(string); + seen_r = TRUE; while (*string && isdigit((unsigned char)*string)) string++; } while (*string) { - if (*string == 'r' || *string == 'm' || *string == 'a') { + if (*string == 'j') { + string++; + if (seen_r) + ret->c *= ret->r; + ret->r = 1; + } else if (*string == 'x') { + string++; + ret->xtype = TRUE; + } else if (*string == 'r' || *string == 'm' || *string == 'a') { int sn, sc, sd; sc = *string++; - if (*string == 'd') { + if (sc == 'm' && *string == 'd') { sd = TRUE; string++; } else { @@ -250,7 +324,13 @@ static char *encode_params(game_params *params, int full) { char str[80]; - sprintf(str, "%dx%d", params->c, params->r); + if (params->r > 1) + sprintf(str, "%dx%d", params->c, params->r); + else + sprintf(str, "%dj", params->c); + if (params->xtype) + strcat(str, "x"); + if (full) { switch (params->symm) { case SYMM_REF8: strcat(str, "m8"); break; @@ -279,7 +359,7 @@ static config_item *game_configure(game_params *params) config_item *ret; char buf[80]; - ret = snewn(5, config_item); + ret = snewn(7, config_item); ret[0].name = "Columns of sub-blocks"; ret[0].type = C_STRING; @@ -293,22 +373,32 @@ static config_item *game_configure(game_params *params) ret[1].sval = dupstr(buf); ret[1].ival = 0; - ret[2].name = "Symmetry"; - ret[2].type = C_CHOICES; - ret[2].sval = ":None:2-way rotation:4-way rotation:2-way mirror:" + ret[2].name = "\"X\" (require every number in each main diagonal)"; + ret[2].type = C_BOOLEAN; + ret[2].sval = NULL; + ret[2].ival = params->xtype; + + ret[3].name = "Jigsaw (irregularly shaped sub-blocks)"; + ret[3].type = C_BOOLEAN; + ret[3].sval = NULL; + ret[3].ival = (params->r == 1); + + ret[4].name = "Symmetry"; + ret[4].type = C_CHOICES; + ret[4].sval = ":None:2-way rotation:4-way rotation:2-way mirror:" "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:" "8-way mirror"; - ret[2].ival = params->symm; + ret[4].ival = params->symm; - ret[3].name = "Difficulty"; - ret[3].type = C_CHOICES; - ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable"; - ret[3].ival = params->diff; + ret[5].name = "Difficulty"; + ret[5].type = C_CHOICES; + ret[5].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable"; + ret[5].ival = params->diff; - ret[4].name = NULL; - ret[4].type = C_END; - ret[4].sval = NULL; - ret[4].ival = 0; + ret[6].name = NULL; + ret[6].type = C_END; + ret[6].sval = NULL; + ret[6].ival = 0; return ret; } @@ -319,20 +409,25 @@ static game_params *custom_params(config_item *cfg) ret->c = atoi(cfg[0].sval); ret->r = atoi(cfg[1].sval); - ret->symm = cfg[2].ival; - ret->diff = cfg[3].ival; + ret->xtype = cfg[2].ival; + if (cfg[3].ival) { + ret->c *= ret->r; + ret->r = 1; + } + ret->symm = cfg[4].ival; + ret->diff = cfg[5].ival; return ret; } static char *validate_params(game_params *params, int full) { - if (params->c < 2 || params->r < 2) + if (params->c < 2) return "Both dimensions must be at least 2"; if (params->c > ORDER_MAX || params->r > ORDER_MAX) return "Dimensions greater than "STR(ORDER_MAX)" are not supported"; - if ((params->c * params->r) > 36) - return "Unable to support more than 36 distinct symbols in a puzzle"; + if ((params->c * params->r) > 35) + return "Unable to support more than 35 distinct symbols in a puzzle"; return NULL; } @@ -391,28 +486,7 @@ static char *validate_params(game_params *params, int full) * the numbers' possible positions (or the spaces' possible * contents). * - * - Mutual neighbour elimination: find two squares A,B and a - * number N in the possible set of A, such that putting N in A - * would rule out enough possibilities from the mutual - * neighbours of A and B that there would be no possibilities - * left for B. Thereby rule out N in A. - * + The simplest case of this is if B has two possibilities - * (wlog {1,2}), and there are two mutual neighbours of A and - * B which have possibilities {1,3} and {2,3}. Thus, if A - * were to be 3, then those neighbours would contain 1 and 2, - * and hence there would be nothing left which could go in B. - * + There can be more complex cases of it too: if A and B are - * in the same column of large blocks, then they can have - * more than two mutual neighbours, some of which can also be - * neighbours of one another. Suppose, for example, that B - * has possibilities {1,2,3}; there's one square P in the - * same column as B and the same block as A, with - * possibilities {1,4}; and there are _two_ squares Q,R in - * the same column as A and the same block as B with - * possibilities {2,3,4}. Then if A contained 4, P would - * contain 1, and Q and R would have to contain 2 and 3 in - * _some_ order; therefore, once again, B would have no - * remaining possibilities. + * - Forcing chains (see comment for solver_forcing().) * * - Recursion. If all else fails, we pick one of the currently * most constrained empty squares and take a random guess at its @@ -420,31 +494,16 @@ static char *validate_params(game_params *params, int full) * get any further. */ -/* - * Within this solver, I'm going to transform all y-coordinates by - * inverting the significance of the block number and the position - * within the block. That is, we will start with the top row of - * each block in order, then the second row of each block in order, - * etc. - * - * This transformation has the enormous advantage that it means - * every row, column _and_ block is described by an arithmetic - * progression of coordinates within the cubic array, so that I can - * use the same very simple function to do blockwise, row-wise and - * column-wise elimination. - */ -#define YTRANS(y) (((y)%c)*r+(y)/c) -#define YUNTRANS(y) (((y)%r)*c+(y)/r) - struct solver_usage { - int c, r, cr; + int cr; + struct block_structure *blocks; /* * We set up a cubic array, indexed by x, y and digit; each * element of this array is TRUE or FALSE according to whether * or not that digit _could_ in principle go in that position. * - * The way to index this array is cube[(x*cr+y)*cr+n-1]. - * y-coordinates in here are transformed. + * The way to index this array is cube[(y*cr+x)*cr+n-1]; there + * are macros below to help with this. */ unsigned char *cube; /* @@ -461,11 +520,20 @@ struct solver_usage { unsigned char *row; /* col[x*cr+n-1] TRUE if digit n has been placed in row x */ unsigned char *col; - /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */ + /* blk[i*cr+n-1] TRUE if digit n has been placed in block i */ unsigned char *blk; + /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */ + unsigned char *diag; /* diag 0 is \, 1 is / */ }; -#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1) +#define cubepos2(xy,n) ((xy)*usage->cr+(n)-1) +#define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n) #define cube(x,y,n) (usage->cube[cubepos(x,y,n)]) +#define cube2(xy,n) (usage->cube[cubepos2(xy,n)]) + +#define ondiag0(xy) ((xy) % (cr+1) == 0) +#define ondiag1(xy) ((xy) % (cr-1) == 0 && (xy) > 0 && (xy) < cr*cr-1) +#define diag0(i) ((i) * (cr+1)) +#define diag1(i) ((i+1) * (cr-1)) /* * Function called when we are certain that a particular square has @@ -474,8 +542,9 @@ struct solver_usage { */ static void solver_place(struct solver_usage *usage, int x, int y, int n) { - int c = usage->c, r = usage->r, cr = usage->cr; - int i, j, bx, by; + int cr = usage->cr; + int sqindex = y*cr+x; + int i, bi; assert(cube(x,y,n)); @@ -503,33 +572,48 @@ static void solver_place(struct solver_usage *usage, int x, int y, int n) /* * Rule out this number in all other positions in the block. */ - bx = (x/r)*r; - by = y % r; - for (i = 0; i < r; i++) - for (j = 0; j < c; j++) - if (bx+i != x || by+j*r != y) - cube(bx+i,by+j*r,n) = FALSE; + bi = usage->blocks->whichblock[sqindex]; + for (i = 0; i < cr; i++) { + int bp = usage->blocks->blocks[bi][i]; + if (bp != sqindex) + cube2(bp,n) = FALSE; + } /* * Enter the number in the result grid. */ - usage->grid[YUNTRANS(y)*cr+x] = n; + usage->grid[sqindex] = n; /* * Cross out this number from the list of numbers left to place * in its row, its column and its block. */ usage->row[y*cr+n-1] = usage->col[x*cr+n-1] = - usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE; + usage->blk[bi*cr+n-1] = TRUE; + + if (usage->diag) { + if (ondiag0(sqindex)) { + for (i = 0; i < cr; i++) + if (diag0(i) != sqindex) + cube2(diag0(i),n) = FALSE; + usage->diag[n-1] = TRUE; + } + if (ondiag1(sqindex)) { + for (i = 0; i < cr; i++) + if (diag1(i) != sqindex) + cube2(diag1(i),n) = FALSE; + usage->diag[cr+n-1] = TRUE; + } + } } -static int solver_elim(struct solver_usage *usage, int start, int step +static int solver_elim(struct solver_usage *usage, int *indices #ifdef STANDALONE_SOLVER , char *fmt, ... #endif ) { - int c = usage->c, r = usage->r, cr = c*r; + int cr = usage->cr; int fpos, m, i; /* @@ -539,8 +623,8 @@ static int solver_elim(struct solver_usage *usage, int start, int step m = 0; fpos = -1; for (i = 0; i < cr; i++) - if (usage->cube[start+i*step]) { - fpos = start+i*step; + if (usage->cube[indices[i]]) { + fpos = indices[i]; m++; } @@ -549,11 +633,11 @@ static int solver_elim(struct solver_usage *usage, int start, int step assert(fpos >= 0); n = 1 + fpos % cr; - y = fpos / cr; - x = y / cr; - y %= cr; + x = fpos / cr; + y = x / cr; + x %= cr; - if (!usage->grid[YUNTRANS(y)*cr+x]) { + if (!usage->grid[y*cr+x]) { #ifdef STANDALONE_SOLVER if (solver_show_working) { va_list ap; @@ -562,7 +646,7 @@ static int solver_elim(struct solver_usage *usage, int start, int step vprintf(fmt, ap); va_end(ap); printf(":\n%*s placing %d at (%d,%d)\n", - solver_recurse_depth*4, "", n, 1+x, 1+YUNTRANS(y)); + solver_recurse_depth*4, "", n, 1+x, 1+y); } #endif solver_place(usage, x, y, n); @@ -587,25 +671,29 @@ static int solver_elim(struct solver_usage *usage, int start, int step } static int solver_intersect(struct solver_usage *usage, - int start1, int step1, int start2, int step2 + int *indices1, int *indices2 #ifdef STANDALONE_SOLVER , char *fmt, ... #endif ) { - int c = usage->c, r = usage->r, cr = c*r; - int ret, i; + int cr = usage->cr; + int ret, i, j; /* * Loop over the first domain and see if there's any set bit * not also in the second. */ - for (i = 0; i < cr; i++) { - int p = start1+i*step1; - if (usage->cube[p] && - !(p >= start2 && p < start2+cr*step2 && - (p - start2) % step2 == 0)) - return 0; /* there is, so we can't deduce */ + for (i = j = 0; i < cr; i++) { + int p = indices1[i]; + while (j < cr && indices2[j] < p) + j++; + if (usage->cube[p]) { + if (j < cr && indices2[j] == p) + continue; /* both domains contain this index */ + else + return 0; /* there is, so we can't deduce */ + } } /* @@ -615,11 +703,11 @@ static int solver_intersect(struct solver_usage *usage, * overlap; return +1 iff we actually _did_ anything. */ ret = 0; - for (i = 0; i < cr; i++) { - int p = start2+i*step2; - if (usage->cube[p] && - !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0)) - { + for (i = j = 0; i < cr; i++) { + int p = indices2[i]; + while (j < cr && indices1[j] < p) + j++; + if (usage->cube[p] && (j >= cr || indices1[j] != p)) { #ifdef STANDALONE_SOLVER if (solver_show_working) { int px, py, pn; @@ -634,12 +722,12 @@ static int solver_intersect(struct solver_usage *usage, } pn = 1 + p % cr; - py = p / cr; - px = py / cr; - py %= cr; + px = p / cr; + py = px / cr; + px %= cr; printf("%*s ruling out %d at (%d,%d)\n", - solver_recurse_depth*4, "", pn, 1+px, 1+YUNTRANS(py)); + solver_recurse_depth*4, "", pn, 1+px, 1+py); } #endif ret = +1; /* we did something */ @@ -653,6 +741,7 @@ static int solver_intersect(struct solver_usage *usage, struct solver_scratch { unsigned char *grid, *rowidx, *colidx, *set; int *neighbours, *bfsqueue; + int *indexlist, *indexlist2; #ifdef STANDALONE_SOLVER int *bfsprev; #endif @@ -660,13 +749,13 @@ struct solver_scratch { static int solver_set(struct solver_usage *usage, struct solver_scratch *scratch, - int start, int step1, int step2 + int *indices #ifdef STANDALONE_SOLVER , char *fmt, ... #endif ) { - int c = usage->c, r = usage->r, cr = c*r; + int cr = usage->cr; int i, j, n, count; unsigned char *grid = scratch->grid; unsigned char *rowidx = scratch->rowidx; @@ -684,7 +773,7 @@ static int solver_set(struct solver_usage *usage, for (i = 0; i < cr; i++) { int count = 0, first = -1; for (j = 0; j < cr; j++) - if (usage->cube[start+i*step1+j*step2]) + if (usage->cube[indices[i*cr+j]]) first = j, count++; /* @@ -717,7 +806,7 @@ static int solver_set(struct solver_usage *usage, */ for (i = 0; i < n; i++) for (j = 0; j < n; j++) - grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2]; + grid[i*cr+j] = usage->cube[indices[rowidx[i]*cr+colidx[j]]]; /* * Having done that, we now have a matrix in which every row @@ -800,8 +889,7 @@ static int solver_set(struct solver_usage *usage, if (!ok) { for (j = 0; j < n; j++) if (!set[j] && grid[i*cr+j]) { - int fpos = (start+rowidx[i]*step1+ - colidx[j]*step2); + int fpos = indices[rowidx[i]*cr+colidx[j]]; #ifdef STANDALONE_SOLVER if (solver_show_working) { int px, py, pn; @@ -817,13 +905,13 @@ static int solver_set(struct solver_usage *usage, } pn = 1 + fpos % cr; - py = fpos / cr; - px = py / cr; - py %= cr; + px = fpos / cr; + py = px / cr; + px %= cr; printf("%*s ruling out %d at (%d,%d)\n", solver_recurse_depth*4, "", - pn, 1+px, 1+YUNTRANS(py)); + pn, 1+px, 1+py); } #endif progress = TRUE; @@ -855,158 +943,6 @@ static int solver_set(struct solver_usage *usage, } /* - * Try to find a number in the possible set of (x1,y1) which can be - * ruled out because it would leave no possibilities for (x2,y2). - */ -static int solver_mne(struct solver_usage *usage, - struct solver_scratch *scratch, - int x1, int y1, int x2, int y2) -{ - int c = usage->c, r = usage->r, cr = c*r; - int *nb[2]; - unsigned char *set = scratch->set; - unsigned char *numbers = scratch->rowidx; - unsigned char *numbersleft = scratch->colidx; - int nnb, count; - int i, j, n, nbi; - - nb[0] = scratch->neighbours; - nb[1] = scratch->neighbours + cr; - - /* - * First, work out the mutual neighbour squares of the two. We - * can assert that they're not actually in the same block, - * which leaves two possibilities: they're in different block - * rows _and_ different block columns (thus their mutual - * neighbours are precisely the other two corners of the - * rectangle), or they're in the same row (WLOG) and different - * columns, in which case their mutual neighbours are the - * column of each block aligned with the other square. - * - * We divide the mutual neighbours into two separate subsets - * nb[0] and nb[1]; squares in the same subset are not only - * adjacent to both our key squares, but are also always - * adjacent to one another. - */ - if (x1 / r != x2 / r && y1 % r != y2 % r) { - /* Corners of the rectangle. */ - nnb = 1; - nb[0][0] = cubepos(x2, y1, 1); - nb[1][0] = cubepos(x1, y2, 1); - } else if (x1 / r != x2 / r) { - /* Same row of blocks; different blocks within that row. */ - int x1b = x1 - (x1 % r); - int x2b = x2 - (x2 % r); - - nnb = r; - for (i = 0; i < r; i++) { - nb[0][i] = cubepos(x2b+i, y1, 1); - nb[1][i] = cubepos(x1b+i, y2, 1); - } - } else { - /* Same column of blocks; different blocks within that column. */ - int y1b = y1 % r; - int y2b = y2 % r; - - assert(y1 % r != y2 % r); - - nnb = c; - for (i = 0; i < c; i++) { - nb[0][i] = cubepos(x2, y1b+i*r, 1); - nb[1][i] = cubepos(x1, y2b+i*r, 1); - } - } - - /* - * Right. Now loop over each possible number. - */ - for (n = 1; n <= cr; n++) { - if (!cube(x1, y1, n)) - continue; - for (j = 0; j < cr; j++) - numbersleft[j] = cube(x2, y2, j+1); - - /* - * Go over every possible subset of each neighbour list, - * and see if its union of possible numbers minus n has the - * same size as the subset. If so, add the numbers in that - * subset to the set of things which would be ruled out - * from (x2,y2) if n were placed at (x1,y1). - */ - memset(set, 0, nnb); - count = 0; - while (1) { - /* - * Binary increment: change the rightmost 0 to a 1, and - * change all 1s to the right of it to 0s. - */ - i = nnb; - while (i > 0 && set[i-1]) - set[--i] = 0, count--; - if (i > 0) - set[--i] = 1, count++; - else - break; /* done */ - - /* - * Examine this subset of each neighbour set. - */ - for (nbi = 0; nbi < 2; nbi++) { - int *nbs = nb[nbi]; - - memset(numbers, 0, cr); - - for (i = 0; i < nnb; i++) - if (set[i]) - for (j = 0; j < cr; j++) - if (j != n-1 && usage->cube[nbs[i] + j]) - numbers[j] = 1; - - for (i = j = 0; j < cr; j++) - i += numbers[j]; - - if (i == count) { - /* - * Got one. This subset of nbs, in the absence - * of n, would definitely contain all the - * numbers listed in `numbers'. Rule them out - * of `numbersleft'. - */ - for (j = 0; j < cr; j++) - if (numbers[j]) - numbersleft[j] = 0; - } - } - } - - /* - * If we've got nothing left in `numbersleft', we have a - * successful mutual neighbour elimination. - */ - for (j = 0; j < cr; j++) - if (numbersleft[j]) - break; - - if (j == cr) { -#ifdef STANDALONE_SOLVER - if (solver_show_working) { - printf("%*smutual neighbour elimination, (%d,%d) vs (%d,%d):\n", - solver_recurse_depth*4, "", - 1+x1, 1+YUNTRANS(y1), 1+x2, 1+YUNTRANS(y2)); - printf("%*s ruling out %d at (%d,%d)\n", - solver_recurse_depth*4, "", - n, 1+x1, 1+YUNTRANS(y1)); - } -#endif - cube(x1, y1, n) = FALSE; - return +1; - } - } - - return 0; /* nothing found */ -} - -/* * Look for forcing chains. A forcing chain is a path of * pairwise-exclusive squares (i.e. each pair of adjacent squares * in the path are in the same row, column or block) with the @@ -1015,23 +951,23 @@ static int solver_mne(struct solver_usage *usage, * (a) Each square on the path has precisely two possible numbers. * * (b) Each pair of squares which are adjacent on the path share - * at least one possible number in common. + * at least one possible number in common. * * (c) Each square in the middle of the path shares _both_ of its - * numbers with at least one of its neighbours (not the same - * one with both neighbours). + * numbers with at least one of its neighbours (not the same + * one with both neighbours). * * These together imply that at least one of the possible number * choices at one end of the path forces _all_ the rest of the * numbers along the path. In order to make real use of this, we * need further properties: * - * (c) Ruling out some number N from the square at one end - * of the path forces the square at the other end to - * take number N. + * (c) Ruling out some number N from the square at one end of the + * path forces the square at the other end to take the same + * number N. * * (d) The two end squares are both in line with some third - * square. + * square. * * (e) That third square currently has N as a possibility. * @@ -1045,7 +981,7 @@ static int solver_mne(struct solver_usage *usage, static int solver_forcing(struct solver_usage *usage, struct solver_scratch *scratch) { - int c = usage->c, r = usage->r, cr = c*r; + int cr = usage->cr; int *bfsqueue = scratch->bfsqueue; #ifdef STANDALONE_SOLVER int *bfsprev = scratch->bfsprev; @@ -1094,7 +1030,7 @@ static int solver_forcing(struct solver_usage *usage, number[y*cr+x] = t - n; while (head < tail) { - int xx, yy, nneighbours, xt, yt, xblk, i; + int xx, yy, nneighbours, xt, yt, i; xx = bfsqueue[head++]; yy = xx / cr; @@ -1110,10 +1046,20 @@ static int solver_forcing(struct solver_usage *usage, neighbours[nneighbours++] = yt*cr+xx; for (xt = 0; xt < cr; xt++) neighbours[nneighbours++] = yy*cr+xt; - xblk = xx - (xx % r); - for (yt = yy % r; yt < cr; yt += r) - for (xt = xblk; xt < xblk+r; xt++) - neighbours[nneighbours++] = yt*cr+xt; + xt = usage->blocks->whichblock[yy*cr+xx]; + for (yt = 0; yt < cr; yt++) + neighbours[nneighbours++] = usage->blocks->blocks[xt][yt]; + if (usage->diag) { + int sqindex = yy*cr+xx; + if (ondiag0(sqindex)) { + for (i = 0; i < cr; i++) + neighbours[nneighbours++] = diag0(i); + } + if (ondiag1(sqindex)) { + for (i = 0; i < cr; i++) + neighbours[nneighbours++] = diag1(i); + } + } /* * Try visiting each of those neighbours. @@ -1166,7 +1112,9 @@ static int solver_forcing(struct solver_usage *usage, */ if (currn == orign && (xt == x || yt == y || - (xt / r == x / r && yt % r == y % r))) { + (usage->blocks->whichblock[yt*cr+xt] == usage->blocks->whichblock[y*cr+x]) || + (usage->diag && ((ondiag0(yt*cr+xt) && ondiag0(y*cr+x)) || + (ondiag1(yt*cr+xt) && ondiag1(y*cr+x)))))) { #ifdef STANDALONE_SOLVER if (solver_show_working) { char *sep = ""; @@ -1177,7 +1125,7 @@ static int solver_forcing(struct solver_usage *usage, yl = yy; while (1) { printf("%s(%d,%d)", sep, 1+xl, - 1+YUNTRANS(yl)); + 1+yl); xl = bfsprev[yl*cr+xl]; if (xl < 0) break; @@ -1187,7 +1135,7 @@ static int solver_forcing(struct solver_usage *usage, } printf("\n%*s ruling out %d at (%d,%d)\n", solver_recurse_depth*4, "", - orign, 1+xt, 1+YUNTRANS(yt)); + orign, 1+xt, 1+yt); } #endif cube(xt, yt, orign) = FALSE; @@ -1209,11 +1157,13 @@ static struct solver_scratch *solver_new_scratch(struct solver_usage *usage) scratch->rowidx = snewn(cr, unsigned char); scratch->colidx = snewn(cr, unsigned char); scratch->set = snewn(cr, unsigned char); - scratch->neighbours = snewn(3*cr, int); + scratch->neighbours = snewn(5*cr, int); scratch->bfsqueue = snewn(cr*cr, int); #ifdef STANDALONE_SOLVER scratch->bfsprev = snewn(cr*cr, int); #endif + scratch->indexlist = snewn(cr*cr, int); /* used for set elimination */ + scratch->indexlist2 = snewn(cr, int); /* only used for intersect() */ return scratch; } @@ -1228,15 +1178,17 @@ static void solver_free_scratch(struct solver_scratch *scratch) sfree(scratch->colidx); sfree(scratch->rowidx); sfree(scratch->grid); + sfree(scratch->indexlist); + sfree(scratch->indexlist2); sfree(scratch); } -static int solver(int c, int r, digit *grid, int maxdiff) +static int solver(int cr, struct block_structure *blocks, int xtype, + digit *grid, int maxdiff) { struct solver_usage *usage; struct solver_scratch *scratch; - int cr = c*r; - int x, y, x2, y2, n, ret; + int x, y, b, i, n, ret; int diff = DIFF_BLOCK; /* @@ -1244,9 +1196,8 @@ static int solver(int c, int r, digit *grid, int maxdiff) * possible). */ usage = snew(struct solver_usage); - usage->c = c; - usage->r = r; usage->cr = cr; + usage->blocks = blocks; usage->cube = snewn(cr*cr*cr, unsigned char); usage->grid = grid; /* write straight back to the input */ memset(usage->cube, TRUE, cr*cr*cr); @@ -1258,6 +1209,12 @@ static int solver(int c, int r, digit *grid, int maxdiff) memset(usage->col, FALSE, cr * cr); memset(usage->blk, FALSE, cr * cr); + if (xtype) { + usage->diag = snewn(cr * 2, unsigned char); + memset(usage->diag, FALSE, cr * 2); + } else + usage->diag = NULL; + scratch = solver_new_scratch(usage); /* @@ -1266,7 +1223,7 @@ static int solver(int c, int r, digit *grid, int maxdiff) for (x = 0; x < cr; x++) for (y = 0; y < cr; y++) if (grid[y*cr+x]) - solver_place(usage, x, YTRANS(y), grid[y*cr+x]); + solver_place(usage, x, y, grid[y*cr+x]); /* * Now loop over the grid repeatedly trying all permitted modes @@ -1288,24 +1245,26 @@ static int solver(int c, int r, digit *grid, int maxdiff) /* * Blockwise positional elimination. */ - for (x = 0; x < cr; x += r) - for (y = 0; y < r; y++) - for (n = 1; n <= cr; n++) - if (!usage->blk[(y*c+(x/r))*cr+n-1]) { - ret = solver_elim(usage, cubepos(x,y,n), r*cr + for (b = 0; b < cr; b++) + for (n = 1; n <= cr; n++) + if (!usage->blk[b*cr+n-1]) { + for (i = 0; i < cr; i++) + scratch->indexlist[i] = cubepos2(usage->blocks->blocks[b][i],n); + ret = solver_elim(usage, scratch->indexlist #ifdef STANDALONE_SOLVER - , "positional elimination," - " %d in block (%d,%d)", n, 1+x/r, 1+y + , "positional elimination," + " %d in block %s", n, + usage->blocks->blocknames[b] #endif - ); - if (ret < 0) { - diff = DIFF_IMPOSSIBLE; - goto got_result; - } else if (ret > 0) { - diff = max(diff, DIFF_BLOCK); - goto cont; - } - } + ); + if (ret < 0) { + diff = DIFF_IMPOSSIBLE; + goto got_result; + } else if (ret > 0) { + diff = max(diff, DIFF_BLOCK); + goto cont; + } + } if (maxdiff <= DIFF_BLOCK) break; @@ -1316,10 +1275,12 @@ static int solver(int c, int r, digit *grid, int maxdiff) for (y = 0; y < cr; y++) for (n = 1; n <= cr; n++) if (!usage->row[y*cr+n-1]) { - ret = solver_elim(usage, cubepos(0,y,n), cr*cr + for (x = 0; x < cr; x++) + scratch->indexlist[x] = cubepos(x, y, n); + ret = solver_elim(usage, scratch->indexlist #ifdef STANDALONE_SOLVER , "positional elimination," - " %d in row %d", n, 1+YUNTRANS(y) + " %d in row %d", n, 1+y #endif ); if (ret < 0) { @@ -1336,7 +1297,9 @@ static int solver(int c, int r, digit *grid, int maxdiff) for (x = 0; x < cr; x++) for (n = 1; n <= cr; n++) if (!usage->col[x*cr+n-1]) { - ret = solver_elim(usage, cubepos(x,0,n), cr + for (y = 0; y < cr; y++) + scratch->indexlist[y] = cubepos(x, y, n); + ret = solver_elim(usage, scratch->indexlist #ifdef STANDALONE_SOLVER , "positional elimination," " %d in column %d", n, 1+x @@ -1352,15 +1315,59 @@ static int solver(int c, int r, digit *grid, int maxdiff) } /* + * X-diagonal positional elimination. + */ + if (usage->diag) { + for (n = 1; n <= cr; n++) + if (!usage->diag[n-1]) { + for (i = 0; i < cr; i++) + scratch->indexlist[i] = cubepos2(diag0(i), n); + ret = solver_elim(usage, scratch->indexlist +#ifdef STANDALONE_SOLVER + , "positional elimination," + " %d in \\-diagonal", n +#endif + ); + if (ret < 0) { + diff = DIFF_IMPOSSIBLE; + goto got_result; + } else if (ret > 0) { + diff = max(diff, DIFF_SIMPLE); + goto cont; + } + } + for (n = 1; n <= cr; n++) + if (!usage->diag[cr+n-1]) { + for (i = 0; i < cr; i++) + scratch->indexlist[i] = cubepos2(diag1(i), n); + ret = solver_elim(usage, scratch->indexlist +#ifdef STANDALONE_SOLVER + , "positional elimination," + " %d in /-diagonal", n +#endif + ); + if (ret < 0) { + diff = DIFF_IMPOSSIBLE; + goto got_result; + } else if (ret > 0) { + diff = max(diff, DIFF_SIMPLE); + goto cont; + } + } + } + + /* * Numeric elimination. */ for (x = 0; x < cr; x++) for (y = 0; y < cr; y++) - if (!usage->grid[YUNTRANS(y)*cr+x]) { - ret = solver_elim(usage, cubepos(x,y,1), 1 + if (!usage->grid[y*cr+x]) { + for (n = 1; n <= cr; n++) + scratch->indexlist[n-1] = cubepos(x, y, n); + ret = solver_elim(usage, scratch->indexlist #ifdef STANDALONE_SOLVER - , "numeric elimination at (%d,%d)", 1+x, - 1+YUNTRANS(y) + , "numeric elimination at (%d,%d)", + 1+x, 1+y #endif ); if (ret < 0) { @@ -1379,60 +1386,140 @@ static int solver(int c, int r, digit *grid, int maxdiff) * Intersectional analysis, rows vs blocks. */ for (y = 0; y < cr; y++) - for (x = 0; x < cr; x += r) - for (n = 1; n <= cr; n++) + for (b = 0; b < cr; b++) + for (n = 1; n <= cr; n++) { + if (usage->row[y*cr+n-1] || + usage->blk[b*cr+n-1]) + continue; + for (i = 0; i < cr; i++) { + scratch->indexlist[i] = cubepos(i, y, n); + scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n); + } /* * solver_intersect() never returns -1. */ - if (!usage->row[y*cr+n-1] && - !usage->blk[((y%r)*c+(x/r))*cr+n-1] && - (solver_intersect(usage, cubepos(0,y,n), cr*cr, - cubepos(x,y%r,n), r*cr + if (solver_intersect(usage, scratch->indexlist, + scratch->indexlist2 #ifdef STANDALONE_SOLVER , "intersectional analysis," - " %d in row %d vs block (%d,%d)", - n, 1+YUNTRANS(y), 1+x/r, 1+y%r + " %d in row %d vs block %s", + n, 1+y, usage->blocks->blocknames[b] #endif ) || - solver_intersect(usage, cubepos(x,y%r,n), r*cr, - cubepos(0,y,n), cr*cr + solver_intersect(usage, scratch->indexlist2, + scratch->indexlist #ifdef STANDALONE_SOLVER , "intersectional analysis," - " %d in block (%d,%d) vs row %d", - n, 1+x/r, 1+y%r, 1+YUNTRANS(y) + " %d in block %s vs row %d", + n, usage->blocks->blocknames[b], 1+y #endif - ))) { + )) { diff = max(diff, DIFF_INTERSECT); goto cont; } + } /* * Intersectional analysis, columns vs blocks. */ for (x = 0; x < cr; x++) - for (y = 0; y < r; y++) - for (n = 1; n <= cr; n++) - if (!usage->col[x*cr+n-1] && - !usage->blk[(y*c+(x/r))*cr+n-1] && - (solver_intersect(usage, cubepos(x,0,n), cr, - cubepos((x/r)*r,y,n), r*cr + for (b = 0; b < cr; b++) + for (n = 1; n <= cr; n++) { + if (usage->col[x*cr+n-1] || + usage->blk[b*cr+n-1]) + continue; + for (i = 0; i < cr; i++) { + scratch->indexlist[i] = cubepos(x, i, n); + scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n); + } + if (solver_intersect(usage, scratch->indexlist, + scratch->indexlist2 +#ifdef STANDALONE_SOLVER + , "intersectional analysis," + " %d in column %d vs block %s", + n, 1+x, usage->blocks->blocknames[b] +#endif + ) || + solver_intersect(usage, scratch->indexlist2, + scratch->indexlist +#ifdef STANDALONE_SOLVER + , "intersectional analysis," + " %d in block %s vs column %d", + n, usage->blocks->blocknames[b], 1+x +#endif + )) { + diff = max(diff, DIFF_INTERSECT); + goto cont; + } + } + + if (usage->diag) { + /* + * Intersectional analysis, \-diagonal vs blocks. + */ + for (b = 0; b < cr; b++) + for (n = 1; n <= cr; n++) { + if (usage->diag[n-1] || + usage->blk[b*cr+n-1]) + continue; + for (i = 0; i < cr; i++) { + scratch->indexlist[i] = cubepos2(diag0(i), n); + scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n); + } + if (solver_intersect(usage, scratch->indexlist, + scratch->indexlist2 +#ifdef STANDALONE_SOLVER + , "intersectional analysis," + " %d in \\-diagonal vs block %s", + n, 1+x, usage->blocks->blocknames[b] +#endif + ) || + solver_intersect(usage, scratch->indexlist2, + scratch->indexlist +#ifdef STANDALONE_SOLVER + , "intersectional analysis," + " %d in block %s vs \\-diagonal", + n, usage->blocks->blocknames[b], 1+x +#endif + )) { + diff = max(diff, DIFF_INTERSECT); + goto cont; + } + } + + /* + * Intersectional analysis, /-diagonal vs blocks. + */ + for (b = 0; b < cr; b++) + for (n = 1; n <= cr; n++) { + if (usage->diag[cr+n-1] || + usage->blk[b*cr+n-1]) + continue; + for (i = 0; i < cr; i++) { + scratch->indexlist[i] = cubepos2(diag1(i), n); + scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n); + } + if (solver_intersect(usage, scratch->indexlist, + scratch->indexlist2 #ifdef STANDALONE_SOLVER , "intersectional analysis," - " %d in column %d vs block (%d,%d)", - n, 1+x, 1+x/r, 1+y + " %d in /-diagonal vs block %s", + n, 1+x, usage->blocks->blocknames[b] #endif ) || - solver_intersect(usage, cubepos((x/r)*r,y,n), r*cr, - cubepos(x,0,n), cr + solver_intersect(usage, scratch->indexlist2, + scratch->indexlist #ifdef STANDALONE_SOLVER , "intersectional analysis," - " %d in block (%d,%d) vs column %d", - n, 1+x/r, 1+y, 1+x + " %d in block %s vs /-diagonal", + n, usage->blocks->blocknames[b], 1+x #endif - ))) { + )) { diff = max(diff, DIFF_INTERSECT); goto cont; } + } + } if (maxdiff <= DIFF_INTERSECT) break; @@ -1440,29 +1527,35 @@ static int solver(int c, int r, digit *grid, int maxdiff) /* * Blockwise set elimination. */ - for (x = 0; x < cr; x += r) - for (y = 0; y < r; y++) { - ret = solver_set(usage, scratch, cubepos(x,y,1), r*cr, 1 + for (b = 0; b < cr; b++) { + for (i = 0; i < cr; i++) + for (n = 1; n <= cr; n++) + scratch->indexlist[i*cr+n-1] = cubepos2(usage->blocks->blocks[b][i], n); + ret = solver_set(usage, scratch, scratch->indexlist #ifdef STANDALONE_SOLVER - , "set elimination, block (%d,%d)", 1+x/r, 1+y + , "set elimination, block %s", + usage->blocks->blocknames[b] #endif ); - if (ret < 0) { - diff = DIFF_IMPOSSIBLE; - goto got_result; - } else if (ret > 0) { - diff = max(diff, DIFF_SET); - goto cont; - } + if (ret < 0) { + diff = DIFF_IMPOSSIBLE; + goto got_result; + } else if (ret > 0) { + diff = max(diff, DIFF_SET); + goto cont; } + } /* * Row-wise set elimination. */ for (y = 0; y < cr; y++) { - ret = solver_set(usage, scratch, cubepos(0,y,1), cr*cr, 1 + for (x = 0; x < cr; x++) + for (n = 1; n <= cr; n++) + scratch->indexlist[x*cr+n-1] = cubepos(x, y, n); + ret = solver_set(usage, scratch, scratch->indexlist #ifdef STANDALONE_SOLVER - , "set elimination, row %d", 1+YUNTRANS(y) + , "set elimination, row %d", 1+y #endif ); if (ret < 0) { @@ -1478,7 +1571,10 @@ static int solver(int c, int r, digit *grid, int maxdiff) * Column-wise set elimination. */ for (x = 0; x < cr; x++) { - ret = solver_set(usage, scratch, cubepos(x,0,1), cr, 1 + for (y = 0; y < cr; y++) + for (n = 1; n <= cr; n++) + scratch->indexlist[y*cr+n-1] = cubepos(x, y, n); + ret = solver_set(usage, scratch, scratch->indexlist #ifdef STANDALONE_SOLVER , "set elimination, column %d", 1+x #endif @@ -1492,11 +1588,57 @@ static int solver(int c, int r, digit *grid, int maxdiff) } } + if (usage->diag) { + /* + * \-diagonal set elimination. + */ + for (i = 0; i < cr; i++) + for (n = 1; n <= cr; n++) + scratch->indexlist[i*cr+n-1] = cubepos2(diag0(i), n); + ret = solver_set(usage, scratch, scratch->indexlist +#ifdef STANDALONE_SOLVER + , "set elimination, \\-diagonal" +#endif + ); + if (ret < 0) { + diff = DIFF_IMPOSSIBLE; + goto got_result; + } else if (ret > 0) { + diff = max(diff, DIFF_SET); + goto cont; + } + + /* + * /-diagonal set elimination. + */ + for (i = 0; i < cr; i++) + for (n = 1; n <= cr; n++) + scratch->indexlist[i*cr+n-1] = cubepos2(diag1(i), n); + ret = solver_set(usage, scratch, scratch->indexlist +#ifdef STANDALONE_SOLVER + , "set elimination, \\-diagonal" +#endif + ); + if (ret < 0) { + diff = DIFF_IMPOSSIBLE; + goto got_result; + } else if (ret > 0) { + diff = max(diff, DIFF_SET); + goto cont; + } + } + + if (maxdiff <= DIFF_SET) + break; + /* * Row-vs-column set elimination on a single number. */ for (n = 1; n <= cr; n++) { - ret = solver_set(usage, scratch, cubepos(0,0,n), cr*cr, cr + for (y = 0; y < cr; y++) + for (x = 0; x < cr; x++) + scratch->indexlist[y*cr+x] = cubepos(x, y, n); + ret = solver_set(usage, scratch, scratch->indexlist #ifdef STANDALONE_SOLVER , "positional set elimination, number %d", n #endif @@ -1510,45 +1652,6 @@ static int solver(int c, int r, digit *grid, int maxdiff) } } - /* - * Mutual neighbour elimination. - */ - for (y = 0; y+1 < cr; y++) { - for (x = 0; x+1 < cr; x++) { - for (y2 = y+1; y2 < cr; y2++) { - for (x2 = x+1; x2 < cr; x2++) { - /* - * Can't do mutual neighbour elimination - * between elements of the same actual - * block. - */ - if (x/r == x2/r && y%r == y2%r) - continue; - - /* - * Otherwise, try (x,y) vs (x2,y2) in both - * directions, and likewise (x2,y) vs - * (x,y2). - */ - if (!usage->grid[YUNTRANS(y)*cr+x] && - !usage->grid[YUNTRANS(y2)*cr+x2] && - (solver_mne(usage, scratch, x, y, x2, y2) || - solver_mne(usage, scratch, x2, y2, x, y))) { - diff = max(diff, DIFF_EXTREME); - goto cont; - } - if (!usage->grid[YUNTRANS(y)*cr+x2] && - !usage->grid[YUNTRANS(y2)*cr+x] && - (solver_mne(usage, scratch, x2, y, x, y2) || - solver_mne(usage, scratch, x, y2, x2, y))) { - diff = max(diff, DIFF_EXTREME); - goto cont; - } - } - } - } - } - /* * Forcing chains. */ @@ -1588,7 +1691,7 @@ static int solver(int c, int r, digit *grid, int maxdiff) */ count = 0; for (n = 1; n <= cr; n++) - if (cube(x,YTRANS(y),n)) + if (cube(x,y,n)) count++; /* @@ -1622,14 +1725,14 @@ static int solver(int c, int r, digit *grid, int maxdiff) /* Make a list of the possible digits. */ for (j = 0, n = 1; n <= cr; n++) - if (cube(x,YTRANS(y),n)) + if (cube(x,y,n)) list[j++] = n; #ifdef STANDALONE_SOLVER if (solver_show_working) { char *sep = ""; printf("%*srecursing on (%d,%d) [", - solver_recurse_depth*4, "", x, y); + solver_recurse_depth*4, "", x + 1, y + 1); for (i = 0; i < j; i++) { printf("%s%d", sep, list[i]); sep = " or "; @@ -1651,17 +1754,17 @@ static int solver(int c, int r, digit *grid, int maxdiff) #ifdef STANDALONE_SOLVER if (solver_show_working) printf("%*sguessing %d at (%d,%d)\n", - solver_recurse_depth*4, "", list[i], x, y); + solver_recurse_depth*4, "", list[i], x + 1, y + 1); solver_recurse_depth++; #endif - ret = solver(c, r, outgrid, maxdiff); + ret = solver(cr, blocks, xtype, outgrid, maxdiff); #ifdef STANDALONE_SOLVER solver_recurse_depth--; if (solver_show_working) { printf("%*sretracting %d at (%d,%d)\n", - solver_recurse_depth*4, "", list[i], x, y); + solver_recurse_depth*4, "", list[i], x + 1, y + 1); } #endif @@ -1767,7 +1870,8 @@ static int solver(int c, int r, digit *grid, int maxdiff) */ struct gridgen_coord { int x, y, r; }; struct gridgen_usage { - int c, r, cr; /* cr == c*r */ + int cr; + struct block_structure *blocks; /* grid is a copy of the input grid, modified as we go along */ digit *grid; /* row[y*cr+n-1] TRUE if digit n has been placed in row y */ @@ -1776,6 +1880,8 @@ struct gridgen_usage { unsigned char *col; /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */ unsigned char *blk; + /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */ + unsigned char *diag; /* This lists all the empty spaces remaining in the grid. */ struct gridgen_coord *spaces; int nspaces; @@ -1783,12 +1889,30 @@ struct gridgen_usage { random_state *rs; }; +static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n, + int placing) +{ + int cr = usage->cr; + usage->row[y*cr+n-1] = usage->col[x*cr+n-1] = + usage->blk[usage->blocks->whichblock[y*cr+x]*cr+n-1] = placing; + if (usage->diag) { + if (ondiag0(y*cr+x)) + usage->diag[n-1] = placing; + if (ondiag1(y*cr+x)) + usage->diag[cr+n-1] = placing; + } + usage->grid[y*cr+x] = placing ? n : 0; +} + /* * The real recursive step in the generating function. + * + * Return values: 1 means solution found, 0 means no solution + * found on this branch. */ -static int gridgen_real(struct gridgen_usage *usage, digit *grid) +static int gridgen_real(struct gridgen_usage *usage, digit *grid, int *steps) { - int c = usage->c, r = usage->r, cr = usage->cr; + int cr = usage->cr; int i, j, n, sx, sy, bestm, bestr, ret; int *digits; @@ -1796,10 +1920,15 @@ static int gridgen_real(struct gridgen_usage *usage, digit *grid) * Firstly, check for completion! If there are no spaces left * in the grid, we have a solution. */ - if (usage->nspaces == 0) { - memcpy(grid, usage->grid, cr * cr); + if (usage->nspaces == 0) return TRUE; - } + + /* + * Next, abandon generation if we went over our steps limit. + */ + if (*steps <= 0) + return FALSE; + (*steps)--; /* * Otherwise, there must be at least one space. Find the most @@ -1818,7 +1947,9 @@ static int gridgen_real(struct gridgen_usage *usage, digit *grid) m = 0; for (n = 0; n < cr; n++) if (!usage->row[y*cr+n] && !usage->col[x*cr+n] && - !usage->blk[((y/c)*c+(x/r))*cr+n]) + !usage->blk[usage->blocks->whichblock[y*cr+x]*cr+n] && + (!usage->diag || ((!ondiag0(y*cr+x) || !usage->diag[n]) && + (!ondiag1(y*cr+x) || !usage->diag[cr+n])))) m++; if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) { @@ -1850,7 +1981,9 @@ static int gridgen_real(struct gridgen_usage *usage, digit *grid) j = 0; for (n = 0; n < cr; n++) if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] && - !usage->blk[((sy/c)*c+(sx/r))*cr+n]) { + !usage->blk[usage->blocks->whichblock[sy*cr+sx]*cr+n] && + (!usage->diag || ((!ondiag0(sy*cr+sx) || !usage->diag[n]) && + (!ondiag1(sy*cr+sx) || !usage->diag[cr+n])))) { digits[j++] = n+1; } @@ -1863,23 +1996,18 @@ static int gridgen_real(struct gridgen_usage *usage, digit *grid) n = digits[i]; /* Update the usage structure to reflect the placing of this digit. */ - usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] = - usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE; - usage->grid[sy*cr+sx] = n; + gridgen_place(usage, sx, sy, n, TRUE); usage->nspaces--; /* Call the solver recursively. Stop when we find a solution. */ - if (gridgen_real(usage, grid)) + if (gridgen_real(usage, grid, steps)) { ret = TRUE; + break; + } /* Revert the usage structure. */ - usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] = - usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE; - usage->grid[sy*cr+sx] = 0; + gridgen_place(usage, sx, sy, n, FALSE); usage->nspaces++; - - if (ret) - break; } sfree(digits); @@ -1887,13 +2015,14 @@ static int gridgen_real(struct gridgen_usage *usage, digit *grid) } /* - * Entry point to generator. You give it dimensions and a starting + * Entry point to generator. You give it parameters and a starting * grid, which is simply an array of cr*cr digits. */ -static void gridgen(int c, int r, digit *grid, random_state *rs) +static int gridgen(int cr, struct block_structure *blocks, int xtype, + digit *grid, random_state *rs, int maxsteps) { struct gridgen_usage *usage; - int x, y, cr = c*r; + int x, y, ret; /* * Clear the grid to start with. @@ -1905,12 +2034,10 @@ static void gridgen(int c, int r, digit *grid, random_state *rs) */ usage = snew(struct gridgen_usage); - usage->c = c; - usage->r = r; usage->cr = cr; + usage->blocks = blocks; - usage->grid = snewn(cr * cr, digit); - memcpy(usage->grid, grid, cr * cr); + usage->grid = grid; usage->row = snewn(cr * cr, unsigned char); usage->col = snewn(cr * cr, unsigned char); @@ -1919,15 +2046,36 @@ static void gridgen(int c, int r, digit *grid, random_state *rs) memset(usage->col, FALSE, cr * cr); memset(usage->blk, FALSE, cr * cr); + if (xtype) { + usage->diag = snewn(2 * cr, unsigned char); + memset(usage->diag, FALSE, 2 * cr); + } else { + usage->diag = NULL; + } + + /* + * Begin by filling in the whole top row with randomly chosen + * numbers. This cannot introduce any bias or restriction on + * the available grids, since we already know those numbers + * are all distinct so all we're doing is choosing their + * labels. + */ + for (x = 0; x < cr; x++) + grid[x] = x+1; + shuffle(grid, cr, sizeof(*grid), rs); + for (x = 0; x < cr; x++) + gridgen_place(usage, x, 0, grid[x], TRUE); + usage->spaces = snewn(cr * cr, struct gridgen_coord); usage->nspaces = 0; usage->rs = rs; /* - * Initialise the list of grid spaces. + * Initialise the list of grid spaces, taking care to leave + * out the row I've already filled in above. */ - for (y = 0; y < cr; y++) { + for (y = 1; y < cr; y++) { for (x = 0; x < cr; x++) { usage->spaces[usage->nspaces].x = x; usage->spaces[usage->nspaces].y = y; @@ -1939,7 +2087,7 @@ static void gridgen(int c, int r, digit *grid, random_state *rs) /* * Run the real generator function. */ - gridgen_real(usage, grid); + ret = gridgen_real(usage, grid, &maxsteps); /* * Clean up the usage structure now we have our answer. @@ -1948,8 +2096,9 @@ static void gridgen(int c, int r, digit *grid, random_state *rs) sfree(usage->blk); sfree(usage->col); sfree(usage->row); - sfree(usage->grid); sfree(usage); + + return ret; } /* ---------------------------------------------------------------------- @@ -1959,11 +2108,11 @@ static void gridgen(int c, int r, digit *grid, random_state *rs) /* * Check whether a grid contains a valid complete puzzle. */ -static int check_valid(int c, int r, digit *grid) +static int check_valid(int cr, struct block_structure *blocks, int xtype, + digit *grid) { - int cr = c*r; unsigned char *used; - int x, y, n; + int x, y, i, j, n; used = snewn(cr, unsigned char); @@ -2000,20 +2149,40 @@ static int check_valid(int c, int r, digit *grid) /* * Check that each block contains precisely one of everything. */ - for (x = 0; x < cr; x += r) { - for (y = 0; y < cr; y += c) { - int xx, yy; - memset(used, FALSE, cr); - for (xx = x; xx < x+r; xx++) - for (yy = 0; yy < y+c; yy++) - if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr) - used[grid[yy*cr+xx]-1] = TRUE; - for (n = 0; n < cr; n++) - if (!used[n]) { - sfree(used); - return FALSE; - } - } + for (i = 0; i < cr; i++) { + memset(used, FALSE, cr); + for (j = 0; j < cr; j++) + if (grid[blocks->blocks[i][j]] > 0 && + grid[blocks->blocks[i][j]] <= cr) + used[grid[blocks->blocks[i][j]]-1] = TRUE; + for (n = 0; n < cr; n++) + if (!used[n]) { + sfree(used); + return FALSE; + } + } + + /* + * Check that each diagonal contains precisely one of everything. + */ + if (xtype) { + memset(used, FALSE, cr); + for (i = 0; i < cr; i++) + if (grid[diag0(i)] > 0 && grid[diag0(i)] <= cr) + used[grid[diag0(i)]-1] = TRUE; + for (n = 0; n < cr; n++) + if (!used[n]) { + sfree(used); + return FALSE; + } + for (i = 0; i < cr; i++) + if (grid[diag1(i)] > 0 && grid[diag1(i)] <= cr) + used[grid[diag1(i)]-1] = TRUE; + for (n = 0; n < cr; n++) + if (!used[n]) { + sfree(used); + return FALSE; + } } sfree(used); @@ -2120,6 +2289,7 @@ static char *new_game_desc(game_params *params, random_state *rs, { int c = params->c, r = params->r, cr = c*r; int area = cr*cr; + struct block_structure *blocks; digit *grid, *grid2; struct xy { int x, y; } *locs; int nlocs; @@ -2142,17 +2312,58 @@ static char *new_game_desc(game_params *params, random_state *rs, locs = snewn(area, struct xy); grid2 = snewn(area, digit); + blocks = snew(struct block_structure); + blocks->c = params->c; blocks->r = params->r; + blocks->whichblock = snewn(area*2, int); + blocks->blocks = snewn(cr, int *); + for (i = 0; i < cr; i++) + blocks->blocks[i] = blocks->whichblock + area + i*cr; +#ifdef STANDALONE_SOLVER + assert(!"This should never happen, so we don't need to create blocknames"); +#endif + /* * Loop until we get a grid of the required difficulty. This is * nasty, but it seems to be unpleasantly hard to generate * difficult grids otherwise. */ - do { + while (1) { /* - * Generate a random solved state. + * Generate a random solved state, starting by + * constructing the block structure. */ - gridgen(c, r, grid, rs); - assert(check_valid(c, r, grid)); + if (r == 1) { /* jigsaw mode */ + int *dsf = divvy_rectangle(cr, cr, cr, rs); + int nb = 0; + + for (i = 0; i < area; i++) + blocks->whichblock[i] = -1; + for (i = 0; i < area; i++) { + int j = dsf_canonify(dsf, i); + if (blocks->whichblock[j] < 0) + blocks->whichblock[j] = nb++; + blocks->whichblock[i] = blocks->whichblock[j]; + } + assert(nb == cr); + + sfree(dsf); + } else { /* basic Sudoku mode */ + for (y = 0; y < cr; y++) + for (x = 0; x < cr; x++) + blocks->whichblock[y*cr+x] = (y/c) * c + (x/r); + } + for (i = 0; i < cr; i++) + blocks->blocks[i][cr-1] = 0; + for (i = 0; i < area; i++) { + int b = blocks->whichblock[i]; + j = blocks->blocks[b][cr-1]++; + assert(j < cr); + blocks->blocks[b][j] = i; + } + + if (!gridgen(cr, blocks, params->xtype, grid, rs, area*area)) + continue; + assert(check_valid(cr, blocks, params->xtype, grid)); /* * Save the solved grid in aux. @@ -2219,7 +2430,7 @@ static char *new_game_desc(game_params *params, random_state *rs, for (j = 0; j < ncoords; j++) grid2[coords[2*j+1]*cr+coords[2*j]] = 0; - ret = solver(c, r, grid2, maxdiff); + ret = solver(cr, blocks, params->xtype, grid2, maxdiff); if (ret <= maxdiff) { for (j = 0; j < ncoords; j++) grid[coords[2*j+1]*cr+coords[2*j]] = 0; @@ -2227,7 +2438,10 @@ static char *new_game_desc(game_params *params, random_state *rs, } memcpy(grid2, grid, area); - } while (solver(c, r, grid2, maxdiff) < maxdiff); + + if (solver(cr, blocks, params->xtype, grid2, maxdiff) == maxdiff) + break; /* found one! */ + } sfree(grid2); sfree(locs); @@ -2240,7 +2454,7 @@ static char *new_game_desc(game_params *params, random_state *rs, char *p; int run, i; - desc = snewn(5 * area, char); + desc = snewn(7 * area, char); p = desc; run = 0; for (i = 0; i <= area; i++) { @@ -2271,7 +2485,60 @@ static char *new_game_desc(game_params *params, random_state *rs, run = 0; } } - assert(p - desc < 5 * area); + + if (r == 1) { + int currrun = 0; + + *p++ = ','; + + /* + * Encode the block structure. We do this by encoding + * the pattern of dividing lines: first we iterate + * over the cr*(cr-1) internal vertical grid lines in + * ordinary reading order, then over the cr*(cr-1) + * internal horizontal ones in transposed reading + * order. + * + * We encode the number of non-lines between the + * lines; _ means zero (two adjacent divisions), a + * means 1, ..., y means 25, and z means 25 non-lines + * _and no following line_ (so that za means 26, zb 27 + * etc). + */ + for (i = 0; i <= 2*cr*(cr-1); i++) { + int p0, p1, edge; + + if (i == 2*cr*(cr-1)) { + edge = TRUE; /* terminating virtual edge */ + } else { + if (i < cr*(cr-1)) { + y = i/(cr-1); + x = i%(cr-1); + p0 = y*cr+x; + p1 = y*cr+x+1; + } else { + x = i/(cr-1) - cr; + y = i%(cr-1); + p0 = y*cr+x; + p1 = (y+1)*cr+x; + } + edge = (blocks->whichblock[p0] != blocks->whichblock[p1]); + } + + if (edge) { + while (currrun > 25) + *p++ = 'z', currrun -= 25; + if (currrun) + *p++ = 'a'-1 + currrun; + else + *p++ = '_'; + currrun = 0; + } else + currrun++; + } + } + + assert(p - desc < 7 * area); *p++ = '\0'; desc = sresize(desc, p - desc, char); } @@ -2283,10 +2550,11 @@ static char *new_game_desc(game_params *params, random_state *rs, static char *validate_desc(game_params *params, char *desc) { - int area = params->r * params->r * params->c * params->c; + int cr = params->c * params->r, area = cr*cr; int squares = 0; + int *dsf; - while (*desc) { + while (*desc && *desc != ',') { int n = *desc++; if (n >= 'a' && n <= 'z') { squares += n - 'a' + 1; @@ -2309,6 +2577,140 @@ static char *validate_desc(game_params *params, char *desc) if (squares > area) return "Too much data to fit in grid"; + if (params->r == 1) { + int pos; + + /* + * Now we expect a suffix giving the jigsaw block + * structure. Parse it and validate that it divides the + * grid into the right number of regions which are the + * right size. + */ + if (*desc != ',') + return "Expected jigsaw block structure in game description"; + pos = 0; + + dsf = snew_dsf(area); + desc++; + + while (*desc) { + int c, adv; + + if (*desc == '_') + c = 0; + else if (*desc >= 'a' && *desc <= 'z') + c = *desc - 'a' + 1; + else { + sfree(dsf); + return "Invalid character in game description"; + } + desc++; + + adv = (c != 25); /* 'z' is a special case */ + + while (c-- > 0) { + int p0, p1; + + /* + * Non-edge; merge the two dsf classes on either + * side of it. + */ + if (pos >= 2*cr*(cr-1)) { + sfree(dsf); + return "Too much data in block structure specification"; + } else if (pos < cr*(cr-1)) { + int y = pos/(cr-1); + int x = pos%(cr-1); + p0 = y*cr+x; + p1 = y*cr+x+1; + } else { + int x = pos/(cr-1) - cr; + int y = pos%(cr-1); + p0 = y*cr+x; + p1 = (y+1)*cr+x; + } + dsf_merge(dsf, p0, p1); + + pos++; + } + if (adv) + pos++; + } + + /* + * When desc is exhausted, we expect to have gone exactly + * one space _past_ the end of the grid, due to the dummy + * edge at the end. + */ + if (pos != 2*cr*(cr-1)+1) { + sfree(dsf); + return "Not enough data in block structure specification"; + } + + /* + * Now we've got our dsf. Verify that it matches + * expectations. + */ + { + int *canons, *counts; + int i, j, c, ncanons = 0; + + canons = snewn(cr, int); + counts = snewn(cr, int); + + for (i = 0; i < area; i++) { + j = dsf_canonify(dsf, i); + + for (c = 0; c < ncanons; c++) + if (canons[c] == j) { + counts[c]++; + if (counts[c] > cr) { + sfree(dsf); + sfree(canons); + sfree(counts); + return "A jigsaw block is too big"; + } + break; + } + + if (c == ncanons) { + if (ncanons >= cr) { + sfree(dsf); + sfree(canons); + sfree(counts); + return "Too many distinct jigsaw blocks"; + } + canons[ncanons] = j; + counts[ncanons] = 1; + ncanons++; + } + } + + /* + * If we've managed to get through that loop without + * tripping either of the error conditions, then we + * must have partitioned the entire grid into at most + * cr blocks of at most cr squares each; therefore we + * must have _exactly_ cr blocks of _exactly_ cr + * squares each. I'll verify that by assertion just in + * case something has gone horribly wrong, but it + * shouldn't have been able to happen by duff input, + * only by a bug in the above code. + */ + assert(ncanons == cr); + for (c = 0; c < ncanons; c++) + assert(counts[c] == cr); + + sfree(canons); + sfree(counts); + } + + sfree(dsf); + } else { + if (*desc) + return "Unexpected jigsaw block structure in game description"; + } + return NULL; } @@ -2318,8 +2720,8 @@ static game_state *new_game(midend *me, game_params *params, char *desc) int c = params->c, r = params->r, cr = c*r, area = cr * cr; int i; - state->c = params->c; - state->r = params->r; + state->cr = cr; + state->xtype = params->xtype; state->grid = snewn(area, digit); state->pencil = snewn(area * cr, unsigned char); @@ -2327,10 +2729,21 @@ static game_state *new_game(midend *me, game_params *params, char *desc) state->immutable = snewn(area, unsigned char); memset(state->immutable, FALSE, area); + state->blocks = snew(struct block_structure); + state->blocks->c = c; state->blocks->r = r; + state->blocks->refcount = 1; + state->blocks->whichblock = snewn(area*2, int); + state->blocks->blocks = snewn(cr, int *); + for (i = 0; i < cr; i++) + state->blocks->blocks[i] = state->blocks->whichblock + area + i*cr; +#ifdef STANDALONE_SOLVER + state->blocks->blocknames = (char **)smalloc(cr*(sizeof(char *)+80)); +#endif + state->completed = state->cheated = FALSE; i = 0; - while (*desc) { + while (*desc && *desc != ',') { int n = *desc++; if (n >= 'a' && n <= 'z') { int run = n - 'a' + 1; @@ -2351,16 +2764,147 @@ static game_state *new_game(midend *me, game_params *params, char *desc) } assert(i == area); + if (r == 1) { + int pos = 0; + int *dsf; + int nb; + + assert(*desc == ','); + + dsf = snew_dsf(area); + desc++; + + while (*desc) { + int c, adv; + + if (*desc == '_') + c = 0; + else { + assert(*desc >= 'a' && *desc <= 'z'); + c = *desc - 'a' + 1; + } + desc++; + + adv = (c != 25); /* 'z' is a special case */ + + while (c-- > 0) { + int p0, p1; + + /* + * Non-edge; merge the two dsf classes on either + * side of it. + */ + assert(pos < 2*cr*(cr-1)); + if (pos < cr*(cr-1)) { + int y = pos/(cr-1); + int x = pos%(cr-1); + p0 = y*cr+x; + p1 = y*cr+x+1; + } else { + int x = pos/(cr-1) - cr; + int y = pos%(cr-1); + p0 = y*cr+x; + p1 = (y+1)*cr+x; + } + dsf_merge(dsf, p0, p1); + + pos++; + } + if (adv) + pos++; + } + + /* + * When desc is exhausted, we expect to have gone exactly + * one space _past_ the end of the grid, due to the dummy + * edge at the end. + */ + assert(pos == 2*cr*(cr-1)+1); + + /* + * Now we've got our dsf. Translate it into a block + * structure. + */ + nb = 0; + for (i = 0; i < area; i++) + state->blocks->whichblock[i] = -1; + for (i = 0; i < area; i++) { + int j = dsf_canonify(dsf, i); + if (state->blocks->whichblock[j] < 0) + state->blocks->whichblock[j] = nb++; + state->blocks->whichblock[i] = state->blocks->whichblock[j]; + } + assert(nb == cr); + + sfree(dsf); + } else { + int x, y; + + assert(!*desc); + + for (y = 0; y < cr; y++) + for (x = 0; x < cr; x++) + state->blocks->whichblock[y*cr+x] = (y/c) * c + (x/r); + } + + /* + * Having sorted out whichblock[], set up the block index arrays. + */ + for (i = 0; i < cr; i++) + state->blocks->blocks[i][cr-1] = 0; + for (i = 0; i < area; i++) { + int b = state->blocks->whichblock[i]; + int j = state->blocks->blocks[b][cr-1]++; + assert(j < cr); + state->blocks->blocks[b][j] = i; + } + +#ifdef STANDALONE_SOLVER + /* + * Set up the block names for solver diagnostic output. + */ + { + char *p = (char *)(state->blocks->blocknames + cr); + + if (r == 1) { + for (i = 0; i < cr; i++) + state->blocks->blocknames[i] = NULL; + + for (i = 0; i < area; i++) { + int j = state->blocks->whichblock[i]; + if (!state->blocks->blocknames[j]) { + state->blocks->blocknames[j] = p; + p += 1 + sprintf(p, "starting at (%d,%d)", + 1 + i%cr, 1 + i/cr); + } + } + } else { + int bx, by; + for (by = 0; by < r; by++) + for (bx = 0; bx < c; bx++) { + state->blocks->blocknames[by*c+bx] = p; + p += 1 + sprintf(p, "(%d,%d)", bx+1, by+1); + } + } + assert(p - (char *)state->blocks->blocknames < cr*(sizeof(char *)+80)); + for (i = 0; i < cr; i++) + assert(state->blocks->blocknames[i]); + } +#endif + return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); - int c = state->c, r = state->r, cr = c*r, area = cr * cr; + int cr = state->cr, area = cr * cr; + + ret->cr = state->cr; + ret->xtype = state->xtype; - ret->c = state->c; - ret->r = state->r; + ret->blocks = state->blocks; + ret->blocks->refcount++; ret->grid = snewn(area, digit); memcpy(ret->grid, state->grid, area); @@ -2379,6 +2923,14 @@ static game_state *dup_game(game_state *state) static void free_game(game_state *state) { + if (--state->blocks->refcount == 0) { + sfree(state->blocks->whichblock); + sfree(state->blocks->blocks); +#ifdef STANDALONE_SOLVER + sfree(state->blocks->blocknames); +#endif + sfree(state->blocks); + } sfree(state->immutable); sfree(state->pencil); sfree(state->grid); @@ -2388,7 +2940,7 @@ static void free_game(game_state *state) static char *solve_game(game_state *state, game_state *currstate, char *ai, char **error) { - int c = state->c, r = state->r, cr = c*r; + int cr = state->cr; char *ret; digit *grid; int solve_ret; @@ -2402,7 +2954,7 @@ static char *solve_game(game_state *state, game_state *currstate, grid = snewn(cr*cr, digit); memcpy(grid, state->grid, cr*cr); - solve_ret = solver(c, r, grid, DIFF_RECURSIVE); + solve_ret = solver(cr, state->blocks, state->xtype, grid, DIFF_RECURSIVE); *error = NULL; @@ -2423,66 +2975,202 @@ static char *solve_game(game_state *state, game_state *currstate, return ret; } -static char *grid_text_format(int c, int r, digit *grid) +static char *grid_text_format(int cr, struct block_structure *blocks, + int xtype, digit *grid) { - int cr = c*r; + int vmod, hmod; int x, y; - int maxlen; - char *ret, *p; + int totallen, linelen, nlines; + char *ret, *p, ch; /* - * There are cr lines of digits, plus r-1 lines of block - * separators. Each line contains cr digits, cr-1 separating - * spaces, and c-1 two-character block separators. Thus, the - * total length of a line is 2*cr+2*c-3 (not counting the - * newline), and there are cr+r-1 of them. + * For non-jigsaw Sudoku, we format in the way we always have, + * by having the digits unevenly spaced so that the dividing + * lines can fit in: + * + * . . | . . + * . . | . . + * ----+---- + * . . | . . + * . . | . . + * + * For jigsaw puzzles, however, we must leave space between + * _all_ pairs of digits for an optional dividing line, so we + * have to move to the rather ugly + * + * . . . . + * ------+------ + * . . | . . + * +---+ + * . . | . | . + * ------+ | + * . . . | . + * + * We deal with both cases using the same formatting code; we + * simply invent a vmod value such that there's a vertical + * dividing line before column i iff i is divisible by vmod + * (so it's r in the first case and 1 in the second), and hmod + * likewise for horizontal dividing lines. */ - maxlen = (cr+r-1) * (2*cr+2*c-2); - ret = snewn(maxlen+1, char); - p = ret; + if (blocks->r != 1) { + vmod = blocks->r; + hmod = blocks->c; + } else { + vmod = hmod = 1; + } + + /* + * Line length: we have cr digits, each with a space after it, + * and (cr-1)/vmod dividing lines, each with a space after it. + * The final space is replaced by a newline, but that doesn't + * affect the length. + */ + linelen = 2*(cr + (cr-1)/vmod); + + /* + * Number of lines: we have cr rows of digits, and (cr-1)/hmod + * dividing rows. + */ + nlines = cr + (cr-1)/hmod; + + /* + * Allocate the space. + */ + totallen = linelen * nlines; + ret = snewn(totallen+1, char); /* leave room for terminating NUL */ + + /* + * Write the text. + */ + p = ret; for (y = 0; y < cr; y++) { - for (x = 0; x < cr; x++) { - int ch = grid[y * cr + x]; - if (ch == 0) - ch = '.'; - else if (ch <= 9) - ch = '0' + ch; - else - ch = 'a' + ch-10; - *p++ = ch; - if (x+1 < cr) { - *p++ = ' '; - if ((x+1) % r == 0) { - *p++ = '|'; - *p++ = ' '; - } - } - } - *p++ = '\n'; - if (y+1 < cr && (y+1) % c == 0) { - for (x = 0; x < cr; x++) { - *p++ = '-'; - if (x+1 < cr) { - *p++ = '-'; - if ((x+1) % r == 0) { - *p++ = '+'; - *p++ = '-'; - } - } - } - *p++ = '\n'; - } + /* + * Row of digits. + */ + for (x = 0; x < cr; x++) { + /* + * Digit. + */ + digit d = grid[y*cr+x]; + + if (d == 0) { + /* + * Empty space: we usually write a dot, but we'll + * highlight spaces on the X-diagonals (in X mode) + * by using underscores instead. + */ + if (xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x))) + ch = '_'; + else + ch = '.'; + } else if (d <= 9) { + ch = '0' + d; + } else { + ch = 'a' + d-10; + } + + *p++ = ch; + if (x == cr-1) { + *p++ = '\n'; + continue; + } + *p++ = ' '; + + if ((x+1) % vmod) + continue; + + /* + * Optional dividing line. + */ + if (blocks->whichblock[y*cr+x] != blocks->whichblock[y*cr+x+1]) + ch = '|'; + else + ch = ' '; + *p++ = ch; + *p++ = ' '; + } + if (y == cr-1 || (y+1) % hmod) + continue; + + /* + * Dividing row. + */ + for (x = 0; x < cr; x++) { + int dwid; + int tl, tr, bl, br; + + /* + * Division between two squares. This varies + * complicatedly in length. + */ + dwid = 2; /* digit and its following space */ + if (x == cr-1) + dwid--; /* no following space at end of line */ + if (x > 0 && x % vmod == 0) + dwid++; /* preceding space after a divider */ + + if (blocks->whichblock[y*cr+x] != blocks->whichblock[(y+1)*cr+x]) + ch = '-'; + else + ch = ' '; + + while (dwid-- > 0) + *p++ = ch; + + if (x == cr-1) { + *p++ = '\n'; + break; + } + + if ((x+1) % vmod) + continue; + + /* + * Corner square. This is: + * - a space if all four surrounding squares are in + * the same block + * - a vertical line if the two left ones are in one + * block and the two right in another + * - a horizontal line if the two top ones are in one + * block and the two bottom in another + * - a plus sign in all other cases. (If we had a + * richer character set available we could break + * this case up further by doing fun things with + * line-drawing T-pieces.) + */ + tl = blocks->whichblock[y*cr+x]; + tr = blocks->whichblock[y*cr+x+1]; + bl = blocks->whichblock[(y+1)*cr+x]; + br = blocks->whichblock[(y+1)*cr+x+1]; + + if (tl == tr && tr == bl && bl == br) + ch = ' '; + else if (tl == bl && tr == br) + ch = '|'; + else if (tl == tr && bl == br) + ch = '-'; + else + ch = '+'; + + *p++ = ch; + } } - assert(p - ret == maxlen); + assert(p - ret == totallen); *p = '\0'; return ret; } +static int game_can_format_as_text_now(game_params *params) +{ + return TRUE; +} + static char *game_text_format(game_state *state) { - return grid_text_format(state->c, state->r, state->grid); + return grid_text_format(state->cr, state->blocks, state->xtype, + state->grid); } struct game_ui { @@ -2527,7 +3215,7 @@ static void decode_ui(game_ui *ui, char *encoding) static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { - int c = newstate->c, r = newstate->r, cr = c*r; + int cr = newstate->cr; /* * We prevent pencil-mode highlighting of a filled square. So * if the user has just filled in a square which we had a @@ -2542,7 +3230,7 @@ static void game_changed_state(game_ui *ui, game_state *oldstate, struct game_drawstate { int started; - int c, r, cr; + int cr, xtype; int tilesize; digit *grid; unsigned char *pencil; @@ -2554,7 +3242,7 @@ struct game_drawstate { static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { - int c = state->c, r = state->r, cr = c*r; + int cr = state->cr; int tx, ty; char buf[80]; @@ -2639,7 +3327,7 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, static game_state *execute_move(game_state *from, char *move) { - int c = from->c, r = from->r, cr = c*r; + int cr = from->cr; game_state *ret; int x, y, n; @@ -2679,7 +3367,8 @@ static game_state *execute_move(game_state *from, char *move) * We've made a real change to the grid. Check to see * if the game has been completed. */ - if (!ret->completed && check_valid(c, r, ret->grid)) { + if (!ret->completed && check_valid(cr, ret->blocks, ret->xtype, + ret->grid)) { ret->completed = TRUE; } } @@ -2718,6 +3407,10 @@ static float *game_colours(frontend *fe, int *ncolours) frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); + ret[COL_XDIAGONALS * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0]; + ret[COL_XDIAGONALS * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1]; + ret[COL_XDIAGONALS * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2]; + ret[COL_GRID * 3 + 0] = 0.0F; ret[COL_GRID * 3 + 1] = 0.0F; ret[COL_GRID * 3 + 2] = 0.0F; @@ -2730,9 +3423,9 @@ static float *game_colours(frontend *fe, int *ncolours) ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_USER * 3 + 2] = 0.0F; - ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0]; - ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1]; - ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2]; + ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0]; + ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1]; + ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.0F; @@ -2749,14 +3442,13 @@ static float *game_colours(frontend *fe, int *ncolours) static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); - int c = state->c, r = state->r, cr = c*r; + int cr = state->cr; ds->started = FALSE; - ds->c = c; - ds->r = r; ds->cr = cr; + ds->xtype = state->xtype; ds->grid = snewn(cr*cr, digit); - memset(ds->grid, 0, cr*cr); + memset(ds->grid, cr+2, cr*cr); ds->pencil = snewn(cr*cr*cr, digit); memset(ds->pencil, 0, cr*cr*cr); ds->hl = snewn(cr*cr, unsigned char); @@ -2778,7 +3470,7 @@ static void game_free_drawstate(drawing *dr, game_drawstate *ds) static void draw_number(drawing *dr, game_drawstate *ds, game_state *state, int x, int y, int hl) { - int c = state->c, r = state->r, cr = c*r; + int cr = state->cr; int tx, ty; int cx, cy, cw, ch; char str[2]; @@ -2788,27 +3480,43 @@ static void draw_number(drawing *dr, game_drawstate *ds, game_state *state, !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr)) return; /* no change required */ - tx = BORDER + x * TILE_SIZE + 2; - ty = BORDER + y * TILE_SIZE + 2; + tx = BORDER + x * TILE_SIZE + 1 + GRIDEXTRA; + ty = BORDER + y * TILE_SIZE + 1 + GRIDEXTRA; cx = tx; cy = ty; - cw = TILE_SIZE-3; - ch = TILE_SIZE-3; - - if (x % r) - cx--, cw++; - if ((x+1) % r) - cw++; - if (y % c) - cy--, ch++; - if ((y+1) % c) - ch++; + cw = TILE_SIZE-1-2*GRIDEXTRA; + ch = TILE_SIZE-1-2*GRIDEXTRA; + + if (x > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x-1]) + cx -= GRIDEXTRA, cw += GRIDEXTRA; + if (x+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x+1]) + cw += GRIDEXTRA; + if (y > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y-1)*cr+x]) + cy -= GRIDEXTRA, ch += GRIDEXTRA; + if (y+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y+1)*cr+x]) + ch += GRIDEXTRA; clip(dr, cx, cy, cw, ch); /* background needs erasing */ - draw_rect(dr, cx, cy, cw, ch, (hl & 15) == 1 ? COL_HIGHLIGHT : COL_BACKGROUND); + draw_rect(dr, cx, cy, cw, ch, + ((hl & 15) == 1 ? COL_HIGHLIGHT : + (ds->xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x))) ? COL_XDIAGONALS : + COL_BACKGROUND)); + + /* + * Draw the corners of thick lines in corner-adjacent squares, + * which jut into this square by one pixel. + */ + if (x > 0 && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x-1]) + draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID); + if (x+1 < cr && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x+1]) + draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID); + if (x > 0 && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x-1]) + draw_rect(dr, tx-GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID); + if (x+1 < cr && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x+1]) + draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID); /* pencil-mode highlight */ if ((hl & 15) == 2) { @@ -2884,7 +3592,7 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { - int c = state->c, r = state->r, cr = c*r; + int cr = state->cr; int x, y; if (!ds->started) { @@ -2897,18 +3605,13 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, draw_rect(dr, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND); /* - * Draw the grid. + * Draw the grid. We draw it as a big thick rectangle of + * COL_GRID initially; individual calls to draw_number() + * will poke the right-shaped holes in it. */ - for (x = 0; x <= cr; x++) { - int thick = (x % r ? 0 : 1); - draw_rect(dr, BORDER + x*TILE_SIZE - thick, BORDER-1, - 1+2*thick, cr*TILE_SIZE+3, COL_GRID); - } - for (y = 0; y <= cr; y++) { - int thick = (y % c ? 0 : 1); - draw_rect(dr, BORDER-1, BORDER + y*TILE_SIZE - thick, - cr*TILE_SIZE+3, 1+2*thick, COL_GRID); - } + draw_rect(dr, BORDER-GRIDEXTRA, BORDER-GRIDEXTRA, + cr*TILE_SIZE+1+2*GRIDEXTRA, cr*TILE_SIZE+1+2*GRIDEXTRA, + COL_GRID); } /* @@ -2921,10 +3624,16 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, for (y = 0; y < cr; y++) { digit d = state->grid[y*cr+x]; if (d) { - int box = (x/r)+(y/c)*c; - ds->entered_items[x*cr+d-1] |= ((ds->entered_items[x*cr+d-1] & 1) << 1) | 1; + int box = state->blocks->whichblock[y*cr+x]; + ds->entered_items[x*cr+d-1] |= ((ds->entered_items[x*cr+d-1] & 1) << 1) | 1; ds->entered_items[y*cr+d-1] |= ((ds->entered_items[y*cr+d-1] & 4) << 1) | 4; ds->entered_items[box*cr+d-1] |= ((ds->entered_items[box*cr+d-1] & 16) << 1) | 16; + if (ds->xtype) { + if (ondiag0(y*cr+x)) + ds->entered_items[d-1] |= ((ds->entered_items[d-1] & 64) << 1) | 64; + if (ondiag1(y*cr+x)) + ds->entered_items[cr+d-1] |= ((ds->entered_items[cr+d-1] & 64) << 1) | 64; + } } } @@ -2949,7 +3658,9 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, * in a single row, column, or box). */ if (d && ((ds->entered_items[x*cr+d-1] & 2) || (ds->entered_items[y*cr+d-1] & 8) || - (ds->entered_items[((x/r)+(y/c)*c)*cr+d-1] & 32))) + (ds->entered_items[state->blocks->whichblock[y*cr+x]*cr+d-1] & 32) || + (ds->xtype && ((ondiag0(y*cr+x) && (ds->entered_items[d-1] & 128)) || + (ondiag1(y*cr+x) && (ds->entered_items[cr+d-1] & 128)))))) highlight |= 16; draw_number(dr, ds, state, x, y, highlight); @@ -2980,11 +3691,6 @@ static float game_flash_length(game_state *oldstate, game_state *newstate, return 0.0F; } -static int game_wants_statusbar(void) -{ - return FALSE; -} - static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; @@ -3006,7 +3712,7 @@ static void game_print_size(game_params *params, float *x, float *y) static void game_print(drawing *dr, game_state *state, int tilesize) { - int c = state->c, r = state->r, cr = c*r; + int cr = state->cr; int ink = print_mono_colour(dr, 0); int x, y; @@ -3021,20 +3727,182 @@ static void game_print(drawing *dr, game_state *state, int tilesize) draw_rect_outline(dr, BORDER, BORDER, cr*TILE_SIZE, cr*TILE_SIZE, ink); /* - * Grid. + * Highlight X-diagonal squares. + */ + if (state->xtype) { + int i; + int xhighlight = print_grey_colour(dr, 0.90F); + + for (i = 0; i < cr; i++) + draw_rect(dr, BORDER + i*TILE_SIZE, BORDER + i*TILE_SIZE, + TILE_SIZE, TILE_SIZE, xhighlight); + for (i = 0; i < cr; i++) + if (i*2 != cr-1) /* avoid redoing centre square, just for fun */ + draw_rect(dr, BORDER + i*TILE_SIZE, + BORDER + (cr-1-i)*TILE_SIZE, + TILE_SIZE, TILE_SIZE, xhighlight); + } + + /* + * Main grid. */ for (x = 1; x < cr; x++) { - print_line_width(dr, (x % r ? 1 : 3) * TILE_SIZE / 40); + print_line_width(dr, TILE_SIZE / 40); draw_line(dr, BORDER+x*TILE_SIZE, BORDER, BORDER+x*TILE_SIZE, BORDER+cr*TILE_SIZE, ink); } for (y = 1; y < cr; y++) { - print_line_width(dr, (y % c ? 1 : 3) * TILE_SIZE / 40); + print_line_width(dr, TILE_SIZE / 40); draw_line(dr, BORDER, BORDER+y*TILE_SIZE, BORDER+cr*TILE_SIZE, BORDER+y*TILE_SIZE, ink); } /* + * Thick lines between cells. In order to do this using the + * line-drawing rather than rectangle-drawing API (so as to + * get line thicknesses to scale correctly) and yet have + * correctly mitred joins between lines, we must do this by + * tracing the boundary of each sub-block and drawing it in + * one go as a single polygon. + */ + { + int *coords; + int bi, i, n; + int x, y, dx, dy, sx, sy, sdx, sdy; + + print_line_width(dr, 3 * TILE_SIZE / 40); + + /* + * Maximum perimeter of a k-omino is 2k+2. (Proof: start + * with k unconnected squares, with total perimeter 4k. + * Now repeatedly join two disconnected components + * together into a larger one; every time you do so you + * remove at least two unit edges, and you require k-1 of + * these operations to create a single connected piece, so + * you must have at most 4k-2(k-1) = 2k+2 unit edges left + * afterwards.) + */ + coords = snewn(4*cr+4, int); /* 2k+2 points, 2 coords per point */ + + /* + * Iterate over all the blocks. + */ + for (bi = 0; bi < cr; bi++) { + + /* + * For each block, find a starting square within it + * which has a boundary at the left. + */ + for (i = 0; i < cr; i++) { + int j = state->blocks->blocks[bi][i]; + if (j % cr == 0 || state->blocks->whichblock[j-1] != bi) + break; + } + assert(i < cr); /* every block must have _some_ leftmost square */ + x = state->blocks->blocks[bi][i] % cr; + y = state->blocks->blocks[bi][i] / cr; + dx = -1; + dy = 0; + + /* + * Now begin tracing round the perimeter. At all + * times, (x,y) describes some square within the + * block, and (x+dx,y+dy) is some adjacent square + * outside it; so the edge between those two squares + * is always an edge of the block. + */ + sx = x, sy = y, sdx = dx, sdy = dy; /* save starting position */ + n = 0; + do { + int cx, cy, tx, ty, nin; + + /* + * To begin with, record the point at one end of + * the edge. To do this, we translate (x,y) down + * and right by half a unit (so they're describing + * a point in the _centre_ of the square) and then + * translate back again in a manner rotated by dy + * and dx. + */ + assert(n < 2*cr+2); + cx = ((2*x+1) + dy + dx) / 2; + cy = ((2*y+1) - dx + dy) / 2; + coords[2*n+0] = BORDER + cx * TILE_SIZE; + coords[2*n+1] = BORDER + cy * TILE_SIZE; + n++; + + /* + * Now advance to the next edge, by looking at the + * two squares beyond it. If they're both outside + * the block, we turn right (by leaving x,y the + * same and rotating dx,dy clockwise); if they're + * both inside, we turn left (by rotating dx,dy + * anticlockwise and contriving to leave x+dx,y+dy + * unchanged); if one of each, we go straight on + * (and may enforce by assertion that they're one + * of each the _right_ way round). + */ + nin = 0; + tx = x - dy + dx; + ty = y + dx + dy; + nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr && + state->blocks->whichblock[ty*cr+tx] == bi); + tx = x - dy; + ty = y + dx; + nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr && + state->blocks->whichblock[ty*cr+tx] == bi); + if (nin == 0) { + /* + * Turn right. + */ + int tmp; + tmp = dx; + dx = -dy; + dy = tmp; + } else if (nin == 2) { + /* + * Turn left. + */ + int tmp; + + x += dx; + y += dy; + + tmp = dx; + dx = dy; + dy = -tmp; + + x -= dx; + y -= dy; + } else { + /* + * Go straight on. + */ + x -= dy; + y += dx; + } + + /* + * Now enforce by assertion that we ended up + * somewhere sensible. + */ + assert(x >= 0 && x < cr && y >= 0 && y < cr && + state->blocks->whichblock[y*cr+x] == bi); + assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr || + state->blocks->whichblock[(y+dy)*cr+(x+dx)] != bi); + + } while (x != sx || y != sy || dx != sdx || dy != sdy); + + /* + * That's our polygon; now draw it. + */ + draw_polygon(dr, coords, n, -1, ink); + } + + sfree(coords); + } + + /* * Numbers. */ for (y = 0; y < cr; y++) @@ -3057,7 +3925,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize) #endif const struct game thegame = { - "Solo", "games.solo", + "Solo", "games.solo", "solo", default_params, game_fetch_preset, decode_params, @@ -3072,7 +3940,7 @@ const struct game thegame = { dup_game, free_game, TRUE, solve_game, - TRUE, game_text_format, + TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, @@ -3088,9 +3956,9 @@ const struct game thegame = { game_anim_length, game_flash_length, TRUE, FALSE, game_print_size, game_print, - game_wants_statusbar, + FALSE, /* wants_statusbar */ FALSE, game_timing_state, - 0, /* flags */ + REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */ }; #ifdef STANDALONE_SOLVER @@ -3138,7 +4006,7 @@ int main(int argc, char **argv) } s = new_game(NULL, p, desc); - ret = solver(p->c, p->r, s->grid, DIFF_RECURSIVE); + ret = solver(s->cr, s->blocks, s->xtype, s->grid, DIFF_RECURSIVE); if (grade) { printf("Difficulty rating: %s\n", ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)": @@ -3151,7 +4019,7 @@ int main(int argc, char **argv) ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)": "INTERNAL ERROR: unrecognised difficulty code"); } else { - printf("%s\n", grid_text_format(p->c, p->r, s->grid)); + printf("%s\n", grid_text_format(s->cr, s->blocks, s->xtype, s->grid)); } return 0;