X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/720a8fb73f1ec4860da71afb8cf0d18bfddf7691..HEAD:/cube.c diff --git a/cube.c b/cube.c index 0ceef12..15c479b 100644 --- a/cube.c +++ b/cube.c @@ -1,3 +1,1769 @@ /* * cube.c: Cube game. */ + +#include +#include +#include +#include +#include +#include + +#include "puzzles.h" + +#define MAXVERTICES 20 +#define MAXFACES 20 +#define MAXORDER 4 +struct solid { + int nvertices; + float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */ + int order; + int nfaces; + int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */ + float normals[MAXFACES * 3]; /* 3*npoints vector components */ + float shear; /* isometric shear for nice drawing */ + float border; /* border required around arena */ +}; + +static const struct solid s_tetrahedron = { + 4, + { + 0.0F, -0.57735026919F, -0.20412414523F, + -0.5F, 0.28867513459F, -0.20412414523F, + 0.0F, -0.0F, 0.6123724357F, + 0.5F, 0.28867513459F, -0.20412414523F, + }, + 3, 4, + { + 0,2,1, 3,1,2, 2,0,3, 1,3,0 + }, + { + -0.816496580928F, -0.471404520791F, 0.333333333334F, + 0.0F, 0.942809041583F, 0.333333333333F, + 0.816496580928F, -0.471404520791F, 0.333333333334F, + 0.0F, 0.0F, -1.0F, + }, + 0.0F, 0.3F +}; + +static const struct solid s_cube = { + 8, + { + -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F, + -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F, + +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F, + +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F, + }, + 4, 6, + { + 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2 + }, + { + -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F, + +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F, + 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F + }, + 0.3F, 0.5F +}; + +static const struct solid s_octahedron = { + 6, + { + -0.5F, -0.28867513459472505F, 0.4082482904638664F, + 0.5F, 0.28867513459472505F, -0.4082482904638664F, + -0.5F, 0.28867513459472505F, -0.4082482904638664F, + 0.5F, -0.28867513459472505F, 0.4082482904638664F, + 0.0F, -0.57735026918945009F, -0.4082482904638664F, + 0.0F, 0.57735026918945009F, 0.4082482904638664F, + }, + 3, 8, + { + 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3 + }, + { + -0.816496580928F, -0.471404520791F, -0.333333333334F, + -0.816496580928F, 0.471404520791F, 0.333333333334F, + 0.0F, -0.942809041583F, 0.333333333333F, + 0.0F, 0.0F, 1.0F, + 0.0F, 0.0F, -1.0F, + 0.0F, 0.942809041583F, -0.333333333333F, + 0.816496580928F, -0.471404520791F, -0.333333333334F, + 0.816496580928F, 0.471404520791F, 0.333333333334F, + }, + 0.0F, 0.5F +}; + +static const struct solid s_icosahedron = { + 12, + { + 0.0F, 0.57735026919F, 0.75576131408F, + 0.0F, -0.93417235896F, 0.17841104489F, + 0.0F, 0.93417235896F, -0.17841104489F, + 0.0F, -0.57735026919F, -0.75576131408F, + -0.5F, -0.28867513459F, 0.75576131408F, + -0.5F, 0.28867513459F, -0.75576131408F, + 0.5F, -0.28867513459F, 0.75576131408F, + 0.5F, 0.28867513459F, -0.75576131408F, + -0.80901699437F, 0.46708617948F, 0.17841104489F, + 0.80901699437F, 0.46708617948F, 0.17841104489F, + -0.80901699437F, -0.46708617948F, -0.17841104489F, + 0.80901699437F, -0.46708617948F, -0.17841104489F, + }, + 3, 20, + { + 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6, + 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10, + 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4, + 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7, + }, + { + -0.356822089773F, 0.87267799625F, 0.333333333333F, + 0.356822089773F, 0.87267799625F, 0.333333333333F, + -0.356822089773F, -0.87267799625F, -0.333333333333F, + 0.356822089773F, -0.87267799625F, -0.333333333333F, + -0.0F, 0.0F, 1.0F, + 0.0F, -0.666666666667F, 0.745355992501F, + 0.0F, 0.666666666667F, -0.745355992501F, + 0.0F, 0.0F, -1.0F, + -0.934172358963F, -0.12732200375F, 0.333333333333F, + -0.934172358963F, 0.12732200375F, -0.333333333333F, + 0.934172358963F, -0.12732200375F, 0.333333333333F, + 0.934172358963F, 0.12732200375F, -0.333333333333F, + -0.57735026919F, 0.333333333334F, 0.745355992501F, + 0.57735026919F, 0.333333333334F, 0.745355992501F, + -0.57735026919F, -0.745355992501F, 0.333333333334F, + 0.57735026919F, -0.745355992501F, 0.333333333334F, + -0.57735026919F, 0.745355992501F, -0.333333333334F, + 0.57735026919F, 0.745355992501F, -0.333333333334F, + -0.57735026919F, -0.333333333334F, -0.745355992501F, + 0.57735026919F, -0.333333333334F, -0.745355992501F, + }, + 0.0F, 0.8F +}; + +enum { + TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON +}; +static const struct solid *solids[] = { + &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron +}; + +enum { + COL_BACKGROUND, + COL_BORDER, + COL_BLUE, + NCOLOURS +}; + +enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT }; + +#define PREFERRED_GRID_SCALE 48 +#define GRID_SCALE (ds->gridscale) +#define ROLLTIME 0.13F + +#define SQ(x) ( (x) * (x) ) + +#define MATMUL(ra,m,a) do { \ + float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \ + rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \ + ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \ + rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \ + (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \ +} while (0) + +#define APPROXEQ(x,y) ( SQ(x-y) < 0.1 ) + +struct grid_square { + float x, y; + int npoints; + float points[8]; /* maximum */ + int directions[8]; /* bit masks showing point pairs */ + int flip; + int tetra_class; +}; + +struct game_params { + int solid; + /* + * Grid dimensions. For a square grid these are width and + * height respectively; otherwise the grid is a hexagon, with + * the top side and the two lower diagonals having length d1 + * and the remaining three sides having length d2 (so that + * d1==d2 gives a regular hexagon, and d2==0 gives a triangle). + */ + int d1, d2; +}; + +typedef struct game_grid game_grid; +struct game_grid { + int refcount; + struct grid_square *squares; + int nsquares; +}; + +#define SET_SQUARE(state, i, val) \ + ((state)->bluemask[(i)/32] &= ~(1 << ((i)%32)), \ + (state)->bluemask[(i)/32] |= ((!!val) << ((i)%32))) +#define GET_SQUARE(state, i) \ + (((state)->bluemask[(i)/32] >> ((i)%32)) & 1) + +struct game_state { + struct game_params params; + const struct solid *solid; + int *facecolours; + game_grid *grid; + unsigned long *bluemask; + int current; /* index of current grid square */ + int sgkey[2]; /* key-point indices into grid sq */ + int dgkey[2]; /* key-point indices into grid sq */ + int spkey[2]; /* key-point indices into polyhedron */ + int dpkey[2]; /* key-point indices into polyhedron */ + int previous; + float angle; + int completed; + int movecount; +}; + +static game_params *default_params(void) +{ + game_params *ret = snew(game_params); + + ret->solid = CUBE; + ret->d1 = 4; + ret->d2 = 4; + + return ret; +} + +static int game_fetch_preset(int i, char **name, game_params **params) +{ + game_params *ret = snew(game_params); + char *str; + + switch (i) { + case 0: + str = "Cube"; + ret->solid = CUBE; + ret->d1 = 4; + ret->d2 = 4; + break; + case 1: + str = "Tetrahedron"; + ret->solid = TETRAHEDRON; + ret->d1 = 1; + ret->d2 = 2; + break; + case 2: + str = "Octahedron"; + ret->solid = OCTAHEDRON; + ret->d1 = 2; + ret->d2 = 2; + break; + case 3: + str = "Icosahedron"; + ret->solid = ICOSAHEDRON; + ret->d1 = 3; + ret->d2 = 3; + break; + default: + sfree(ret); + return FALSE; + } + + *name = dupstr(str); + *params = ret; + return TRUE; +} + +static void free_params(game_params *params) +{ + sfree(params); +} + +static game_params *dup_params(game_params *params) +{ + game_params *ret = snew(game_params); + *ret = *params; /* structure copy */ + return ret; +} + +static void decode_params(game_params *ret, char const *string) +{ + switch (*string) { + case 't': ret->solid = TETRAHEDRON; string++; break; + case 'c': ret->solid = CUBE; string++; break; + case 'o': ret->solid = OCTAHEDRON; string++; break; + case 'i': ret->solid = ICOSAHEDRON; string++; break; + default: break; + } + ret->d1 = ret->d2 = atoi(string); + while (*string && isdigit((unsigned char)*string)) string++; + if (*string == 'x') { + string++; + ret->d2 = atoi(string); + } +} + +static char *encode_params(game_params *params, int full) +{ + char data[256]; + + assert(params->solid >= 0 && params->solid < 4); + sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2); + + return dupstr(data); +} +typedef void (*egc_callback)(void *, struct grid_square *); + +static void enum_grid_squares(game_params *params, egc_callback callback, void *ctx) +{ + const struct solid *solid = solids[params->solid]; + + if (solid->order == 4) { + int x, y; + + for (y = 0; y < params->d2; y++) + for (x = 0; x < params->d1; x++) { + struct grid_square sq; + + sq.x = (float)x; + sq.y = (float)y; + sq.points[0] = x - 0.5F; + sq.points[1] = y - 0.5F; + sq.points[2] = x - 0.5F; + sq.points[3] = y + 0.5F; + sq.points[4] = x + 0.5F; + sq.points[5] = y + 0.5F; + sq.points[6] = x + 0.5F; + sq.points[7] = y - 0.5F; + sq.npoints = 4; + + sq.directions[LEFT] = 0x03; /* 0,1 */ + sq.directions[RIGHT] = 0x0C; /* 2,3 */ + sq.directions[UP] = 0x09; /* 0,3 */ + sq.directions[DOWN] = 0x06; /* 1,2 */ + sq.directions[UP_LEFT] = 0; /* no diagonals in a square */ + sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */ + sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */ + sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */ + + sq.flip = FALSE; + + /* + * This is supremely irrelevant, but just to avoid + * having any uninitialised structure members... + */ + sq.tetra_class = 0; + + callback(ctx, &sq); + } + } else { + int row, rowlen, other, i, firstix = -1; + float theight = (float)(sqrt(3) / 2.0); + + for (row = 0; row < params->d1 + params->d2; row++) { + if (row < params->d2) { + other = +1; + rowlen = row + params->d1; + } else { + other = -1; + rowlen = 2*params->d2 + params->d1 - row; + } + + /* + * There are `rowlen' down-pointing triangles. + */ + for (i = 0; i < rowlen; i++) { + struct grid_square sq; + int ix; + float x, y; + + ix = (2 * i - (rowlen-1)); + x = ix * 0.5F; + y = theight * row; + sq.x = x; + sq.y = y + theight / 3; + sq.points[0] = x - 0.5F; + sq.points[1] = y; + sq.points[2] = x; + sq.points[3] = y + theight; + sq.points[4] = x + 0.5F; + sq.points[5] = y; + sq.npoints = 3; + + sq.directions[LEFT] = 0x03; /* 0,1 */ + sq.directions[RIGHT] = 0x06; /* 1,2 */ + sq.directions[UP] = 0x05; /* 0,2 */ + sq.directions[DOWN] = 0; /* invalid move */ + + /* + * Down-pointing triangle: both the up diagonals go + * up, and the down ones go left and right. + */ + sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] = + sq.directions[UP]; + sq.directions[DOWN_LEFT] = sq.directions[LEFT]; + sq.directions[DOWN_RIGHT] = sq.directions[RIGHT]; + + sq.flip = TRUE; + + if (firstix < 0) + firstix = ix & 3; + ix -= firstix; + sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3); + + callback(ctx, &sq); + } + + /* + * There are `rowlen+other' up-pointing triangles. + */ + for (i = 0; i < rowlen+other; i++) { + struct grid_square sq; + int ix; + float x, y; + + ix = (2 * i - (rowlen+other-1)); + x = ix * 0.5F; + y = theight * row; + sq.x = x; + sq.y = y + 2*theight / 3; + sq.points[0] = x + 0.5F; + sq.points[1] = y + theight; + sq.points[2] = x; + sq.points[3] = y; + sq.points[4] = x - 0.5F; + sq.points[5] = y + theight; + sq.npoints = 3; + + sq.directions[LEFT] = 0x06; /* 1,2 */ + sq.directions[RIGHT] = 0x03; /* 0,1 */ + sq.directions[DOWN] = 0x05; /* 0,2 */ + sq.directions[UP] = 0; /* invalid move */ + + /* + * Up-pointing triangle: both the down diagonals go + * down, and the up ones go left and right. + */ + sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] = + sq.directions[DOWN]; + sq.directions[UP_LEFT] = sq.directions[LEFT]; + sq.directions[UP_RIGHT] = sq.directions[RIGHT]; + + sq.flip = FALSE; + + if (firstix < 0) + firstix = (ix - 1) & 3; + ix -= firstix; + sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3); + + callback(ctx, &sq); + } + } + } +} + +static int grid_area(int d1, int d2, int order) +{ + /* + * An NxM grid of squares has NM squares in it. + * + * A grid of triangles with dimensions A and B has a total of + * A^2 + B^2 + 4AB triangles in it. (You can divide it up into + * a side-A triangle containing A^2 subtriangles, a side-B + * triangle containing B^2, and two congruent parallelograms, + * each with side lengths A and B, each therefore containing AB + * two-triangle rhombuses.) + */ + if (order == 4) + return d1 * d2; + else + return d1*d1 + d2*d2 + 4*d1*d2; +} + +static config_item *game_configure(game_params *params) +{ + config_item *ret = snewn(4, config_item); + char buf[80]; + + ret[0].name = "Type of solid"; + ret[0].type = C_CHOICES; + ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron"; + ret[0].ival = params->solid; + + ret[1].name = "Width / top"; + ret[1].type = C_STRING; + sprintf(buf, "%d", params->d1); + ret[1].sval = dupstr(buf); + ret[1].ival = 0; + + ret[2].name = "Height / bottom"; + ret[2].type = C_STRING; + sprintf(buf, "%d", params->d2); + ret[2].sval = dupstr(buf); + ret[2].ival = 0; + + ret[3].name = NULL; + ret[3].type = C_END; + ret[3].sval = NULL; + ret[3].ival = 0; + + return ret; +} + +static game_params *custom_params(config_item *cfg) +{ + game_params *ret = snew(game_params); + + ret->solid = cfg[0].ival; + ret->d1 = atoi(cfg[1].sval); + ret->d2 = atoi(cfg[2].sval); + + return ret; +} + +static void count_grid_square_callback(void *ctx, struct grid_square *sq) +{ + int *classes = (int *)ctx; + int thisclass; + + if (classes[4] == 4) + thisclass = sq->tetra_class; + else if (classes[4] == 2) + thisclass = sq->flip; + else + thisclass = 0; + + classes[thisclass]++; +} + +static char *validate_params(game_params *params, int full) +{ + int classes[5]; + int i; + + if (params->solid < 0 || params->solid >= lenof(solids)) + return "Unrecognised solid type"; + + if (solids[params->solid]->order == 4) { + if (params->d1 <= 0 || params->d2 <= 0) + return "Both grid dimensions must be greater than zero"; + } else { + if (params->d1 <= 0 && params->d2 <= 0) + return "At least one grid dimension must be greater than zero"; + } + + for (i = 0; i < 4; i++) + classes[i] = 0; + if (params->solid == TETRAHEDRON) + classes[4] = 4; + else if (params->solid == OCTAHEDRON) + classes[4] = 2; + else + classes[4] = 1; + enum_grid_squares(params, count_grid_square_callback, classes); + + for (i = 0; i < classes[4]; i++) + if (classes[i] < solids[params->solid]->nfaces / classes[4]) + return "Not enough grid space to place all blue faces"; + + if (grid_area(params->d1, params->d2, solids[params->solid]->order) < + solids[params->solid]->nfaces + 1) + return "Not enough space to place the solid on an empty square"; + + return NULL; +} + +struct grid_data { + int *gridptrs[4]; + int nsquares[4]; + int nclasses; + int squareindex; +}; + +static void classify_grid_square_callback(void *ctx, struct grid_square *sq) +{ + struct grid_data *data = (struct grid_data *)ctx; + int thisclass; + + if (data->nclasses == 4) + thisclass = sq->tetra_class; + else if (data->nclasses == 2) + thisclass = sq->flip; + else + thisclass = 0; + + data->gridptrs[thisclass][data->nsquares[thisclass]++] = + data->squareindex++; +} + +static char *new_game_desc(game_params *params, random_state *rs, + char **aux, int interactive) +{ + struct grid_data data; + int i, j, k, m, area, facesperclass; + int *flags; + char *desc, *p; + + /* + * Enumerate the grid squares, dividing them into equivalence + * classes as appropriate. (For the tetrahedron, there is one + * equivalence class for each face; for the octahedron there + * are two classes; for the other two solids there's only one.) + */ + + area = grid_area(params->d1, params->d2, solids[params->solid]->order); + if (params->solid == TETRAHEDRON) + data.nclasses = 4; + else if (params->solid == OCTAHEDRON) + data.nclasses = 2; + else + data.nclasses = 1; + data.gridptrs[0] = snewn(data.nclasses * area, int); + for (i = 0; i < data.nclasses; i++) { + data.gridptrs[i] = data.gridptrs[0] + i * area; + data.nsquares[i] = 0; + } + data.squareindex = 0; + enum_grid_squares(params, classify_grid_square_callback, &data); + + facesperclass = solids[params->solid]->nfaces / data.nclasses; + + for (i = 0; i < data.nclasses; i++) + assert(data.nsquares[i] >= facesperclass); + assert(data.squareindex == area); + + /* + * So now we know how many faces to allocate in each class. Get + * on with it. + */ + flags = snewn(area, int); + for (i = 0; i < area; i++) + flags[i] = FALSE; + + for (i = 0; i < data.nclasses; i++) { + for (j = 0; j < facesperclass; j++) { + int n = random_upto(rs, data.nsquares[i]); + + assert(!flags[data.gridptrs[i][n]]); + flags[data.gridptrs[i][n]] = TRUE; + + /* + * Move everything else up the array. I ought to use a + * better data structure for this, but for such small + * numbers it hardly seems worth the effort. + */ + while (n < data.nsquares[i]-1) { + data.gridptrs[i][n] = data.gridptrs[i][n+1]; + n++; + } + data.nsquares[i]--; + } + } + + /* + * Now we know precisely which squares are blue. Encode this + * information in hex. While we're looping over this, collect + * the non-blue squares into a list in the now-unused gridptrs + * array. + */ + desc = snewn(area / 4 + 40, char); + p = desc; + j = 0; + k = 8; + m = 0; + for (i = 0; i < area; i++) { + if (flags[i]) { + j |= k; + } else { + data.gridptrs[0][m++] = i; + } + k >>= 1; + if (!k) { + *p++ = "0123456789ABCDEF"[j]; + k = 8; + j = 0; + } + } + if (k != 8) + *p++ = "0123456789ABCDEF"[j]; + + /* + * Choose a non-blue square for the polyhedron. + */ + sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]); + + sfree(data.gridptrs[0]); + sfree(flags); + + return desc; +} + +static void add_grid_square_callback(void *ctx, struct grid_square *sq) +{ + game_grid *grid = (game_grid *)ctx; + + grid->squares[grid->nsquares++] = *sq; /* structure copy */ +} + +static int lowest_face(const struct solid *solid) +{ + int i, j, best; + float zmin; + + best = 0; + zmin = 0.0; + for (i = 0; i < solid->nfaces; i++) { + float z = 0; + + for (j = 0; j < solid->order; j++) { + int f = solid->faces[i*solid->order + j]; + z += solid->vertices[f*3+2]; + } + + if (i == 0 || zmin > z) { + zmin = z; + best = i; + } + } + + return best; +} + +static int align_poly(const struct solid *solid, struct grid_square *sq, + int *pkey) +{ + float zmin; + int i, j; + int flip = (sq->flip ? -1 : +1); + + /* + * First, find the lowest z-coordinate present in the solid. + */ + zmin = 0.0; + for (i = 0; i < solid->nvertices; i++) + if (zmin > solid->vertices[i*3+2]) + zmin = solid->vertices[i*3+2]; + + /* + * Now go round the grid square. For each point in the grid + * square, we're looking for a point of the polyhedron with the + * same x- and y-coordinates (relative to the square's centre), + * and z-coordinate equal to zmin (near enough). + */ + for (j = 0; j < sq->npoints; j++) { + int matches, index; + + matches = 0; + index = -1; + + for (i = 0; i < solid->nvertices; i++) { + float dist = 0; + + dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x); + dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y); + dist += SQ(solid->vertices[i*3+2] - zmin); + + if (dist < 0.1) { + matches++; + index = i; + } + } + + if (matches != 1 || index < 0) + return FALSE; + pkey[j] = index; + } + + return TRUE; +} + +static void flip_poly(struct solid *solid, int flip) +{ + int i; + + if (flip) { + for (i = 0; i < solid->nvertices; i++) { + solid->vertices[i*3+0] *= -1; + solid->vertices[i*3+1] *= -1; + } + for (i = 0; i < solid->nfaces; i++) { + solid->normals[i*3+0] *= -1; + solid->normals[i*3+1] *= -1; + } + } +} + +static struct solid *transform_poly(const struct solid *solid, int flip, + int key0, int key1, float angle) +{ + struct solid *ret = snew(struct solid); + float vx, vy, ax, ay; + float vmatrix[9], amatrix[9], vmatrix2[9]; + int i; + + *ret = *solid; /* structure copy */ + + flip_poly(ret, flip); + + /* + * Now rotate the polyhedron through the given angle. We must + * rotate about the Z-axis to bring the two vertices key0 and + * key1 into horizontal alignment, then rotate about the + * X-axis, then rotate back again. + */ + vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0]; + vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1]; + assert(APPROXEQ(vx*vx + vy*vy, 1.0)); + + vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0; + vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0; + vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1; + + ax = (float)cos(angle); + ay = (float)sin(angle); + + amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0; + amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay; + amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax; + + memcpy(vmatrix2, vmatrix, sizeof(vmatrix)); + vmatrix2[1] = vy; + vmatrix2[3] = -vy; + + for (i = 0; i < ret->nvertices; i++) { + MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i); + MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i); + MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i); + } + for (i = 0; i < ret->nfaces; i++) { + MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i); + MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i); + MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i); + } + + return ret; +} + +static char *validate_desc(game_params *params, char *desc) +{ + int area = grid_area(params->d1, params->d2, solids[params->solid]->order); + int i, j; + + i = (area + 3) / 4; + for (j = 0; j < i; j++) { + int c = desc[j]; + if (c >= '0' && c <= '9') continue; + if (c >= 'A' && c <= 'F') continue; + if (c >= 'a' && c <= 'f') continue; + return "Not enough hex digits at start of string"; + /* NB if desc[j]=='\0' that will also be caught here, so we're safe */ + } + + if (desc[i] != ',') + return "Expected ',' after hex digits"; + + i++; + do { + if (desc[i] < '0' || desc[i] > '9') + return "Expected decimal integer after ','"; + i++; + } while (desc[i]); + + return NULL; +} + +static game_state *new_game(midend *me, game_params *params, char *desc) +{ + game_grid *grid = snew(game_grid); + game_state *state = snew(game_state); + int area; + + state->params = *params; /* structure copy */ + state->solid = solids[params->solid]; + + area = grid_area(params->d1, params->d2, state->solid->order); + grid->squares = snewn(area, struct grid_square); + grid->nsquares = 0; + enum_grid_squares(params, add_grid_square_callback, grid); + assert(grid->nsquares == area); + state->grid = grid; + grid->refcount = 1; + + state->facecolours = snewn(state->solid->nfaces, int); + memset(state->facecolours, 0, state->solid->nfaces * sizeof(int)); + + state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long); + memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 * + sizeof(unsigned long)); + + /* + * Set up the blue squares and polyhedron position according to + * the game description. + */ + { + char *p = desc; + int i, j, v; + + j = 8; + v = 0; + for (i = 0; i < state->grid->nsquares; i++) { + if (j == 8) { + v = *p++; + if (v >= '0' && v <= '9') + v -= '0'; + else if (v >= 'A' && v <= 'F') + v -= 'A' - 10; + else if (v >= 'a' && v <= 'f') + v -= 'a' - 10; + else + break; + } + if (v & j) + SET_SQUARE(state, i, TRUE); + j >>= 1; + if (j == 0) + j = 8; + } + + if (*p == ',') + p++; + + state->current = atoi(p); + if (state->current < 0 || state->current >= state->grid->nsquares) + state->current = 0; /* got to do _something_ */ + } + + /* + * Align the polyhedron with its grid square and determine + * initial key points. + */ + { + int pkey[4]; + int ret; + + ret = align_poly(state->solid, &state->grid->squares[state->current], pkey); + assert(ret); + + state->dpkey[0] = state->spkey[0] = pkey[0]; + state->dpkey[1] = state->spkey[0] = pkey[1]; + state->dgkey[0] = state->sgkey[0] = 0; + state->dgkey[1] = state->sgkey[0] = 1; + } + + state->previous = state->current; + state->angle = 0.0; + state->completed = 0; + state->movecount = 0; + + return state; +} + +static game_state *dup_game(game_state *state) +{ + game_state *ret = snew(game_state); + + ret->params = state->params; /* structure copy */ + ret->solid = state->solid; + ret->facecolours = snewn(ret->solid->nfaces, int); + memcpy(ret->facecolours, state->facecolours, + ret->solid->nfaces * sizeof(int)); + ret->current = state->current; + ret->grid = state->grid; + ret->grid->refcount++; + ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long); + memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 * + sizeof(unsigned long)); + ret->dpkey[0] = state->dpkey[0]; + ret->dpkey[1] = state->dpkey[1]; + ret->dgkey[0] = state->dgkey[0]; + ret->dgkey[1] = state->dgkey[1]; + ret->spkey[0] = state->spkey[0]; + ret->spkey[1] = state->spkey[1]; + ret->sgkey[0] = state->sgkey[0]; + ret->sgkey[1] = state->sgkey[1]; + ret->previous = state->previous; + ret->angle = state->angle; + ret->completed = state->completed; + ret->movecount = state->movecount; + + return ret; +} + +static void free_game(game_state *state) +{ + if (--state->grid->refcount <= 0) { + sfree(state->grid->squares); + sfree(state->grid); + } + sfree(state->bluemask); + sfree(state->facecolours); + sfree(state); +} + +static char *solve_game(game_state *state, game_state *currstate, + char *aux, char **error) +{ + return NULL; +} + +static int game_can_format_as_text_now(game_params *params) +{ + return TRUE; +} + +static char *game_text_format(game_state *state) +{ + return NULL; +} + +static game_ui *new_ui(game_state *state) +{ + return NULL; +} + +static void free_ui(game_ui *ui) +{ +} + +static char *encode_ui(game_ui *ui) +{ + return NULL; +} + +static void decode_ui(game_ui *ui, char *encoding) +{ +} + +static void game_changed_state(game_ui *ui, game_state *oldstate, + game_state *newstate) +{ +} + +struct game_drawstate { + float gridscale; + int ox, oy; /* pixel position of float origin */ +}; + +/* + * Code shared between interpret_move() and execute_move(). + */ +static int find_move_dest(game_state *from, int direction, + int *skey, int *dkey) +{ + int mask, dest, i, j; + float points[4]; + + /* + * Find the two points in the current grid square which + * correspond to this move. + */ + mask = from->grid->squares[from->current].directions[direction]; + if (mask == 0) + return -1; + for (i = j = 0; i < from->grid->squares[from->current].npoints; i++) + if (mask & (1 << i)) { + points[j*2] = from->grid->squares[from->current].points[i*2]; + points[j*2+1] = from->grid->squares[from->current].points[i*2+1]; + skey[j] = i; + j++; + } + assert(j == 2); + + /* + * Now find the other grid square which shares those points. + * This is our move destination. + */ + dest = -1; + for (i = 0; i < from->grid->nsquares; i++) + if (i != from->current) { + int match = 0; + float dist; + + for (j = 0; j < from->grid->squares[i].npoints; j++) { + dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) + + SQ(from->grid->squares[i].points[j*2+1] - points[1])); + if (dist < 0.1) + dkey[match++] = j; + dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) + + SQ(from->grid->squares[i].points[j*2+1] - points[3])); + if (dist < 0.1) + dkey[match++] = j; + } + + if (match == 2) { + dest = i; + break; + } + } + + return dest; +} + +static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds, + int x, int y, int button) +{ + int direction, mask, i; + int skey[2], dkey[2]; + + button = button & (~MOD_MASK | MOD_NUM_KEYPAD); + + /* + * Moves can be made with the cursor keys or numeric keypad, or + * alternatively you can left-click and the polyhedron will + * move in the general direction of the mouse pointer. + */ + if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8')) + direction = UP; + else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2')) + direction = DOWN; + else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4')) + direction = LEFT; + else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6')) + direction = RIGHT; + else if (button == (MOD_NUM_KEYPAD | '7')) + direction = UP_LEFT; + else if (button == (MOD_NUM_KEYPAD | '1')) + direction = DOWN_LEFT; + else if (button == (MOD_NUM_KEYPAD | '9')) + direction = UP_RIGHT; + else if (button == (MOD_NUM_KEYPAD | '3')) + direction = DOWN_RIGHT; + else if (button == LEFT_BUTTON) { + /* + * Find the bearing of the click point from the current + * square's centre. + */ + int cx, cy; + double angle; + + cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox; + cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy; + + if (x == cx && y == cy) + return NULL; /* clicked in exact centre! */ + angle = atan2(y - cy, x - cx); + + /* + * There are three possibilities. + * + * - This square is a square, so we choose between UP, + * DOWN, LEFT and RIGHT by dividing the available angle + * at the 45-degree points. + * + * - This square is an up-pointing triangle, so we choose + * between DOWN, LEFT and RIGHT by dividing into + * 120-degree arcs. + * + * - This square is a down-pointing triangle, so we choose + * between UP, LEFT and RIGHT in the inverse manner. + * + * Don't forget that since our y-coordinates increase + * downwards, `angle' is measured _clockwise_ from the + * x-axis, not anticlockwise as most mathematicians would + * instinctively assume. + */ + if (state->grid->squares[state->current].npoints == 4) { + /* Square. */ + if (fabs(angle) > 3*PI/4) + direction = LEFT; + else if (fabs(angle) < PI/4) + direction = RIGHT; + else if (angle > 0) + direction = DOWN; + else + direction = UP; + } else if (state->grid->squares[state->current].directions[UP] == 0) { + /* Up-pointing triangle. */ + if (angle < -PI/2 || angle > 5*PI/6) + direction = LEFT; + else if (angle > PI/6) + direction = DOWN; + else + direction = RIGHT; + } else { + /* Down-pointing triangle. */ + assert(state->grid->squares[state->current].directions[DOWN] == 0); + if (angle > PI/2 || angle < -5*PI/6) + direction = LEFT; + else if (angle < -PI/6) + direction = UP; + else + direction = RIGHT; + } + } else + return NULL; + + mask = state->grid->squares[state->current].directions[direction]; + if (mask == 0) + return NULL; + + /* + * Translate diagonal directions into orthogonal ones. + */ + if (direction > DOWN) { + for (i = LEFT; i <= DOWN; i++) + if (state->grid->squares[state->current].directions[i] == mask) { + direction = i; + break; + } + assert(direction <= DOWN); + } + + if (find_move_dest(state, direction, skey, dkey) < 0) + return NULL; + + if (direction == LEFT) return dupstr("L"); + if (direction == RIGHT) return dupstr("R"); + if (direction == UP) return dupstr("U"); + if (direction == DOWN) return dupstr("D"); + + return NULL; /* should never happen */ +} + +static game_state *execute_move(game_state *from, char *move) +{ + game_state *ret; + float angle; + struct solid *poly; + int pkey[2]; + int skey[2], dkey[2]; + int i, j, dest; + int direction; + + switch (*move) { + case 'L': direction = LEFT; break; + case 'R': direction = RIGHT; break; + case 'U': direction = UP; break; + case 'D': direction = DOWN; break; + default: return NULL; + } + + dest = find_move_dest(from, direction, skey, dkey); + if (dest < 0) + return NULL; + + ret = dup_game(from); + ret->current = dest; + + /* + * So we know what grid square we're aiming for, and we also + * know the two key points (as indices in both the source and + * destination grid squares) which are invariant between source + * and destination. + * + * Next we must roll the polyhedron on to that square. So we + * find the indices of the key points within the polyhedron's + * vertex array, then use those in a call to transform_poly, + * and align the result on the new grid square. + */ + { + int all_pkey[4]; + align_poly(from->solid, &from->grid->squares[from->current], all_pkey); + pkey[0] = all_pkey[skey[0]]; + pkey[1] = all_pkey[skey[1]]; + /* + * Now pkey[0] corresponds to skey[0] and dkey[0], and + * likewise [1]. + */ + } + + /* + * Now find the angle through which to rotate the polyhedron. + * Do this by finding the two faces that share the two vertices + * we've found, and taking the dot product of their normals. + */ + { + int f[2], nf = 0; + float dp; + + for (i = 0; i < from->solid->nfaces; i++) { + int match = 0; + for (j = 0; j < from->solid->order; j++) + if (from->solid->faces[i*from->solid->order + j] == pkey[0] || + from->solid->faces[i*from->solid->order + j] == pkey[1]) + match++; + if (match == 2) { + assert(nf < 2); + f[nf++] = i; + } + } + + assert(nf == 2); + + dp = 0; + for (i = 0; i < 3; i++) + dp += (from->solid->normals[f[0]*3+i] * + from->solid->normals[f[1]*3+i]); + angle = (float)acos(dp); + } + + /* + * Now transform the polyhedron. We aren't entirely sure + * whether we need to rotate through angle or -angle, and the + * simplest way round this is to try both and see which one + * aligns successfully! + * + * Unfortunately, _both_ will align successfully if this is a + * cube, which won't tell us anything much. So for that + * particular case, I resort to gross hackery: I simply negate + * the angle before trying the alignment, depending on the + * direction. Which directions work which way is determined by + * pure trial and error. I said it was gross :-/ + */ + { + int all_pkey[4]; + int success; + + if (from->solid->order == 4 && direction == UP) + angle = -angle; /* HACK */ + + poly = transform_poly(from->solid, + from->grid->squares[from->current].flip, + pkey[0], pkey[1], angle); + flip_poly(poly, from->grid->squares[ret->current].flip); + success = align_poly(poly, &from->grid->squares[ret->current], all_pkey); + + if (!success) { + sfree(poly); + angle = -angle; + poly = transform_poly(from->solid, + from->grid->squares[from->current].flip, + pkey[0], pkey[1], angle); + flip_poly(poly, from->grid->squares[ret->current].flip); + success = align_poly(poly, &from->grid->squares[ret->current], all_pkey); + } + + assert(success); + } + + /* + * Now we have our rotated polyhedron, which we expect to be + * exactly congruent to the one we started with - but with the + * faces permuted. So we map that congruence and thereby figure + * out how to permute the faces as a result of the polyhedron + * having rolled. + */ + { + int *newcolours = snewn(from->solid->nfaces, int); + + for (i = 0; i < from->solid->nfaces; i++) + newcolours[i] = -1; + + for (i = 0; i < from->solid->nfaces; i++) { + int nmatch = 0; + + /* + * Now go through the transformed polyhedron's faces + * and figure out which one's normal is approximately + * equal to this one. + */ + for (j = 0; j < poly->nfaces; j++) { + float dist; + int k; + + dist = 0; + + for (k = 0; k < 3; k++) + dist += SQ(poly->normals[j*3+k] - + from->solid->normals[i*3+k]); + + if (APPROXEQ(dist, 0)) { + nmatch++; + newcolours[i] = ret->facecolours[j]; + } + } + + assert(nmatch == 1); + } + + for (i = 0; i < from->solid->nfaces; i++) + assert(newcolours[i] != -1); + + sfree(ret->facecolours); + ret->facecolours = newcolours; + } + + ret->movecount++; + + /* + * And finally, swap the colour between the bottom face of the + * polyhedron and the face we've just landed on. + * + * We don't do this if the game is already complete, since we + * allow the user to roll the fully blue polyhedron around the + * grid as a feeble reward. + */ + if (!ret->completed) { + i = lowest_face(from->solid); + j = ret->facecolours[i]; + ret->facecolours[i] = GET_SQUARE(ret, ret->current); + SET_SQUARE(ret, ret->current, j); + + /* + * Detect game completion. + */ + j = 0; + for (i = 0; i < ret->solid->nfaces; i++) + if (ret->facecolours[i]) + j++; + if (j == ret->solid->nfaces) + ret->completed = ret->movecount; + } + + sfree(poly); + + /* + * Align the normal polyhedron with its grid square, to get key + * points for non-animated display. + */ + { + int pkey[4]; + int success; + + success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey); + assert(success); + + ret->dpkey[0] = pkey[0]; + ret->dpkey[1] = pkey[1]; + ret->dgkey[0] = 0; + ret->dgkey[1] = 1; + } + + + ret->spkey[0] = pkey[0]; + ret->spkey[1] = pkey[1]; + ret->sgkey[0] = skey[0]; + ret->sgkey[1] = skey[1]; + ret->previous = from->current; + ret->angle = angle; + + return ret; +} + +/* ---------------------------------------------------------------------- + * Drawing routines. + */ + +struct bbox { + float l, r, u, d; +}; + +static void find_bbox_callback(void *ctx, struct grid_square *sq) +{ + struct bbox *bb = (struct bbox *)ctx; + int i; + + for (i = 0; i < sq->npoints; i++) { + if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2]; + if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2]; + if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1]; + if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1]; + } +} + +static struct bbox find_bbox(game_params *params) +{ + struct bbox bb; + + /* + * These should be hugely more than the real bounding box will + * be. + */ + bb.l = 2.0F * (params->d1 + params->d2); + bb.r = -2.0F * (params->d1 + params->d2); + bb.u = 2.0F * (params->d1 + params->d2); + bb.d = -2.0F * (params->d1 + params->d2); + enum_grid_squares(params, find_bbox_callback, &bb); + + return bb; +} + +#define XSIZE(gs, bb, solid) \ + ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs)) +#define YSIZE(gs, bb, solid) \ + ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs)) + +static void game_compute_size(game_params *params, int tilesize, + int *x, int *y) +{ + struct bbox bb = find_bbox(params); + + *x = XSIZE(tilesize, bb, solids[params->solid]); + *y = YSIZE(tilesize, bb, solids[params->solid]); +} + +static void game_set_size(drawing *dr, game_drawstate *ds, + game_params *params, int tilesize) +{ + struct bbox bb = find_bbox(params); + + ds->gridscale = (float)tilesize; + ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale); + ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale); +} + +static float *game_colours(frontend *fe, int *ncolours) +{ + float *ret = snewn(3 * NCOLOURS, float); + + frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); + + ret[COL_BORDER * 3 + 0] = 0.0; + ret[COL_BORDER * 3 + 1] = 0.0; + ret[COL_BORDER * 3 + 2] = 0.0; + + ret[COL_BLUE * 3 + 0] = 0.0; + ret[COL_BLUE * 3 + 1] = 0.0; + ret[COL_BLUE * 3 + 2] = 1.0; + + *ncolours = NCOLOURS; + return ret; +} + +static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) +{ + struct game_drawstate *ds = snew(struct game_drawstate); + + ds->ox = ds->oy = 0; + ds->gridscale = 0.0F; /* not decided yet */ + + return ds; +} + +static void game_free_drawstate(drawing *dr, game_drawstate *ds) +{ + sfree(ds); +} + +static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, + game_state *state, int dir, game_ui *ui, + float animtime, float flashtime) +{ + int i, j; + struct bbox bb = find_bbox(&state->params); + struct solid *poly; + int *pkey, *gkey; + float t[3]; + float angle; + int square; + + draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid), + YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND); + + if (dir < 0) { + game_state *t; + + /* + * This is an Undo. So reverse the order of the states, and + * run the roll timer backwards. + */ + assert(oldstate); + + t = oldstate; + oldstate = state; + state = t; + + animtime = ROLLTIME - animtime; + } + + if (!oldstate) { + oldstate = state; + angle = 0.0; + square = state->current; + pkey = state->dpkey; + gkey = state->dgkey; + } else { + angle = state->angle * animtime / ROLLTIME; + square = state->previous; + pkey = state->spkey; + gkey = state->sgkey; + } + state = oldstate; + + for (i = 0; i < state->grid->nsquares; i++) { + int coords[8]; + + for (j = 0; j < state->grid->squares[i].npoints; j++) { + coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE) + + ds->ox); + coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE) + + ds->oy); + } + + draw_polygon(dr, coords, state->grid->squares[i].npoints, + GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND, + COL_BORDER); + } + + /* + * Now compute and draw the polyhedron. + */ + poly = transform_poly(state->solid, state->grid->squares[square].flip, + pkey[0], pkey[1], angle); + + /* + * Compute the translation required to align the two key points + * on the polyhedron with the same key points on the current + * face. + */ + for (i = 0; i < 3; i++) { + float tc = 0.0; + + for (j = 0; j < 2; j++) { + float grid_coord; + + if (i < 2) { + grid_coord = + state->grid->squares[square].points[gkey[j]*2+i]; + } else { + grid_coord = 0.0; + } + + tc += (grid_coord - poly->vertices[pkey[j]*3+i]); + } + + t[i] = tc / 2; + } + for (i = 0; i < poly->nvertices; i++) + for (j = 0; j < 3; j++) + poly->vertices[i*3+j] += t[j]; + + /* + * Now actually draw each face. + */ + for (i = 0; i < poly->nfaces; i++) { + float points[8]; + int coords[8]; + + for (j = 0; j < poly->order; j++) { + int f = poly->faces[i*poly->order + j]; + points[j*2] = (poly->vertices[f*3+0] - + poly->vertices[f*3+2] * poly->shear); + points[j*2+1] = (poly->vertices[f*3+1] - + poly->vertices[f*3+2] * poly->shear); + } + + for (j = 0; j < poly->order; j++) { + coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox; + coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy; + } + + /* + * Find out whether these points are in a clockwise or + * anticlockwise arrangement. If the latter, discard the + * face because it's facing away from the viewer. + * + * This would involve fiddly winding-number stuff for a + * general polygon, but for the simple parallelograms we'll + * be seeing here, all we have to do is check whether the + * corners turn right or left. So we'll take the vector + * from point 0 to point 1, turn it right 90 degrees, + * and check the sign of the dot product with that and the + * next vector (point 1 to point 2). + */ + { + float v1x = points[2]-points[0]; + float v1y = points[3]-points[1]; + float v2x = points[4]-points[2]; + float v2y = points[5]-points[3]; + float dp = v1x * v2y - v1y * v2x; + + if (dp <= 0) + continue; + } + + draw_polygon(dr, coords, poly->order, + state->facecolours[i] ? COL_BLUE : COL_BACKGROUND, + COL_BORDER); + } + sfree(poly); + + draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid), + YSIZE(GRID_SCALE, bb, state->solid)); + + /* + * Update the status bar. + */ + { + char statusbuf[256]; + + sprintf(statusbuf, "%sMoves: %d", + (state->completed ? "COMPLETED! " : ""), + (state->completed ? state->completed : state->movecount)); + + status_bar(dr, statusbuf); + } +} + +static float game_anim_length(game_state *oldstate, + game_state *newstate, int dir, game_ui *ui) +{ + return ROLLTIME; +} + +static float game_flash_length(game_state *oldstate, + game_state *newstate, int dir, game_ui *ui) +{ + return 0.0F; +} + +static int game_status(game_state *state) +{ + return state->completed ? +1 : 0; +} + +static int game_timing_state(game_state *state, game_ui *ui) +{ + return TRUE; +} + +static void game_print_size(game_params *params, float *x, float *y) +{ +} + +static void game_print(drawing *dr, game_state *state, int tilesize) +{ +} + +#ifdef COMBINED +#define thegame cube +#endif + +const struct game thegame = { + "Cube", "games.cube", "cube", + default_params, + game_fetch_preset, + decode_params, + encode_params, + free_params, + dup_params, + TRUE, game_configure, custom_params, + validate_params, + new_game_desc, + validate_desc, + new_game, + dup_game, + free_game, + FALSE, solve_game, + FALSE, game_can_format_as_text_now, game_text_format, + new_ui, + free_ui, + encode_ui, + decode_ui, + game_changed_state, + interpret_move, + execute_move, + PREFERRED_GRID_SCALE, game_compute_size, game_set_size, + game_colours, + game_new_drawstate, + game_free_drawstate, + game_redraw, + game_anim_length, + game_flash_length, + game_status, + FALSE, FALSE, game_print_size, game_print, + TRUE, /* wants_statusbar */ + FALSE, game_timing_state, + 0, /* flags */ +};