X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/7126ca41b5355bd0ef94906cb87c45268bd5a823..72c158219fd9dbf19a01f2bf62303627a5e414e4:/loopy.c diff --git a/loopy.c b/loopy.c index 39dec98..8617c72 100644 --- a/loopy.c +++ b/loopy.c @@ -102,11 +102,12 @@ enum { COL_HIGHLIGHT, COL_MISTAKE, COL_SATISFIED, + COL_FAINT, NCOLOURS }; struct game_state { - grid *game_grid; + grid *game_grid; /* ref-counted (internally) */ /* Put -1 in a face that doesn't get a clue */ signed char *clues; @@ -133,17 +134,6 @@ enum solver_status { }; /* ------ Solver state ------ */ -typedef struct normal { - /* For each dline, store a bitmask for whether we know: - * (bit 0) at least one is YES - * (bit 1) at most one is YES */ - char *dlines; -} normal_mode_state; - -typedef struct hard { - int *linedsf; -} hard_mode_state; - typedef struct solver_state { game_state *state; enum solver_status solver_status; @@ -151,6 +141,10 @@ typedef struct solver_state { * looplen of 1 means there are no lines to a particular dot */ int *looplen; + /* Difficulty level of solver. Used by solver functions that want to + * vary their behaviour depending on the requested difficulty level. */ + int diff; + /* caches */ char *dot_yes_count; char *dot_no_count; @@ -159,8 +153,14 @@ typedef struct solver_state { char *dot_solved, *face_solved; int *dotdsf; - normal_mode_state *normal; - hard_mode_state *hard; + /* Information for Normal level deductions: + * For each dline, store a bitmask for whether we know: + * (bit 0) at least one is YES + * (bit 1) at most one is YES */ + char *dlines; + + /* Hard level information */ + int *linedsf; } solver_state; /* @@ -169,30 +169,44 @@ typedef struct solver_state { */ #define DIFFLIST(A) \ - A(EASY,Easy,e,easy_mode_deductions) \ - A(NORMAL,Normal,n,normal_mode_deductions) \ - A(HARD,Hard,h,hard_mode_deductions) -#define ENUM(upper,title,lower,fn) DIFF_ ## upper, -#define TITLE(upper,title,lower,fn) #title, -#define ENCODE(upper,title,lower,fn) #lower -#define CONFIG(upper,title,lower,fn) ":" #title -#define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *); -#define SOLVER_FN(upper,title,lower,fn) &fn, + A(EASY,Easy,e) \ + A(NORMAL,Normal,n) \ + A(TRICKY,Tricky,t) \ + A(HARD,Hard,h) +#define ENUM(upper,title,lower) DIFF_ ## upper, +#define TITLE(upper,title,lower) #title, +#define ENCODE(upper,title,lower) #lower +#define CONFIG(upper,title,lower) ":" #title enum { DIFFLIST(ENUM) DIFF_MAX }; static char const *const diffnames[] = { DIFFLIST(TITLE) }; static char const diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) -DIFFLIST(SOLVER_FN_DECL) -static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) }; + +/* + * Solver routines, sorted roughly in order of computational cost. + * The solver will run the faster deductions first, and slower deductions are + * only invoked when the faster deductions are unable to make progress. + * Each function is associated with a difficulty level, so that the generated + * puzzles are solvable by applying only the functions with the chosen + * difficulty level or lower. + */ +#define SOLVERLIST(A) \ + A(trivial_deductions, DIFF_EASY) \ + A(dline_deductions, DIFF_NORMAL) \ + A(linedsf_deductions, DIFF_HARD) \ + A(loop_deductions, DIFF_EASY) +#define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *); +#define SOLVER_FN(fn,diff) &fn, +#define SOLVER_DIFF(fn,diff) diff, +SOLVERLIST(SOLVER_FN_DECL) +static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) }; +static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) }; +const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs); struct game_params { int w, h; int diff; int type; - - /* Grid generation is expensive, so keep a (ref-counted) reference to the - * grid for these parameters, and only generate when required. */ - grid *game_grid; }; /* line_drawstate is the same as line_state, but with the extra ERROR @@ -210,6 +224,7 @@ struct game_drawstate { int started; int tilesize; int flashing; + int *textx, *texty; char *lines; char *clue_error; char *clue_satisfied; @@ -218,8 +233,7 @@ struct game_drawstate { static char *validate_desc(game_params *params, char *desc); static int dot_order(const game_state* state, int i, char line_type); static int face_order(const game_state* state, int i, char line_type); -static solver_state *solve_game_rec(const solver_state *sstate, - int diff); +static solver_state *solve_game_rec(const solver_state *sstate); #ifdef DEBUG_CACHES static void check_caches(const solver_state* sstate); @@ -229,26 +243,31 @@ static void check_caches(const solver_state* sstate); /* ------- List of grid generators ------- */ #define GRIDLIST(A) \ - A(Squares,grid_new_square,3,3) \ - A(Triangular,grid_new_triangular,3,3) \ - A(Honeycomb,grid_new_honeycomb,3,3) \ - A(Snub-Square,grid_new_snubsquare,3,3) \ - A(Cairo,grid_new_cairo,3,4) \ - A(Great-Hexagonal,grid_new_greathexagonal,3,3) \ - A(Octagonal,grid_new_octagonal,3,3) \ - A(Kites,grid_new_kites,3,3) - -#define GRID_NAME(title,fn,amin,omin) #title, -#define GRID_CONFIG(title,fn,amin,omin) ":" #title -#define GRID_FN(title,fn,amin,omin) &fn, -#define GRID_SIZES(title,fn,amin,omin) \ + A(Squares,GRID_SQUARE,3,3) \ + A(Triangular,GRID_TRIANGULAR,3,3) \ + A(Honeycomb,GRID_HONEYCOMB,3,3) \ + A(Snub-Square,GRID_SNUBSQUARE,3,3) \ + A(Cairo,GRID_CAIRO,3,4) \ + A(Great-Hexagonal,GRID_GREATHEXAGONAL,3,3) \ + A(Octagonal,GRID_OCTAGONAL,3,3) \ + A(Kites,GRID_KITE,3,3) \ + A(Floret,GRID_FLORET,1,2) \ + A(Dodecagonal,GRID_DODECAGONAL,2,2) \ + A(Great-Dodecagonal,GRID_GREATDODECAGONAL,2,2) \ + A(Penrose (kite/dart),GRID_PENROSE_P2,3,3) \ + A(Penrose (rhombs),GRID_PENROSE_P3,3,3) + +#define GRID_NAME(title,type,amin,omin) #title, +#define GRID_CONFIG(title,type,amin,omin) ":" #title +#define GRID_TYPE(title,type,amin,omin) type, +#define GRID_SIZES(title,type,amin,omin) \ {amin, omin, \ "Width and height for this grid type must both be at least " #amin, \ "At least one of width and height for this grid type must be at least " #omin,}, static char const *const gridnames[] = { GRIDLIST(GRID_NAME) }; #define GRID_CONFIGS GRIDLIST(GRID_CONFIG) -static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) }; -#define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0])) +static grid_type grid_types[] = { GRIDLIST(GRID_TYPE) }; +#define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0])) static const struct { int amin, omin; char *aerr, *oerr; @@ -256,13 +275,10 @@ static const struct { /* Generates a (dynamically allocated) new grid, according to the * type and size requested in params. Does nothing if the grid is already - * generated. The allocated grid is owned by the params object, and will be - * freed in free_params(). */ -static void params_generate_grid(game_params *params) + * generated. */ +static grid *loopy_generate_grid(game_params *params, char *grid_desc) { - if (!params->game_grid) { - params->game_grid = grid_fns[params->type](params->w, params->h); - } + return grid_new(grid_types[params->type], params->w, params->h, grid_desc); } /* ---------------------------------------------------------------------- @@ -283,7 +299,7 @@ static void params_generate_grid(game_params *params) ((field) &= ~(1<<(bit)), TRUE) : FALSE) #define CLUE2CHAR(c) \ - ((c < 0) ? ' ' : c + '0') + ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A') /* ---------------------------------------------------------------------- * General struct manipulation and other straightforward code @@ -333,6 +349,7 @@ static solver_state *new_solver_state(game_state *state, int diff) { ret->state = dup_game(state); ret->solver_status = SOLVER_INCOMPLETE; + ret->diff = diff; ret->dotdsf = snew_dsf(num_dots); ret->looplen = snewn(num_dots, int); @@ -356,18 +373,16 @@ static solver_state *new_solver_state(game_state *state, int diff) { memset(ret->face_no_count, 0, num_faces); if (diff < DIFF_NORMAL) { - ret->normal = NULL; + ret->dlines = NULL; } else { - ret->normal = snew(normal_mode_state); - ret->normal->dlines = snewn(2*num_edges, char); - memset(ret->normal->dlines, 0, 2*num_edges); + ret->dlines = snewn(2*num_edges, char); + memset(ret->dlines, 0, 2*num_edges); } if (diff < DIFF_HARD) { - ret->hard = NULL; + ret->linedsf = NULL; } else { - ret->hard = snew(hard_mode_state); - ret->hard->linedsf = snew_dsf(state->game_grid->num_edges); + ret->linedsf = snew_dsf(state->game_grid->num_edges); } return ret; @@ -385,15 +400,9 @@ static void free_solver_state(solver_state *sstate) { sfree(sstate->face_yes_count); sfree(sstate->face_no_count); - if (sstate->normal) { - sfree(sstate->normal->dlines); - sfree(sstate->normal); - } - - if (sstate->hard) { - sfree(sstate->hard->linedsf); - sfree(sstate->hard); - } + /* OK, because sfree(NULL) is a no-op */ + sfree(sstate->dlines); + sfree(sstate->linedsf); sfree(sstate); } @@ -409,6 +418,7 @@ static solver_state *dup_solver_state(const solver_state *sstate) { ret->state = state = dup_game(sstate->state); ret->solver_status = sstate->solver_status; + ret->diff = sstate->diff; ret->dotdsf = snewn(num_dots, int); ret->looplen = snewn(num_dots, int); @@ -432,22 +442,20 @@ static solver_state *dup_solver_state(const solver_state *sstate) { ret->face_no_count = snewn(num_faces, char); memcpy(ret->face_no_count, sstate->face_no_count, num_faces); - if (sstate->normal) { - ret->normal = snew(normal_mode_state); - ret->normal->dlines = snewn(2*num_edges, char); - memcpy(ret->normal->dlines, sstate->normal->dlines, + if (sstate->dlines) { + ret->dlines = snewn(2*num_edges, char); + memcpy(ret->dlines, sstate->dlines, 2*num_edges); } else { - ret->normal = NULL; + ret->dlines = NULL; } - if (sstate->hard) { - ret->hard = snew(hard_mode_state); - ret->hard->linedsf = snewn(num_edges, int); - memcpy(ret->hard->linedsf, sstate->hard->linedsf, + if (sstate->linedsf) { + ret->linedsf = snewn(num_edges, int); + memcpy(ret->linedsf, sstate->linedsf, num_edges * sizeof(int)); } else { - ret->hard = NULL; + ret->linedsf = NULL; } return ret; @@ -467,8 +475,6 @@ static game_params *default_params(void) ret->diff = DIFF_EASY; ret->type = 0; - ret->game_grid = NULL; - return ret; } @@ -477,38 +483,45 @@ static game_params *dup_params(game_params *params) game_params *ret = snew(game_params); *ret = *params; /* structure copy */ - if (ret->game_grid) { - ret->game_grid->refcount++; - } return ret; } static const game_params presets[] = { #ifdef SMALL_SCREEN - { 7, 7, DIFF_EASY, 0, NULL }, - { 7, 7, DIFF_NORMAL, 0, NULL }, - { 7, 7, DIFF_HARD, 0, NULL }, - { 7, 7, DIFF_HARD, 1, NULL }, - { 7, 7, DIFF_HARD, 2, NULL }, - { 5, 5, DIFF_HARD, 3, NULL }, - { 7, 7, DIFF_HARD, 4, NULL }, - { 5, 4, DIFF_HARD, 5, NULL }, - { 5, 5, DIFF_HARD, 6, NULL }, - { 5, 5, DIFF_HARD, 7, NULL }, + { 7, 7, DIFF_EASY, 0 }, + { 7, 7, DIFF_NORMAL, 0 }, + { 7, 7, DIFF_HARD, 0 }, + { 7, 7, DIFF_HARD, 1 }, + { 7, 7, DIFF_HARD, 2 }, + { 5, 5, DIFF_HARD, 3 }, + { 7, 7, DIFF_HARD, 4 }, + { 5, 4, DIFF_HARD, 5 }, + { 5, 5, DIFF_HARD, 6 }, + { 5, 5, DIFF_HARD, 7 }, + { 3, 3, DIFF_HARD, 8 }, + { 3, 3, DIFF_HARD, 9 }, + { 3, 3, DIFF_HARD, 10 }, + { 6, 6, DIFF_HARD, 11 }, + { 6, 6, DIFF_HARD, 12 }, #else - { 7, 7, DIFF_EASY, 0, NULL }, - { 10, 10, DIFF_EASY, 0, NULL }, - { 7, 7, DIFF_NORMAL, 0, NULL }, - { 10, 10, DIFF_NORMAL, 0, NULL }, - { 7, 7, DIFF_HARD, 0, NULL }, - { 10, 10, DIFF_HARD, 0, NULL }, - { 10, 10, DIFF_HARD, 1, NULL }, - { 12, 10, DIFF_HARD, 2, NULL }, - { 7, 7, DIFF_HARD, 3, NULL }, - { 9, 9, DIFF_HARD, 4, NULL }, - { 5, 4, DIFF_HARD, 5, NULL }, - { 7, 7, DIFF_HARD, 6, NULL }, - { 5, 5, DIFF_HARD, 7, NULL }, + { 7, 7, DIFF_EASY, 0 }, + { 10, 10, DIFF_EASY, 0 }, + { 7, 7, DIFF_NORMAL, 0 }, + { 10, 10, DIFF_NORMAL, 0 }, + { 7, 7, DIFF_HARD, 0 }, + { 10, 10, DIFF_HARD, 0 }, + { 10, 10, DIFF_HARD, 1 }, + { 12, 10, DIFF_HARD, 2 }, + { 7, 7, DIFF_HARD, 3 }, + { 9, 9, DIFF_HARD, 4 }, + { 5, 4, DIFF_HARD, 5 }, + { 7, 7, DIFF_HARD, 6 }, + { 5, 5, DIFF_HARD, 7 }, + { 5, 5, DIFF_HARD, 8 }, + { 5, 4, DIFF_HARD, 9 }, + { 5, 4, DIFF_HARD, 10 }, + { 10, 10, DIFF_HARD, 11 }, + { 10, 10, DIFF_HARD, 12 } #endif }; @@ -532,18 +545,11 @@ static int game_fetch_preset(int i, char **name, game_params **params) static void free_params(game_params *params) { - if (params->game_grid) { - grid_free(params->game_grid); - } sfree(params); } static void decode_params(game_params *params, char const *string) { - if (params->game_grid) { - grid_free(params->game_grid); - params->game_grid = NULL; - } params->h = params->w = atoi(string); params->diff = DIFF_EASY; while (*string && isdigit((unsigned char)*string)) string++; @@ -622,7 +628,6 @@ static game_params *custom_params(config_item *cfg) ret->type = cfg[2].ival; ret->diff = cfg[3].ival; - ret->game_grid = NULL; return ret; } @@ -683,17 +688,47 @@ static char *state_to_text(const game_state *state) return retval; } +#define GRID_DESC_SEP '_' + +/* Splits up a (optional) grid_desc from the game desc. Returns the + * grid_desc (which needs freeing) and updates the desc pointer to + * start of real desc, or returns NULL if no desc. */ +static char *extract_grid_desc(char **desc) +{ + char *sep = strchr(*desc, GRID_DESC_SEP), *gd; + int gd_len; + + if (!sep) return NULL; + + gd_len = sep - (*desc); + gd = snewn(gd_len+1, char); + memcpy(gd, *desc, gd_len); + gd[gd_len] = '\0'; + + *desc = sep+1; + + return gd; +} + /* We require that the params pass the test in validate_params and that the * description fills the entire game area */ static char *validate_desc(game_params *params, char *desc) { int count = 0; grid *g; - params_generate_grid(params); - g = params->game_grid; + char *grid_desc, *ret; + + /* It's pretty inefficient to do this just for validation. All we need to + * know is the precise number of faces. */ + grid_desc = extract_grid_desc(&desc); + ret = grid_validate_desc(grid_types[params->type], params->w, params->h, grid_desc); + if (ret) return ret; + + g = loopy_generate_grid(params, grid_desc); + if (grid_desc) sfree(grid_desc); for (; *desc; ++desc) { - if (*desc >= '0' && *desc <= '9') { + if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) { count++; continue; } @@ -709,6 +744,8 @@ static char *validate_desc(game_params *params, char *desc) if (count > g->num_faces) return "Description too long for board size"; + grid_free(g); + return NULL; } @@ -790,16 +827,15 @@ static void game_changed_state(game_ui *ui, game_state *oldstate, static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { - grid *g; int grid_width, grid_height, rendered_width, rendered_height; + int g_tilesize; + + grid_compute_size(grid_types[params->type], params->w, params->h, + &g_tilesize, &grid_width, &grid_height); - params_generate_grid(params); - g = params->game_grid; - grid_width = g->highest_x - g->lowest_x; - grid_height = g->highest_y - g->lowest_y; /* multiply first to minimise rounding error on integer division */ - rendered_width = grid_width * tilesize / g->tilesize; - rendered_height = grid_height * tilesize / g->tilesize; + rendered_width = grid_width * tilesize / g_tilesize; + rendered_height = grid_height * tilesize / g_tilesize; *x = rendered_width + 2 * BORDER(tilesize) + 1; *y = rendered_height + 2 * BORDER(tilesize) + 1; } @@ -820,8 +856,14 @@ static float *game_colours(frontend *fe, int *ncolours) ret[COL_FOREGROUND * 3 + 1] = 0.0F; ret[COL_FOREGROUND * 3 + 2] = 0.0F; - ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F; - ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F; + /* + * We want COL_LINEUNKNOWN to be a yellow which is a bit darker + * than the background. (I previously set it to 0.8,0.8,0, but + * found that this went badly with the 0.8,0.8,0.8 favoured as a + * background by the Java frontend.) + */ + ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F; + ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F; ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 1.0F; @@ -836,6 +878,14 @@ static float *game_colours(frontend *fe, int *ncolours) ret[COL_SATISFIED * 3 + 1] = 0.0F; ret[COL_SATISFIED * 3 + 2] = 0.0F; + /* We want the faint lines to be a bit darker than the background. + * Except if the background is pretty dark already; then it ought to be a + * bit lighter. Oy vey. + */ + ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F; + ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F; + ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F; + *ncolours = NCOLOURS; return ret; } @@ -845,23 +895,30 @@ static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) struct game_drawstate *ds = snew(struct game_drawstate); int num_faces = state->game_grid->num_faces; int num_edges = state->game_grid->num_edges; + int i; ds->tilesize = 0; ds->started = 0; ds->lines = snewn(num_edges, char); ds->clue_error = snewn(num_faces, char); ds->clue_satisfied = snewn(num_faces, char); + ds->textx = snewn(num_faces, int); + ds->texty = snewn(num_faces, int); ds->flashing = 0; memset(ds->lines, LINE_UNKNOWN, num_edges); memset(ds->clue_error, 0, num_faces); memset(ds->clue_satisfied, 0, num_faces); + for (i = 0; i < num_faces; i++) + ds->textx[i] = ds->texty[i] = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { + sfree(ds->textx); + sfree(ds->texty); sfree(ds->clue_error); sfree(ds->clue_satisfied); sfree(ds->lines); @@ -1105,12 +1162,12 @@ static int merge_lines(solver_state *sstate, int i, int j, int inverse assert(i < sstate->state->game_grid->num_edges); assert(j < sstate->state->game_grid->num_edges); - i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp); + i = edsf_canonify(sstate->linedsf, i, &inv_tmp); inverse ^= inv_tmp; - j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp); + j = edsf_canonify(sstate->linedsf, j, &inv_tmp); inverse ^= inv_tmp; - edsf_merge(sstate->hard->linedsf, i, j, inverse); + edsf_merge(sstate->linedsf, i, j, inverse); #ifdef SHOW_WORKING if (i != j) { @@ -1292,6 +1349,7 @@ static int can_colour_face(grid *g, char* board, int face_index, int i, j; grid_face *test_face = g->faces + face_index; grid_face *starting_face, *current_face; + grid_dot *starting_dot; int transitions; int current_state, s; /* booleans: equal or not-equal to 'colour' */ int found_same_coloured_neighbour = FALSE; @@ -1336,17 +1394,39 @@ static int can_colour_face(grid *g, char* board, int face_index, * test_face->dots[i]->faces[j] * We assume dots go clockwise around the test face, * and faces go clockwise around dots. */ + + /* + * The end condition is slightly fiddly. In sufficiently strange + * degenerate grids, our test face may be adjacent to the same + * other face multiple times (typically if it's the exterior + * face). Consider this, in particular: + * + * +--+ + * | | + * +--+--+ + * | | | + * +--+--+ + * + * The bottom left face there is adjacent to the exterior face + * twice, so we can't just terminate our iteration when we reach + * the same _face_ we started at. Furthermore, we can't + * condition on having the same (i,j) pair either, because + * several (i,j) pairs identify the bottom left contiguity with + * the exterior face! We canonicalise the (i,j) pair by taking + * one step around before we set the termination tracking. + */ + i = j = 0; - starting_face = test_face->dots[0]->faces[0]; - if (starting_face == test_face) { + current_face = test_face->dots[0]->faces[0]; + if (current_face == test_face) { j = 1; - starting_face = test_face->dots[0]->faces[1]; + current_face = test_face->dots[0]->faces[1]; } - current_face = starting_face; transitions = 0; current_state = (FACE_COLOUR(current_face) == colour); - - do { + starting_dot = NULL; + starting_face = NULL; + while (TRUE) { /* Advance to next face. * Need to loop here because it might take several goes to * find it. */ @@ -1377,13 +1457,22 @@ static int can_colour_face(grid *g, char* board, int face_index, /* (i,j) are now advanced to next face */ current_face = test_face->dots[i]->faces[j]; s = (FACE_COLOUR(current_face) == colour); - if (s != current_state) { - ++transitions; - current_state = s; - if (transitions > 2) - return FALSE; /* no point in continuing */ + if (!starting_dot) { + starting_dot = test_face->dots[i]; + starting_face = current_face; + current_state = s; + } else { + if (s != current_state) { + ++transitions; + current_state = s; + if (transitions > 2) + break; + } + if (test_face->dots[i] == starting_dot && + current_face == starting_face) + break; } - } while (current_face != starting_face); + } return (transitions == 2) ? TRUE : FALSE; } @@ -1496,6 +1585,7 @@ static void add_full_clues(game_state *state, random_state *rs) face_scores = snewn(num_faces, struct face_score); for (i = 0; i < num_faces; i++) { face_scores[i].random = random_bits(rs, 31); + face_scores[i].black_score = face_scores[i].white_score = 0; } /* Colour a random, finite face white. The infinite face is implicitly @@ -1547,12 +1637,11 @@ static void add_full_clues(game_state *state, random_state *rs) struct face_score *fs_white, *fs_black; int c_lightable = count234(lightable_faces_sorted); int c_darkable = count234(darkable_faces_sorted); - if (c_lightable == 0) { - /* No more lightable faces. Because of how the algorithm - * works, there should be no more darkable faces either. */ - assert(c_darkable == 0); + if (c_lightable == 0 && c_darkable == 0) { + /* No more faces we can use at all. */ break; } + assert(c_lightable != 0 && c_darkable != 0); fs_white = (struct face_score *)index234(lightable_faces_sorted, 0); fs_black = (struct face_score *)index234(darkable_faces_sorted, 0); @@ -1713,7 +1802,7 @@ static int game_has_unique_soln(const game_state *state, int diff) solver_state *sstate_new; solver_state *sstate = new_solver_state((game_state *)state, diff); - sstate_new = solve_game_rec(sstate, diff); + sstate_new = solve_game_rec(sstate); assert(sstate_new->solver_status != SOLVER_MISTAKE); ret = (sstate_new->solver_status == SOLVER_SOLVED); @@ -1766,13 +1855,14 @@ static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { /* solution and description both use run-length encoding in obvious ways */ - char *retval; + char *retval, *game_desc, *grid_desc; grid *g; game_state *state = snew(game_state); game_state *state_new; - params_generate_grid(params); - state->game_grid = g = params->game_grid; - g->refcount++; + + grid_desc = grid_new_desc(grid_types[params->type], params->w, params->h, rs); + state->game_grid = g = loopy_generate_grid(params, grid_desc); + state->clues = snewn(g->num_faces, signed char); state->lines = snewn(g->num_edges, char); state->line_errors = snewn(g->num_edges, unsigned char); @@ -1805,10 +1895,19 @@ static char *new_game_desc(game_params *params, random_state *rs, goto newboard_please; } - retval = state_to_text(state); + game_desc = state_to_text(state); free_game(state); + if (grid_desc) { + retval = snewn(strlen(grid_desc) + 1 + strlen(game_desc) + 1, char); + sprintf(retval, "%s%c%s", grid_desc, GRID_DESC_SEP, game_desc); + sfree(grid_desc); + sfree(game_desc); + } else { + retval = game_desc; + } + assert(!validate_desc(params, retval)); return retval; @@ -1819,14 +1918,18 @@ static game_state *new_game(midend *me, game_params *params, char *desc) int i; game_state *state = snew(game_state); int empties_to_make = 0; - int n; - const char *dp = desc; + int n,n2; + const char *dp; + char *grid_desc; grid *g; int num_faces, num_edges; - params_generate_grid(params); - state->game_grid = g = params->game_grid; - g->refcount++; + grid_desc = extract_grid_desc(&desc); + state->game_grid = g = loopy_generate_grid(params, grid_desc); + if (grid_desc) sfree(grid_desc); + + dp = desc; + num_faces = g->num_faces; num_edges = g->num_edges; @@ -1847,8 +1950,11 @@ static game_state *new_game(midend *me, game_params *params, char *desc) assert(*dp); n = *dp - '0'; + n2 = *dp - 'A' + 10; if (n >= 0 && n < 10) { state->clues[i] = n; + } else if (n2 >= 10 && n2 < 36) { + state->clues[i] = n2; } else { n = *dp - 'a' + 1; assert(n > 0); @@ -2027,7 +2133,7 @@ static int check_completion(game_state *state) * Easy Mode * Just implement the rules of the game. * - * Normal Mode + * Normal and Tricky Modes * For each (adjacent) pair of lines through each dot we store a bit for * whether at least one of them is on and whether at most one is on. (If we * know both or neither is on that's already stored more directly.) @@ -2164,7 +2270,7 @@ static int dline_set_opp_atleastone(solver_state *sstate, continue; /* Found opposite UNKNOWNS and they're next to each other */ opp_dline_index = dline_index_from_dot(g, d, opp); - return set_atleastone(sstate->normal->dlines, opp_dline_index); + return set_atleastone(sstate->dlines, opp_dline_index); } return FALSE; } @@ -2197,8 +2303,8 @@ static int face_setall_identical(solver_state *sstate, int face_index, continue; /* Found two UNKNOWNS */ - can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1); - can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2); + can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1); + can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2); if (can1 == can2 && inv1 == inv2) { solver_set_line(sstate, line1_index, line_new); solver_set_line(sstate, line2_index, line_new); @@ -2239,7 +2345,7 @@ static int parity_deductions(solver_state *sstate, { game_state *state = sstate->state; int diff = DIFF_MAX; - int *linedsf = sstate->hard->linedsf; + int *linedsf = sstate->linedsf; if (unknown_count == 2) { /* Lines are known alike/opposite, depending on inv. */ @@ -2338,7 +2444,7 @@ static int parity_deductions(solver_state *sstate, * Answer: first all squares then all dots. */ -static int easy_mode_deductions(solver_state *sstate) +static int trivial_deductions(solver_state *sstate) { int i, current_yes, current_no; game_state *state = sstate->state; @@ -2363,6 +2469,13 @@ static int easy_mode_deductions(solver_state *sstate) if (state->clues[i] < 0) continue; + /* + * This code checks whether the numeric clue on a face is so + * large as to permit all its remaining LINE_UNKNOWNs to be + * filled in as LINE_YES, or alternatively so small as to + * permit them all to be filled in as LINE_NO. + */ + if (state->clues[i] < current_yes) { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; @@ -2384,6 +2497,57 @@ static int easy_mode_deductions(solver_state *sstate) sstate->face_solved[i] = TRUE; continue; } + + if (f->order - state->clues[i] == current_no + 1 && + f->order - current_yes - current_no > 2) { + /* + * One small refinement to the above: we also look for any + * adjacent pair of LINE_UNKNOWNs around the face with + * some LINE_YES incident on it from elsewhere. If we find + * one, then we know that pair of LINE_UNKNOWNs can't + * _both_ be LINE_YES, and hence that pushes us one line + * closer to being able to determine all the rest. + */ + int j, k, e1, e2, e, d; + + for (j = 0; j < f->order; j++) { + e1 = f->edges[j] - g->edges; + e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges; + + if (g->edges[e1].dot1 == g->edges[e2].dot1 || + g->edges[e1].dot1 == g->edges[e2].dot2) { + d = g->edges[e1].dot1 - g->dots; + } else { + assert(g->edges[e1].dot2 == g->edges[e2].dot1 || + g->edges[e1].dot2 == g->edges[e2].dot2); + d = g->edges[e1].dot2 - g->dots; + } + + if (state->lines[e1] == LINE_UNKNOWN && + state->lines[e2] == LINE_UNKNOWN) { + for (k = 0; k < g->dots[d].order; k++) { + int e = g->dots[d].edges[k] - g->edges; + if (state->lines[e] == LINE_YES) + goto found; /* multi-level break */ + } + } + } + continue; + + found: + /* + * If we get here, we've found such a pair of edges, and + * they're e1 and e2. + */ + for (j = 0; j < f->order; j++) { + e = f->edges[j] - g->edges; + if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) { + int r = solver_set_line(sstate, e, LINE_YES); + assert(r); + diff = min(diff, DIFF_EASY); + } + } + } } check_caches(sstate); @@ -2433,11 +2597,11 @@ static int easy_mode_deductions(solver_state *sstate) return diff; } -static int normal_mode_deductions(solver_state *sstate) +static int dline_deductions(solver_state *sstate) { game_state *state = sstate->state; grid *g = state->game_grid; - char *dlines = sstate->normal->dlines; + char *dlines = sstate->dlines; int i; int diff = DIFF_MAX; @@ -2482,7 +2646,7 @@ static int normal_mode_deductions(solver_state *sstate) * on that. We check this with an assertion, in case someone decides to * make a grid which has larger faces than this. Note, this algorithm * could get quite expensive if there are many large faces. */ -#define MAX_FACE_SIZE 8 +#define MAX_FACE_SIZE 12 for (i = 0; i < g->num_faces; i++) { int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE]; @@ -2583,29 +2747,34 @@ static int normal_mode_deductions(solver_state *sstate) diff = min(diff, DIFF_EASY); } - /* Now see if we can make dline deduction for edges{j,j+1} */ - e = f->edges[k]; - if (state->lines[e - g->edges] != LINE_UNKNOWN) - /* Only worth doing this for an UNKNOWN,UNKNOWN pair. - * Dlines where one of the edges is known, are handled in the - * dot-deductions */ - continue; - - dline_index = dline_index_from_face(g, f, k); - k++; - if (k >= N) k = 0; - - /* minimum YESs in the complement of this dline */ - if (mins[k][j] > clue - 2) { - /* Adding 2 YESs would break the clue */ - if (set_atmostone(dlines, dline_index)) - diff = min(diff, DIFF_NORMAL); - } - /* maximum YESs in the complement of this dline */ - if (maxs[k][j] < clue) { - /* Adding 2 NOs would mean not enough YESs */ - if (set_atleastone(dlines, dline_index)) - diff = min(diff, DIFF_NORMAL); + /* More advanced deduction that allows propagation along diagonal + * chains of faces connected by dots, for example, 3-2-...-2-3 + * in square grids. */ + if (sstate->diff >= DIFF_TRICKY) { + /* Now see if we can make dline deduction for edges{j,j+1} */ + e = f->edges[k]; + if (state->lines[e - g->edges] != LINE_UNKNOWN) + /* Only worth doing this for an UNKNOWN,UNKNOWN pair. + * Dlines where one of the edges is known, are handled in the + * dot-deductions */ + continue; + + dline_index = dline_index_from_face(g, f, k); + k++; + if (k >= N) k = 0; + + /* minimum YESs in the complement of this dline */ + if (mins[k][j] > clue - 2) { + /* Adding 2 YESs would break the clue */ + if (set_atmostone(dlines, dline_index)) + diff = min(diff, DIFF_NORMAL); + } + /* maximum YESs in the complement of this dline */ + if (maxs[k][j] < clue) { + /* Adding 2 NOs would mean not enough YESs */ + if (set_atleastone(dlines, dline_index)) + diff = min(diff, DIFF_NORMAL); + } } } } @@ -2699,48 +2868,54 @@ static int normal_mode_deductions(solver_state *sstate) } } - /* If we have atleastone set for this dline, infer - * atmostone for each "opposite" dline (that is, each - * dline without edges in common with this one). - * Again, this test is only worth doing if both these - * lines are UNKNOWN. For if one of these lines were YES, - * the (yes == 1) test above would kick in instead. */ - if (is_atleastone(dlines, dline_index)) { - int opp; - for (opp = 0; opp < N; opp++) { - int opp_dline_index; - if (opp == j || opp == j+1 || opp == j-1) - continue; - if (j == 0 && opp == N-1) - continue; - if (j == N-1 && opp == 0) - continue; - opp_dline_index = dline_index_from_dot(g, d, opp); - if (set_atmostone(dlines, opp_dline_index)) - diff = min(diff, DIFF_NORMAL); - } - - if (yes == 0 && is_atmostone(dlines, dline_index)) { - /* This dline has *exactly* one YES and there are no - * other YESs. This allows more deductions. */ - if (unknown == 3) { - /* Third unknown must be YES */ - for (opp = 0; opp < N; opp++) { - int opp_index; - if (opp == j || opp == k) - continue; - opp_index = d->edges[opp] - g->edges; - if (state->lines[opp_index] == LINE_UNKNOWN) { - solver_set_line(sstate, opp_index, LINE_YES); - diff = min(diff, DIFF_EASY); + /* More advanced deduction that allows propagation along diagonal + * chains of faces connected by dots, for example: 3-2-...-2-3 + * in square grids. */ + if (sstate->diff >= DIFF_TRICKY) { + /* If we have atleastone set for this dline, infer + * atmostone for each "opposite" dline (that is, each + * dline without edges in common with this one). + * Again, this test is only worth doing if both these + * lines are UNKNOWN. For if one of these lines were YES, + * the (yes == 1) test above would kick in instead. */ + if (is_atleastone(dlines, dline_index)) { + int opp; + for (opp = 0; opp < N; opp++) { + int opp_dline_index; + if (opp == j || opp == j+1 || opp == j-1) + continue; + if (j == 0 && opp == N-1) + continue; + if (j == N-1 && opp == 0) + continue; + opp_dline_index = dline_index_from_dot(g, d, opp); + if (set_atmostone(dlines, opp_dline_index)) + diff = min(diff, DIFF_NORMAL); + } + if (yes == 0 && is_atmostone(dlines, dline_index)) { + /* This dline has *exactly* one YES and there are no + * other YESs. This allows more deductions. */ + if (unknown == 3) { + /* Third unknown must be YES */ + for (opp = 0; opp < N; opp++) { + int opp_index; + if (opp == j || opp == k) + continue; + opp_index = d->edges[opp] - g->edges; + if (state->lines[opp_index] == LINE_UNKNOWN) { + solver_set_line(sstate, opp_index, + LINE_YES); + diff = min(diff, DIFF_EASY); + } } + } else if (unknown == 4) { + /* Exactly one of opposite UNKNOWNS is YES. We've + * already set atmostone, so set atleastone as + * well. + */ + if (dline_set_opp_atleastone(sstate, d, j)) + diff = min(diff, DIFF_NORMAL); } - } else if (unknown == 4) { - /* Exactly one of opposite UNKNOWNS is YES. We've - * already set atmostone, so set atleastone as well. - */ - if (dline_set_opp_atleastone(sstate, d, j)) - diff = min(diff, DIFF_NORMAL); } } } @@ -2749,11 +2924,11 @@ static int normal_mode_deductions(solver_state *sstate) return diff; } -static int hard_mode_deductions(solver_state *sstate) +static int linedsf_deductions(solver_state *sstate) { game_state *state = sstate->state; grid *g = state->game_grid; - char *dlines = sstate->normal->dlines; + char *dlines = sstate->dlines; int i; int diff = DIFF_MAX; int diff_tmp; @@ -2823,8 +2998,8 @@ static int hard_mode_deductions(solver_state *sstate) if (state->lines[line2_index] != LINE_UNKNOWN) continue; /* Infer dline flags from linedsf */ - can1 = edsf_canonify(sstate->hard->linedsf, line1_index, &inv1); - can2 = edsf_canonify(sstate->hard->linedsf, line2_index, &inv2); + can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1); + can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2); if (can1 == can2 && inv1 != inv2) { /* These are opposites, so set dline atmostone/atleastone */ if (set_atmostone(dlines, dline_index)) @@ -2858,7 +3033,7 @@ static int hard_mode_deductions(solver_state *sstate) for (i = 0; i < g->num_edges; i++) { int can, inv; enum line_state s; - can = edsf_canonify(sstate->hard->linedsf, i, &inv); + can = edsf_canonify(sstate->linedsf, i, &inv); if (can == i) continue; s = sstate->state->lines[can]; @@ -3031,52 +3206,59 @@ static int loop_deductions(solver_state *sstate) /* This will return a dynamically allocated solver_state containing the (more) * solved grid */ -static solver_state *solve_game_rec(const solver_state *sstate_start, - int diff) +static solver_state *solve_game_rec(const solver_state *sstate_start) { - solver_state *sstate, *sstate_saved; - int solver_progress; - game_state *state; + solver_state *sstate; - /* Indicates which solver we should call next. This is a sensible starting - * point */ - int current_solver = DIFF_EASY, next_solver; + /* Index of the solver we should call next. */ + int i = 0; + + /* As a speed-optimisation, we avoid re-running solvers that we know + * won't make any progress. This happens when a high-difficulty + * solver makes a deduction that can only help other high-difficulty + * solvers. + * For example: if a new 'dline' flag is set by dline_deductions, the + * trivial_deductions solver cannot do anything with this information. + * If we've already run the trivial_deductions solver (because it's + * earlier in the list), there's no point running it again. + * + * Therefore: if a solver is earlier in the list than "threshold_index", + * we don't bother running it if it's difficulty level is less than + * "threshold_diff". + */ + int threshold_diff = 0; + int threshold_index = 0; + sstate = dup_solver_state(sstate_start); - /* Cache the values of some variables for readability */ - state = sstate->state; - - sstate_saved = NULL; - - solver_progress = FALSE; - check_caches(sstate); - do { + while (i < NUM_SOLVERS) { if (sstate->solver_status == SOLVER_MISTAKE) return sstate; - - next_solver = solver_fns[current_solver](sstate); - - if (next_solver == DIFF_MAX) { - if (current_solver < diff && current_solver + 1 < DIFF_MAX) { - /* Try next beefier solver */ - next_solver = current_solver + 1; - } else { - next_solver = loop_deductions(sstate); - } - } - if (sstate->solver_status == SOLVER_SOLVED || sstate->solver_status == SOLVER_AMBIGUOUS) { -/* fprintf(stderr, "Solver completed\n"); */ + /* solver finished */ break; } - /* Once we've looped over all permitted solvers then the loop - * deductions without making any progress, we'll exit this while loop */ - current_solver = next_solver; - } while (current_solver < DIFF_MAX); + if ((solver_diffs[i] >= threshold_diff || i >= threshold_index) + && solver_diffs[i] <= sstate->diff) { + /* current_solver is eligible, so use it */ + int next_diff = solver_fns[i](sstate); + if (next_diff != DIFF_MAX) { + /* solver made progress, so use new thresholds and + * start again at top of list. */ + threshold_diff = next_diff; + threshold_index = i; + i = 0; + continue; + } + } + /* current_solver is ineligible, or failed to make progress, so + * go to the next solver in the list */ + i++; + } if (sstate->solver_status == SOLVER_SOLVED || sstate->solver_status == SOLVER_AMBIGUOUS) { @@ -3096,7 +3278,7 @@ static char *solve_game(game_state *state, game_state *currstate, solver_state *sstate, *new_sstate; sstate = new_solver_state(state, DIFF_MAX); - new_sstate = solve_game_rec(sstate, DIFF_MAX); + new_sstate = solve_game_rec(sstate); if (new_sstate->solver_status == SOLVER_SOLVED) { soln = encode_solve_move(new_sstate->state); @@ -3155,6 +3337,10 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, button_char = 'y'; break; case LINE_YES: +#ifdef STYLUS_BASED + button_char = 'n'; + break; +#endif case LINE_NO: button_char = 'u'; break; @@ -3169,6 +3355,10 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, button_char = 'n'; break; case LINE_NO: +#ifdef STYLUS_BASED + button_char = 'y'; + break; +#endif case LINE_YES: button_char = 'u'; break; @@ -3197,6 +3387,8 @@ static game_state *execute_move(game_state *state, char *move) while (*move) { i = atoi(move); + if (i < 0 || i >= newstate->game_grid->num_edges) + goto fail; move += strspn(move, "1234567890"); switch (*(move++)) { case 'y': @@ -3245,251 +3437,335 @@ static void grid_to_screen(const game_drawstate *ds, const grid *g, /* Returns (into x,y) position of centre of face for rendering the text clue. */ static void face_text_pos(const game_drawstate *ds, const grid *g, - const grid_face *f, int *x, int *y) + grid_face *f, int *xret, int *yret) { - int i; + int faceindex = f - g->faces; + + /* + * Return the cached position for this face, if we've already + * worked it out. + */ + if (ds->textx[faceindex] >= 0) { + *xret = ds->textx[faceindex]; + *yret = ds->texty[faceindex]; + return; + } - /* Simplest solution is the centroid. Might not work in some cases. */ + /* + * Otherwise, use the incentre computed by grid.c and convert it + * to screen coordinates. + */ + grid_find_incentre(f); + grid_to_screen(ds, g, f->ix, f->iy, + &ds->textx[faceindex], &ds->texty[faceindex]); - /* Another algorithm to look into: - * Find the midpoints of the sides, find the bounding-box, - * then take the centre of that. */ + *xret = ds->textx[faceindex]; + *yret = ds->texty[faceindex]; +} - /* Best solution probably involves incentres (inscribed circles) */ +static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f, + int *x, int *y, int *w, int *h) +{ + int xx, yy; + face_text_pos(ds, g, f, &xx, &yy); - int sx = 0, sy = 0; /* sums */ - for (i = 0; i < f->order; i++) { - grid_dot *d = f->dots[i]; - sx += d->x; - sy += d->y; - } - sx /= f->order; - sy /= f->order; + /* There seems to be a certain amount of trial-and-error involved + * in working out the correct bounding-box for the text. */ - /* convert to screen coordinates */ - grid_to_screen(ds, g, sx, sy, x, y); + *x = xx - ds->tilesize/4 - 1; + *y = yy - ds->tilesize/4 - 3; + *w = ds->tilesize/2 + 2; + *h = ds->tilesize/2 + 5; } -static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, - game_state *state, int dir, game_ui *ui, - float animtime, float flashtime) +static void game_redraw_clue(drawing *dr, game_drawstate *ds, + game_state *state, int i) { grid *g = state->game_grid; - int border = BORDER(ds->tilesize); - int i, n; - char c[2]; - int line_colour, flash_changed; - int clue_mistake; - int clue_satisfied; + grid_face *f = g->faces + i; + int x, y; + char c[3]; - if (!ds->started) { - /* - * The initial contents of the window are not guaranteed and - * can vary with front ends. To be on the safe side, all games - * should start by drawing a big background-colour rectangle - * covering the whole window. - */ - int grid_width = g->highest_x - g->lowest_x; - int grid_height = g->highest_y - g->lowest_y; - int w = grid_width * ds->tilesize / g->tilesize; - int h = grid_height * ds->tilesize / g->tilesize; - draw_rect(dr, 0, 0, w + 2 * border + 1, h + 2 * border + 1, - COL_BACKGROUND); + if (state->clues[i] < 10) { + c[0] = CLUE2CHAR(state->clues[i]); + c[1] = '\0'; + } else { + sprintf(c, "%d", state->clues[i]); + } - /* Draw clues */ - for (i = 0; i < g->num_faces; i++) { - grid_face *f; - int x, y; + face_text_pos(ds, g, f, &x, &y); + draw_text(dr, x, y, + FONT_VARIABLE, ds->tilesize/2, + ALIGN_VCENTRE | ALIGN_HCENTRE, + ds->clue_error[i] ? COL_MISTAKE : + ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c); +} - c[0] = CLUE2CHAR(state->clues[i]); - c[1] = '\0'; - f = g->faces + i; - face_text_pos(ds, g, f, &x, &y); - draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2, - ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c); - } - draw_update(dr, 0, 0, w + 2 * border, h + 2 * border); - } +static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e, + int *x, int *y, int *w, int *h) +{ + int x1 = e->dot1->x; + int y1 = e->dot1->y; + int x2 = e->dot2->x; + int y2 = e->dot2->y; + int xmin, xmax, ymin, ymax; + + grid_to_screen(ds, g, x1, y1, &x1, &y1); + grid_to_screen(ds, g, x2, y2, &x2, &y2); + /* Allow extra margin for dots, and thickness of lines */ + xmin = min(x1, x2) - 2; + xmax = max(x1, x2) + 2; + ymin = min(y1, y2) - 2; + ymax = max(y1, y2) + 2; + + *x = xmin; + *y = ymin; + *w = xmax - xmin + 1; + *h = ymax - ymin + 1; +} + +static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d, + int *x, int *y, int *w, int *h) +{ + int x1, y1; + + grid_to_screen(ds, g, d->x, d->y, &x1, &y1); + + *x = x1 - 2; + *y = y1 - 2; + *w = 5; + *h = 5; +} + +static const int loopy_line_redraw_phases[] = { + COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE +}; +#define NPHASES lenof(loopy_line_redraw_phases) - if (flashtime > 0 && - (flashtime <= FLASH_TIME/3 || - flashtime >= FLASH_TIME*2/3)) { - flash_changed = !ds->flashing; - ds->flashing = TRUE; +static void game_redraw_line(drawing *dr, game_drawstate *ds, + game_state *state, int i, int phase) +{ + grid *g = state->game_grid; + grid_edge *e = g->edges + i; + int x1, x2, y1, y2; + int line_colour; + + if (state->line_errors[i]) + line_colour = COL_MISTAKE; + else if (state->lines[i] == LINE_UNKNOWN) + line_colour = COL_LINEUNKNOWN; + else if (state->lines[i] == LINE_NO) + line_colour = COL_FAINT; + else if (ds->flashing) + line_colour = COL_HIGHLIGHT; + else + line_colour = COL_FOREGROUND; + if (line_colour != loopy_line_redraw_phases[phase]) + return; + + /* Convert from grid to screen coordinates */ + grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1); + grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2); + + if (line_colour == COL_FAINT) { + static int draw_faint_lines = -1; + if (draw_faint_lines < 0) { + char *env = getenv("LOOPY_FAINT_LINES"); + draw_faint_lines = (!env || (env[0] == 'y' || + env[0] == 'Y')); + } + if (draw_faint_lines) + draw_line(dr, x1, y1, x2, y2, line_colour); } else { - flash_changed = ds->flashing; - ds->flashing = FALSE; + draw_thick_line(dr, 3.0, + x1 + 0.5, y1 + 0.5, + x2 + 0.5, y2 + 0.5, + line_colour); } +} + +static void game_redraw_dot(drawing *dr, game_drawstate *ds, + game_state *state, int i) +{ + grid *g = state->game_grid; + grid_dot *d = g->dots + i; + int x, y; + + grid_to_screen(ds, g, d->x, d->y, &x, &y); + draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND); +} - /* Some platforms may perform anti-aliasing, which may prevent clean - * repainting of lines when the colour is changed. - * If a line needs to be over-drawn in a different colour, erase a - * bounding-box around the line, then flag all nearby objects for redraw. +static int boxes_intersect(int x0, int y0, int w0, int h0, + int x1, int y1, int w1, int h1) +{ + /* + * Two intervals intersect iff neither is wholly on one side of + * the other. Two boxes intersect iff their horizontal and + * vertical intervals both intersect. */ - if (ds->started) { - const char redraw_flag = (char)(1<<7); + return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0); +} + +static void game_redraw_in_rect(drawing *dr, game_drawstate *ds, + game_state *state, int x, int y, int w, int h) +{ + grid *g = state->game_grid; + int i, phase; + int bx, by, bw, bh; + + clip(dr, x, y, w, h); + draw_rect(dr, x, y, w, h, COL_BACKGROUND); + + for (i = 0; i < g->num_faces; i++) { + if (state->clues[i] >= 0) { + face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh); + if (boxes_intersect(x, y, w, h, bx, by, bw, bh)) + game_redraw_clue(dr, ds, state, i); + } + } + for (phase = 0; phase < NPHASES; phase++) { for (i = 0; i < g->num_edges; i++) { - char prev_ds = (ds->lines[i] & ~redraw_flag); - char new_ds = state->lines[i]; - if (state->line_errors[i]) - new_ds = DS_LINE_ERROR; - - /* If we're changing state, AND - * the previous state was a coloured line */ - if ((prev_ds != new_ds) && (prev_ds != LINE_NO)) { - grid_edge *e = g->edges + i; - int x1 = e->dot1->x; - int y1 = e->dot1->y; - int x2 = e->dot2->x; - int y2 = e->dot2->y; - int xmin, xmax, ymin, ymax; - int j; - grid_to_screen(ds, g, x1, y1, &x1, &y1); - grid_to_screen(ds, g, x2, y2, &x2, &y2); - /* Allow extra margin for dots, and thickness of lines */ - xmin = min(x1, x2) - 2; - xmax = max(x1, x2) + 2; - ymin = min(y1, y2) - 2; - ymax = max(y1, y2) + 2; - /* For testing, I find it helpful to change COL_BACKGROUND - * to COL_SATISFIED here. */ - draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1, - COL_BACKGROUND); - draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1); - - /* Mark nearby lines for redraw */ - for (j = 0; j < e->dot1->order; j++) - ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag; - for (j = 0; j < e->dot2->order; j++) - ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag; - /* Mark nearby clues for redraw. Use a value that is - * neither TRUE nor FALSE for this. */ - if (e->face1) - ds->clue_error[e->face1 - g->faces] = 2; - if (e->face2) - ds->clue_error[e->face2 - g->faces] = 2; - } + edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh); + if (boxes_intersect(x, y, w, h, bx, by, bw, bh)) + game_redraw_line(dr, ds, state, i, phase); } } + for (i = 0; i < g->num_dots; i++) { + dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh); + if (boxes_intersect(x, y, w, h, bx, by, bw, bh)) + game_redraw_dot(dr, ds, state, i); + } - /* Redraw clue colours if necessary */ - for (i = 0; i < g->num_faces; i++) { - grid_face *f = g->faces + i; - int sides = f->order; - int j; - n = state->clues[i]; - if (n < 0) - continue; + unclip(dr); + draw_update(dr, x, y, w, h); +} - c[0] = CLUE2CHAR(n); - c[1] = '\0'; +static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, + game_state *state, int dir, game_ui *ui, + float animtime, float flashtime) +{ +#define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */ - clue_mistake = (face_order(state, i, LINE_YES) > n || - face_order(state, i, LINE_NO ) > (sides-n)); + grid *g = state->game_grid; + int border = BORDER(ds->tilesize); + int i; + int flash_changed; + int redraw_everything = FALSE; - clue_satisfied = (face_order(state, i, LINE_YES) == n && - face_order(state, i, LINE_NO ) == (sides-n)); + int edges[REDRAW_OBJECTS_LIMIT], nedges = 0; + int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0; - if (clue_mistake != ds->clue_error[i] - || clue_satisfied != ds->clue_satisfied[i]) { - int x, y; - face_text_pos(ds, g, f, &x, &y); - /* There seems to be a certain amount of trial-and-error - * involved in working out the correct bounding-box for - * the text. */ - draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3, - ds->tilesize/2 + 2, ds->tilesize/2 + 5, - COL_BACKGROUND); - draw_text(dr, x, y, - FONT_VARIABLE, ds->tilesize/2, - ALIGN_VCENTRE | ALIGN_HCENTRE, - clue_mistake ? COL_MISTAKE : - clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c); - draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3, - ds->tilesize/2 + 2, ds->tilesize/2 + 5); + /* Redrawing is somewhat involved. + * + * An update can theoretically affect an arbitrary number of edges + * (consider, for example, completing or breaking a cycle which doesn't + * satisfy all the clues -- we'll switch many edges between error and + * normal states). On the other hand, redrawing the whole grid takes a + * while, making the game feel sluggish, and many updates are actually + * quite well localized. + * + * This redraw algorithm attempts to cope with both situations gracefully + * and correctly. For localized changes, we set a clip rectangle, fill + * it with background, and then redraw (a plausible but conservative + * guess at) the objects which intersect the rectangle; if several + * objects need redrawing, we'll do them individually. However, if lots + * of objects are affected, we'll just redraw everything. + * + * The reason for all of this is that it's just not safe to do the redraw + * piecemeal. If you try to draw an antialiased diagonal line over + * itself, you get a slightly thicker antialiased diagonal line, which + * looks rather ugly after a while. + * + * So, we take two passes over the grid. The first attempts to work out + * what needs doing, and the second actually does it. + */ - ds->clue_error[i] = clue_mistake; - ds->clue_satisfied[i] = clue_satisfied; + if (!ds->started) + redraw_everything = TRUE; + else { + + /* First, trundle through the faces. */ + for (i = 0; i < g->num_faces; i++) { + grid_face *f = g->faces + i; + int sides = f->order; + int clue_mistake; + int clue_satisfied; + int n = state->clues[i]; + if (n < 0) + continue; + + clue_mistake = (face_order(state, i, LINE_YES) > n || + face_order(state, i, LINE_NO ) > (sides-n)); + clue_satisfied = (face_order(state, i, LINE_YES) == n && + face_order(state, i, LINE_NO ) == (sides-n)); + + if (clue_mistake != ds->clue_error[i] || + clue_satisfied != ds->clue_satisfied[i]) { + ds->clue_error[i] = clue_mistake; + ds->clue_satisfied[i] = clue_satisfied; + if (nfaces == REDRAW_OBJECTS_LIMIT) + redraw_everything = TRUE; + else + faces[nfaces++] = i; + } + } - /* Sometimes, the bounding-box encroaches into the surrounding - * lines (particularly if the window is resized fairly small). - * So redraw them. */ - for (j = 0; j < f->order; j++) - ds->lines[f->edges[j] - g->edges] = -1; - } + /* Work out what the flash state needs to be. */ + if (flashtime > 0 && + (flashtime <= FLASH_TIME/3 || + flashtime >= FLASH_TIME*2/3)) { + flash_changed = !ds->flashing; + ds->flashing = TRUE; + } else { + flash_changed = ds->flashing; + ds->flashing = FALSE; + } + + /* Now, trundle through the edges. */ + for (i = 0; i < g->num_edges; i++) { + char new_ds = + state->line_errors[i] ? DS_LINE_ERROR : state->lines[i]; + if (new_ds != ds->lines[i] || + (flash_changed && state->lines[i] == LINE_YES)) { + ds->lines[i] = new_ds; + if (nedges == REDRAW_OBJECTS_LIMIT) + redraw_everything = TRUE; + else + edges[nedges++] = i; + } + } } - /* Lines */ - for (i = 0; i < g->num_edges; i++) { - grid_edge *e = g->edges + i; - int x1, x2, y1, y2; - int xmin, ymin, xmax, ymax; - char new_ds, need_draw; - new_ds = state->lines[i]; - if (state->line_errors[i]) - new_ds = DS_LINE_ERROR; - need_draw = (new_ds != ds->lines[i]) ? TRUE : FALSE; - if (flash_changed && (state->lines[i] == LINE_YES)) - need_draw = TRUE; - if (!ds->started) - need_draw = TRUE; /* draw everything at the start */ - ds->lines[i] = new_ds; - if (!need_draw) - continue; - if (state->line_errors[i]) - line_colour = COL_MISTAKE; - else if (state->lines[i] == LINE_UNKNOWN) - line_colour = COL_LINEUNKNOWN; - else if (state->lines[i] == LINE_NO) - line_colour = COL_BACKGROUND; - else if (ds->flashing) - line_colour = COL_HIGHLIGHT; - else - line_colour = COL_FOREGROUND; + /* Pass one is now done. Now we do the actual drawing. */ + if (redraw_everything) { + int grid_width = g->highest_x - g->lowest_x; + int grid_height = g->highest_y - g->lowest_y; + int w = grid_width * ds->tilesize / g->tilesize; + int h = grid_height * ds->tilesize / g->tilesize; - /* Convert from grid to screen coordinates */ - grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1); - grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2); + game_redraw_in_rect(dr, ds, state, + 0, 0, w + 2*border + 1, h + 2*border + 1); + } else { - xmin = min(x1, x2); - xmax = max(x1, x2); - ymin = min(y1, y2); - ymax = max(y1, y2); + /* Right. Now we roll up our sleeves. */ - if (line_colour != COL_BACKGROUND) { - /* (dx, dy) points roughly from (x1, y1) to (x2, y2). - * The line is then "fattened" in a (roughly) perpendicular - * direction to create a thin rectangle. */ - int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0); - int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0); - int points[8]; - points[0] = x1 + dy; - points[1] = y1 - dx; - points[2] = x1 - dy; - points[3] = y1 + dx; - points[4] = x2 - dy; - points[5] = y2 + dx; - points[6] = x2 + dy; - points[7] = y2 - dx; - draw_polygon(dr, points, 4, line_colour, line_colour); - } - if (ds->started) { - /* Draw dots at ends of the line */ - draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND); - draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND); - } - draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4); - } - - /* Draw dots */ - if (!ds->started) { - for (i = 0; i < g->num_dots; i++) { - grid_dot *d = g->dots + i; - int x, y; - grid_to_screen(ds, g, d->x, d->y, &x, &y); - draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND); - } + for (i = 0; i < nfaces; i++) { + grid_face *f = g->faces + faces[i]; + int x, y, w, h; + + face_text_bbox(ds, g, f, &x, &y, &w, &h); + game_redraw_in_rect(dr, ds, state, x, y, w, h); + } + + for (i = 0; i < nedges; i++) { + grid_edge *e = g->edges + edges[i]; + int x, y, w, h; + + edge_bbox(ds, g, e, &x, &y, &w, &h); + game_redraw_in_rect(dr, ds, state, x, y, w, h); + } } + ds->started = TRUE; } @@ -3504,6 +3780,11 @@ static float game_flash_length(game_state *oldstate, game_state *newstate, return 0.0F; } +static int game_is_solved(game_state *state) +{ + return state->solved; +} + static void game_print_size(game_params *params, float *x, float *y) { int pw, ph; @@ -3523,7 +3804,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize) game_drawstate ads, *ds = &ads; grid *g = state->game_grid; - game_set_size(dr, ds, NULL, tilesize); + ds->tilesize = tilesize; for (i = 0; i < g->num_dots; i++) { int x, y; @@ -3630,8 +3911,138 @@ const struct game thegame = { game_redraw, game_anim_length, game_flash_length, + game_is_solved, TRUE, FALSE, game_print_size, game_print, FALSE /* wants_statusbar */, FALSE, game_timing_state, 0, /* mouse_priorities */ }; + +#ifdef STANDALONE_SOLVER + +/* + * Half-hearted standalone solver. It can't output the solution to + * anything but a square puzzle, and it can't log the deductions + * it makes either. But it can solve square puzzles, and more + * importantly it can use its solver to grade the difficulty of + * any puzzle you give it. + */ + +#include + +int main(int argc, char **argv) +{ + game_params *p; + game_state *s; + char *id = NULL, *desc, *err; + int grade = FALSE; + int ret, diff; +#if 0 /* verbose solver not supported here (yet) */ + int really_verbose = FALSE; +#endif + + while (--argc > 0) { + char *p = *++argv; +#if 0 /* verbose solver not supported here (yet) */ + if (!strcmp(p, "-v")) { + really_verbose = TRUE; + } else +#endif + if (!strcmp(p, "-g")) { + grade = TRUE; + } else if (*p == '-') { + fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); + return 1; + } else { + id = p; + } + } + + if (!id) { + fprintf(stderr, "usage: %s [-g | -v] \n", argv[0]); + return 1; + } + + desc = strchr(id, ':'); + if (!desc) { + fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); + return 1; + } + *desc++ = '\0'; + + p = default_params(); + decode_params(p, id); + err = validate_desc(p, desc); + if (err) { + fprintf(stderr, "%s: %s\n", argv[0], err); + return 1; + } + s = new_game(NULL, p, desc); + + /* + * When solving an Easy puzzle, we don't want to bother the + * user with Hard-level deductions. For this reason, we grade + * the puzzle internally before doing anything else. + */ + ret = -1; /* placate optimiser */ + for (diff = 0; diff < DIFF_MAX; diff++) { + solver_state *sstate_new; + solver_state *sstate = new_solver_state((game_state *)s, diff); + + sstate_new = solve_game_rec(sstate); + + if (sstate_new->solver_status == SOLVER_MISTAKE) + ret = 0; + else if (sstate_new->solver_status == SOLVER_SOLVED) + ret = 1; + else + ret = 2; + + free_solver_state(sstate_new); + free_solver_state(sstate); + + if (ret < 2) + break; + } + + if (diff == DIFF_MAX) { + if (grade) + printf("Difficulty rating: harder than Hard, or ambiguous\n"); + else + printf("Unable to find a unique solution\n"); + } else { + if (grade) { + if (ret == 0) + printf("Difficulty rating: impossible (no solution exists)\n"); + else if (ret == 1) + printf("Difficulty rating: %s\n", diffnames[diff]); + } else { + solver_state *sstate_new; + solver_state *sstate = new_solver_state((game_state *)s, diff); + + /* If we supported a verbose solver, we'd set verbosity here */ + + sstate_new = solve_game_rec(sstate); + + if (sstate_new->solver_status == SOLVER_MISTAKE) + printf("Puzzle is inconsistent\n"); + else { + assert(sstate_new->solver_status == SOLVER_SOLVED); + if (s->grid_type == 0) { + fputs(game_text_format(sstate_new->state), stdout); + } else { + printf("Unable to output non-square grids\n"); + } + } + + free_solver_state(sstate_new); + free_solver_state(sstate); + } + } + + return 0; +} + +#endif + +/* vim: set shiftwidth=4 tabstop=8: */