X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/55446bb79d610e7bfece4da8a0a5b7e9408765f5..HEAD:/filling.c diff --git a/filling.c b/filling.c index 1ce04eb..a0c9fc4 100644 --- a/filling.c +++ b/filling.c @@ -6,11 +6,26 @@ /* TODO: * * - use a typedef instead of int for numbers on the board - * + replace int with something else (signed char?) - * - the type should be signed (I use -board[i] temporarily) - * - problems are small (<= 9?): type can be char? + * + replace int with something else (signed short?) + * - the type should be signed (for -board[i] and -SENTINEL) + * - the type should be somewhat big: board[i] = i + * - Using shorts gives us 181x181 puzzles as upper bound. * * - make a somewhat more clever solver + * + enable "ghost regions" of size > 1 + * - one can put an upper bound on the size of a ghost region + * by considering the board size and summing present hints. + * + for each square, for i=1..n, what is the distance to a region + * containing i? How full is the region? How is this useful? + * + * - in board generation, after having merged regions such that no + * more merges are necessary, try splitting (big) regions. + * + it seems that smaller regions make for better puzzles; see + * for instance the 7x7 puzzle in this file (grep for 7x7:). + * + * - symmetric hints (solo-style) + * + right now that means including _many_ hints, and the puzzles + * won't look any nicer. Not worth it (at the moment). * * - make the solver do recursion/backtracking. * + This is for user-submitted puzzles, not for puzzle @@ -20,12 +35,14 @@ * * - solo-like pencil marks? * - * - speed up generation of puzzles of size >= 11x11 + * - a user says that the difficulty is unevenly distributed. + * + partition into levels? Will they be non-crap? * * - Allow square contents > 9? * + I could use letters for digits (solo does this), but * letters don't have numeric significance (normal people hate * base36), which is relevant here (much more than in solo). + * + [click, 1, 0, enter] => [10 in clicked square]? * + How much information is needed to solve? Does one need to * know the algorithm by which the largest number is set? * @@ -42,20 +59,39 @@ * * - use binary search when discovering the minimal sovable point * + profile to show a need (but when the solver gets slower...) - * + avg 0.1s per 9x9, which _is_ human-patience noticable. + * + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100) + * + but the hints are independent, not linear, so... what? */ #include #include #include +#include #include #include #include #include "puzzles.h" +static unsigned char verbose; + +static void printv(char *fmt, ...) { +#ifndef PALM + if (verbose) { + va_list va; + va_start(va, fmt); + vprintf(fmt, va); + va_end(va); + } +#endif +} + +/***************************************************************************** + * GAME CONFIGURATION AND PARAMETERS * + *****************************************************************************/ + struct game_params { - int w, h; + int h, w; }; struct shared_state { @@ -70,13 +106,13 @@ struct game_state { int completed, cheated; }; -static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}}; +static const struct game_params filling_defaults[3] = {{7, 9}, {9, 13}, {13, 17}}; static game_params *default_params(void) { game_params *ret = snew(game_params); - *ret = defaults[1]; /* struct copy */ + *ret = filling_defaults[1]; /* struct copy */ return ret; } @@ -85,10 +121,10 @@ static int game_fetch_preset(int i, char **name, game_params **params) { char buf[64]; - if (i < 0 || i >= lenof(defaults)) return FALSE; + if (i < 0 || i >= lenof(filling_defaults)) return FALSE; *params = snew(game_params); - **params = defaults[i]; /* struct copy */ - sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h); + **params = filling_defaults[i]; /* struct copy */ + sprintf(buf, "%dx%d", filling_defaults[i].h, filling_defaults[i].w); *name = dupstr(buf); return TRUE; @@ -232,15 +268,20 @@ static char *board_to_string(int *board, int w, int h) { /* fill in the numbers */ for (i = 0; i < sz; ++i) { const int x = i % w; - const int y = i / w; - if (board[i] == EMPTY) continue; - repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0'; + const int y = i / w; + if (board[i] == EMPTY) continue; + repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0'; } repr[chlen] = '\0'; return repr; } +static int game_can_format_as_text_now(game_params *params) +{ + return TRUE; +} + static char *game_text_format(game_state *state) { const int w = state->shared->params.w; @@ -255,51 +296,29 @@ static char *game_text_format(game_state *state) static const int dx[4] = {-1, 1, 0, 0}; static const int dy[4] = {0, 0, -1, 1}; -/* -static void print_board(int *board, int w, int h) { - char *repr = board_to_string(board, w, h); - fputs(repr, stdout); - free(repr); -} -*/ - -#define SENTINEL sz +struct solver_state +{ + int *dsf; + int *board; + int *connected; + int nempty; +}; -/* determines whether a board (in dsf form) is valid. If possible, - * return a conflicting pair in *a and *b and a non-*b neighbour of *a - * in *c. If not possible, leave them unmodified. */ -static void -validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) { - const int sz = w * h; - int i; - assert(*a == SENTINEL); - assert(*b == SENTINEL); - assert(*c == SENTINEL); - for (i = 0; i < sz && *a == sz; ++i) { - const int aa = dsf_canonify(dsf, sq[i]); - int cc = sz; - int j; - for (j = 0; j < 4; ++j) { - const int x = (sq[i] % w) + dx[j]; - const int y = (sq[i] / w) + dy[j]; - int bb; - if (x < 0 || x >= w || y < 0 || y >= h) continue; - bb = dsf_canonify(dsf, w*y + x); - if (aa == bb) continue; - else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) { - *a = aa; - *b = bb; - *c = cc; - } else if (cc == sz) *c = cc = bb; - } +static void print_board(int *board, int w, int h) { + if (verbose) { + char *repr = board_to_string(board, w, h); + printv("%s\n", repr); + free(repr); } } static game_state *new_game(midend *, game_params *, char *); static void free_game(game_state *); -/* generate a random valid board; uses validate_board. */ -void make_board(int *board, int w, int h, random_state *rs) { +#define SENTINEL sz + +/* generate a random valid board; uses validate_board. */ +static void make_board(int *board, int w, int h, random_state *rs) { int *dsf; const unsigned int sz = w * h; @@ -312,7 +331,6 @@ void make_board(int *board, int w, int h, random_state *rs) { * of size > w*h, so the special case only affects w=h=2. */ int nboards = 0; - int i; assert(w >= 1); @@ -324,34 +342,55 @@ void make_board(int *board, int w, int h, random_state *rs) { /* I abuse the board variable: when generating the puzzle, it * contains a shuffled list of numbers {0, ..., nsq-1}. */ - for (i = 0; i < sz; ++i) board[i] = i; + for (i = 0; i < (int)sz; ++i) board[i] = i; while (1) { - ++nboards; - shuffle(board, sz, sizeof (int), rs); - /* while the board can in principle be fixed */ - while (1) { - int a = SENTINEL; - int b = SENTINEL; - int c = SENTINEL; - validate_board(dsf, w, h, board, &a, &b, &c); - if (a == SENTINEL /* meaning the board is valid */) { - int i; - for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i); - sfree(dsf); - /* printf("returning board number %d\n", nboards); */ - return; - } else { - /* try to repair the invalid board */ - a = dsf_canonify(dsf, a); - assert(a != dsf_canonify(dsf, b)); - if (c != sz) assert(a != dsf_canonify(dsf, c)); - dsf_merge(dsf, a, c == sz? b: c); - /* if repair impossible; make a new board */ - if (dsf_size(dsf, a) > maxsize) break; - } - } - dsf_init(dsf, sz); /* re-init the dsf */ + int change; + ++nboards; + shuffle(board, sz, sizeof (int), rs); + /* while the board can in principle be fixed */ + do { + change = FALSE; + for (i = 0; i < (int)sz; ++i) { + int a = SENTINEL; + int b = SENTINEL; + int c = SENTINEL; + const int aa = dsf_canonify(dsf, board[i]); + int cc = sz; + int j; + for (j = 0; j < 4; ++j) { + const int x = (board[i] % w) + dx[j]; + const int y = (board[i] / w) + dy[j]; + int bb; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + bb = dsf_canonify(dsf, w*y + x); + if (aa == bb) continue; + else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) { + a = aa; + b = bb; + c = cc; + } else if (cc == sz) c = cc = bb; + } + if (a != SENTINEL) { + a = dsf_canonify(dsf, a); + assert(a != dsf_canonify(dsf, b)); + if (c != sz) assert(a != dsf_canonify(dsf, c)); + dsf_merge(dsf, a, c == sz? b: c); + /* if repair impossible; make a new board */ + if (dsf_size(dsf, a) > maxsize) goto retry; + change = TRUE; + } + } + } while (change); + + for (i = 0; i < (int)sz; ++i) board[i] = dsf_size(dsf, i); + + sfree(dsf); + printv("returning board number %d\n", nboards); + return; + + retry: + dsf_init(dsf, sz); } assert(FALSE); /* unreachable */ } @@ -393,31 +432,36 @@ static void *memdup(const void *ptr, size_t len, size_t esz) { return dup; } -static void expand(int *board, int *connected, int *dsf, int w, int h, - int dst, int src, int *empty, int *learn) { +static void expand(struct solver_state *s, int w, int h, int t, int f) { int j; - assert(board); - assert(connected); - assert(dsf); - assert(empty); - assert(learn); - assert(board[dst] == EMPTY); - assert(board[src] != EMPTY); - board[dst] = board[src]; + assert(s); + assert(s->board[t] == EMPTY); /* expand to empty square */ + assert(s->board[f] != EMPTY); /* expand from non-empty square */ + printv( + "learn: expanding %d from (%d, %d) into (%d, %d)\n", + s->board[f], f % w, f / w, t % w, t / w); + s->board[t] = s->board[f]; for (j = 0; j < 4; ++j) { - const int x = (dst % w) + dx[j]; - const int y = (dst / w) + dy[j]; + const int x = (t % w) + dx[j]; + const int y = (t / w) + dy[j]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[idx] != board[dst]) continue; - merge(dsf, connected, dst, idx); + if (s->board[idx] != s->board[t]) continue; + merge(s->dsf, s->connected, t, idx); } -/* printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */ - --*empty; - *learn = TRUE; + --s->nempty; } -static void flood(int *board, int w, int h, int i, int n) { +static void clear_count(int *board, int sz) { + int i; + for (i = 0; i < sz; ++i) { + if (board[i] >= 0) continue; + else if (board[i] == -SENTINEL) board[i] = EMPTY; + else board[i] = -board[i]; + } +} + +static void flood_count(int *board, int w, int h, int i, int n, int *c) { const int sz = w * h; int k; @@ -425,30 +469,23 @@ static void flood(int *board, int w, int h, int i, int n) { else if (board[i] == n) board[i] = -board[i]; else return; + if (--*c == 0) return; + for (k = 0; k < 4; ++k) { const int x = (i % w) + dx[k]; const int y = (i / w) + dy[k]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; - flood(board, w, h, idx, n); - } -} - -static int count_and_clear(int *board, int sz) { - int count = -1; - int i; - for (i = 0; i < sz; ++i) { - if (board[i] >= 0) continue; - ++count; - if (board[i] == -SENTINEL) board[i] = EMPTY; - else board[i] = -board[i]; + flood_count(board, w, h, idx, n, c); + if (*c == 0) return; } - return count; } -static int count(int *board, int w, int h, int i) { - flood(board, w, h, i, board[i]); - return count_and_clear(board, w * h); +static int check_capacity(int *board, int w, int h, int i) { + int n = board[i]; + flood_count(board, w, h, i, board[i], &n); + clear_count(board, w * h); + return n == 0; } static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { @@ -467,7 +504,7 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { root = dsf_canonify(dsf, idx); for (m = 0; m < nhits && root != hits[m]; ++m); if (m < nhits) continue; - /* printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */ + printv("\t (%d, %d) contrib %d to size\n", x, y, dsf[root] >> 2); size += dsf_size(dsf, root); assert(dsf_size(dsf, root) >= 1); hits[nhits++] = root; @@ -504,7 +541,8 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { * * CONNECTED COMPONENT FORCED EXPANSION (too small): * When a CC must include a particular square, because otherwise there - * would not be enough room to complete it. + * would not be enough room to complete it. This includes squares not + * adjacent to the CC through learn_critical_square. * +---+---+ * | 2 | _ | * +---+---+ @@ -523,185 +561,245 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { * * TODO: backtracking. */ -#define EXPAND(a, b)\ -expand(board, connected, dsf, w, h, a, b, &nempty, &learn) -static int solver(const int *orig, int w, int h, char **solution) { +static void filled_square(struct solver_state *s, int w, int h, int i) { + int j; + for (j = 0; j < 4; ++j) { + const int x = (i % w) + dx[j]; + const int y = (i / w) + dy[j]; + const int idx = w*y + x; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (s->board[i] == s->board[idx]) + merge(s->dsf, s->connected, i, idx); + } +} + +static void init_solver_state(struct solver_state *s, int w, int h) { const int sz = w * h; + int i; + assert(s); - int *board = memdup(orig, sz, sizeof (int)); - int *dsf = snew_dsf(sz); /* eqv classes: connected components */ - int *connected = snewn(sz, int); /* connected[n] := n.next; */ - /* cyclic disjoint singly linked lists, same partitioning as dsf. - * The lists lets you iterate over a partition given any member */ + s->nempty = 0; + for (i = 0; i < sz; ++i) s->connected[i] = i; + for (i = 0; i < sz; ++i) + if (s->board[i] == EMPTY) ++s->nempty; + else filled_square(s, w, h, i); +} + +static int learn_expand_or_one(struct solver_state *s, int w, int h) { + const int sz = w * h; + int i; + int learn = FALSE; - int nempty = 0; + assert(s); - int learn; + for (i = 0; i < sz; ++i) { + int j; + int one = TRUE; + + if (s->board[i] != EMPTY) continue; + + for (j = 0; j < 4; ++j) { + const int x = (i % w) + dx[j]; + const int y = (i / w) + dy[j]; + const int idx = w*y + x; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (s->board[idx] == EMPTY) { + one = FALSE; + continue; + } + if (one && + (s->board[idx] == 1 || + (s->board[idx] >= expandsize(s->board, s->dsf, w, h, + i, s->board[idx])))) + one = FALSE; + assert(s->board[i] == EMPTY); + s->board[i] = -SENTINEL; + if (check_capacity(s->board, w, h, idx)) continue; + assert(s->board[i] == EMPTY); + printv("learn: expanding in one\n"); + expand(s, w, h, i, idx); + learn = TRUE; + break; + } + if (j == 4 && one) { + printv("learn: one at (%d, %d)\n", i % w, i / w); + assert(s->board[i] == EMPTY); + s->board[i] = 1; + assert(s->nempty); + --s->nempty; + learn = TRUE; + } + } + return learn; +} + +static int learn_blocked_expansion(struct solver_state *s, int w, int h) { + const int sz = w * h; int i; - for (i = 0; i < sz; i++) connected[i] = i; + int learn = FALSE; + assert(s); + /* for every connected component */ for (i = 0; i < sz; ++i) { + int exp = SENTINEL; int j; - if (board[i] == EMPTY) ++nempty; - else for (j = 0; j < 4; ++j) { - const int x = (i % w) + dx[j]; - const int y = (i / w) + dy[j]; - const int idx = w*y + x; - if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[i] == board[idx]) merge(dsf, connected, i, idx); - } - } -/* puts("trying to solve this:"); - print_board(board, w, h); */ - - /* TODO: refactor this code, it's too long */ - do { - int i; - learn = FALSE; - - /* for every connected component */ - for (i = 0; i < sz; ++i) { - int exp = SENTINEL; - int j; - - /* If the component consists of empty squares */ - if (board[i] == EMPTY) { - int k; - int one = TRUE; - for (k = 0; k < 4; ++k) { - const int x = (i % w) + dx[k]; - const int y = (i / w) + dy[k]; - const int idx = w*y + x; - int n; - if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[idx] == EMPTY) { - one = FALSE; - continue; - } - if (one && - (board[idx] == 1 || - (board[idx] >= expandsize(board, dsf, w, h, - i, board[idx])))) - one = FALSE; - assert(board[i] == EMPTY); - board[i] = -SENTINEL; - n = count(board, w, h, idx); - assert(board[i] == EMPTY); - if (n >= board[idx]) continue; - EXPAND(i, idx); - break; - } - if (k == 4 && one) { - assert(board[i] == EMPTY); - board[i] = 1; - assert(nempty); - --nempty; - learn = TRUE; + if (s->board[i] == EMPTY) continue; + j = dsf_canonify(s->dsf, i); + + /* (but only for each connected component) */ + if (i != j) continue; + + /* (and not if it's already complete) */ + if (dsf_size(s->dsf, j) == s->board[j]) continue; + + /* for each square j _in_ the connected component */ + do { + int k; + printv(" looking at (%d, %d)\n", j % w, j / w); + + /* for each neighbouring square (idx) */ + for (k = 0; k < 4; ++k) { + const int x = (j % w) + dx[k]; + const int y = (j / w) + dy[k]; + const int idx = w*y + x; + int size; + /* int l; + int nhits = 0; + int hits[4]; */ + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (s->board[idx] != EMPTY) continue; + if (exp == idx) continue; + printv("\ttrying to expand onto (%d, %d)\n", x, y); + + /* find out the would-be size of the new connected + * component if we actually expanded into idx */ + /* + size = 1; + for (l = 0; l < 4; ++l) { + const int lx = x + dx[l]; + const int ly = y + dy[l]; + const int idxl = w*ly + lx; + int root; + int m; + if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue; + if (board[idxl] != board[j]) continue; + root = dsf_canonify(dsf, idxl); + for (m = 0; m < nhits && root != hits[m]; ++m); + if (m != nhits) continue; + // printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); + size += dsf_size(dsf, root); + assert(dsf_size(dsf, root) >= 1); + hits[nhits++] = root; } - continue; + */ + + size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]); + + /* ... and see if that size is too big, or if we + * have other expansion candidates. Otherwise + * remember the (so far) only candidate. */ + + printv("\tthat would give a size of %d\n", size); + if (size > s->board[j]) continue; + /* printv("\tnow knowing %d expansions\n", nexpand + 1); */ + if (exp != SENTINEL) goto next_i; + assert(exp != idx); + exp = idx; } - /* printf("expanding blob of (%d, %d)\n", i % w, i / w); */ - - j = dsf_canonify(dsf, i); - - /* (but only for each connected component) */ - if (i != j) continue; - - /* (and not if it's already complete) */ - if (dsf_size(dsf, j) == board[j]) continue; - - /* for each square j _in_ the connected component */ - do { - int k; - /* printf(" looking at (%d, %d)\n", j % w, j / w); */ - - /* for each neighbouring square (idx) */ - for (k = 0; k < 4; ++k) { - const int x = (j % w) + dx[k]; - const int y = (j / w) + dy[k]; - const int idx = w*y + x; - int size; - /* int l; - int nhits = 0; - int hits[4]; */ - if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[idx] != EMPTY) continue; - if (exp == idx) continue; - /* printf("\ttrying to expand onto (%d, %d)\n", x, y); */ - - /* find out the would-be size of the new connected - * component if we actually expanded into idx */ - /* - size = 1; - for (l = 0; l < 4; ++l) { - const int lx = x + dx[l]; - const int ly = y + dy[l]; - const int idxl = w*ly + lx; - int root; - int m; - if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue; - if (board[idxl] != board[j]) continue; - root = dsf_canonify(dsf, idxl); - for (m = 0; m < nhits && root != hits[m]; ++m); - if (m != nhits) continue; - // printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); - size += dsf_size(dsf, root); - assert(dsf_size(dsf, root) >= 1); - hits[nhits++] = root; - } - */ - - size = expandsize(board, dsf, w, h, idx, board[j]); - - /* ... and see if that size is too big, or if we - * have other expansion candidates. Otherwise - * remember the (so far) only candidate. */ - - /* printf("\tthat would give a size of %d\n", size); */ - if (size > board[j]) continue; - /* printf("\tnow knowing %d expansions\n", nexpand + 1); */ - if (exp != SENTINEL) goto next_i; - assert(exp != idx); - exp = idx; - } - j = connected[j]; /* next square in the same CC */ - assert(board[i] == board[j]); - } while (j != i); - /* end: for each square j _in_ the connected component */ + j = s->connected[j]; /* next square in the same CC */ + assert(s->board[i] == s->board[j]); + } while (j != i); + /* end: for each square j _in_ the connected component */ - if (exp == SENTINEL) continue; - /* printf("expand b: %d -> %d\n", i, exp); */ - EXPAND(exp, i); + if (exp == SENTINEL) continue; + printv("learning to expand\n"); + expand(s, w, h, exp, i); + learn = TRUE; - next_i: - ; - } - /* end: for each connected component */ - } while (learn && nempty); + next_i: + ; + } + /* end: for each connected component */ + return learn; +} + +static int learn_critical_square(struct solver_state *s, int w, int h) { + const int sz = w * h; + int i; + int learn = FALSE; + assert(s); + + /* for each connected component */ + for (i = 0; i < sz; ++i) { + int j; + if (s->board[i] == EMPTY) continue; + if (i != dsf_canonify(s->dsf, i)) continue; + if (dsf_size(s->dsf, i) == s->board[i]) continue; + assert(s->board[i] != 1); + /* for each empty square */ + for (j = 0; j < sz; ++j) { + if (s->board[j] != EMPTY) continue; + s->board[j] = -SENTINEL; + if (check_capacity(s->board, w, h, i)) continue; + /* if not expanding s->board[i] to s->board[j] implies + * that s->board[i] can't reach its full size, ... */ + assert(s->nempty); + printv( + "learn: ds %d at (%d, %d) blocking (%d, %d)\n", + s->board[i], j % w, j / w, i % w, i / w); + --s->nempty; + s->board[j] = s->board[i]; + filled_square(s, w, h, j); + learn = TRUE; + } + } + return learn; +} + +static int solver(const int *orig, int w, int h, char **solution) { + const int sz = w * h; + + struct solver_state ss; + ss.board = memdup(orig, sz, sizeof (int)); + ss.dsf = snew_dsf(sz); /* eqv classes: connected components */ + ss.connected = snewn(sz, int); /* connected[n] := n.next; */ + /* cyclic disjoint singly linked lists, same partitioning as dsf. + * The lists lets you iterate over a partition given any member */ + + printv("trying to solve this:\n"); + print_board(ss.board, w, h); + + init_solver_state(&ss, w, h); + do { + if (learn_blocked_expansion(&ss, w, h)) continue; + if (learn_expand_or_one(&ss, w, h)) continue; + if (learn_critical_square(&ss, w, h)) continue; + break; + } while (ss.nempty); - /* puts("best guess:"); - print_board(board, w, h); */ + printv("best guess:\n"); + print_board(ss.board, w, h); if (solution) { int i; assert(*solution == NULL); *solution = snewn(sz + 2, char); **solution = 's'; - for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0'; + for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0'; (*solution)[sz + 1] = '\0'; /* We don't need the \0 for execute_move (the only user) * I'm just being printf-friendly in case I wanna print */ } - sfree(dsf); - sfree(board); - sfree(connected); + sfree(ss.dsf); + sfree(ss.board); + sfree(ss.connected); - return !nempty; + return !ss.nempty; } static int *make_dsf(int *dsf, int *board, const int w, const int h) { @@ -744,6 +842,31 @@ static int compare(const void *pa, const void *pb) { return g_board[*(const int *)pb] - g_board[*(const int *)pa]; } +static void minimize_clue_set(int *board, int w, int h, int *randomize) { + const int sz = w * h; + int i; + int *board_cp = snewn(sz, int); + memcpy(board_cp, board, sz * sizeof (int)); + + /* since more clues only helps and never hurts, one pass will do + * just fine: if we can remove clue n with k clues of index > n, + * we could have removed clue n with >= k clues of index > n. + * So an additional pass wouldn't do anything [use induction]. */ + for (i = 0; i < sz; ++i) { + if (board[randomize[i]] == EMPTY) continue; + board[randomize[i]] = EMPTY; + /* (rot.) symmetry tends to include _way_ too many hints */ + /* board[sz - randomize[i] - 1] = EMPTY; */ + if (!solver(board, w, h, NULL)) { + board[randomize[i]] = board_cp[randomize[i]]; + /* board[sz - randomize[i] - 1] = + board_cp[sz - randomize[i] - 1]; */ + } + } + + sfree(board_cp); +} + static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { @@ -752,7 +875,6 @@ static char *new_game_desc(game_params *params, random_state *rs, const int sz = w * h; int *board = snewn(sz, int); int *randomize = snewn(sz, int); - int *solver_board = snewn(sz, int); char *game_description = snewn(sz + 1, char); int i; @@ -762,35 +884,23 @@ static char *new_game_desc(game_params *params, random_state *rs, } make_board(board, w, h, rs); - memcpy(solver_board, board, sz * sizeof (int)); - g_board = board; qsort(randomize, sz, sizeof (int), compare); - - /* since more clues only helps and never hurts, one pass will do - * just fine: if we can remove clue n with k clues of index > n, - * we could have removed clue n with >= k clues of index > n. - * So an additional pass wouldn't do anything [use induction]. */ - for (i = 0; i < sz; ++i) { - solver_board[randomize[i]] = EMPTY; - if (!solver(solver_board, w, h, NULL)) - solver_board[randomize[i]] = board[randomize[i]]; - } + minimize_clue_set(board, w, h, randomize); for (i = 0; i < sz; ++i) { - assert(solver_board[i] >= 0); - assert(solver_board[i] < 10); - game_description[i] = solver_board[i] + '0'; + assert(board[i] >= 0); + assert(board[i] < 10); + game_description[i] = board[i] + '0'; } game_description[sz] = '\0'; /* - solver(solver_board, w, h, aux); - print_board(solver_board, w, h); + solver(board, w, h, aux); + print_board(board, w, h); */ sfree(randomize); - sfree(solver_board); sfree(board); return game_description; @@ -802,7 +912,7 @@ static char *validate_desc(game_params *params, char *desc) const int sz = params->w * params->h; const char m = '0' + max(max(params->w, params->h), 3); - /* printf("desc = '%s'; sz = %d\n", desc, sz); */ + printv("desc = '%s'; sz = %d\n", desc, sz); for (i = 0; desc[i] && i < sz; ++i) if (!isdigit((unsigned char) *desc)) @@ -873,20 +983,24 @@ static char *solve_game(game_state *state, game_state *currstate, *****************************************************************************/ struct game_ui { - int x, y; /* highlighted square, or (-1, -1) if none */ + int *sel; /* w*h highlighted squares, or NULL */ + int cur_x, cur_y, cur_visible; }; static game_ui *new_ui(game_state *state) { game_ui *ui = snew(game_ui); - ui->x = ui->y = -1; + ui->sel = NULL; + ui->cur_x = ui->cur_y = ui->cur_visible = 0; return ui; } static void free_ui(game_ui *ui) { + if (ui->sel) + sfree(ui->sel); sfree(ui); } @@ -902,12 +1016,17 @@ static void decode_ui(game_ui *ui, char *encoding) static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { + /* Clear any selection */ + if (ui->sel) { + sfree(ui->sel); + ui->sel = NULL; + } } #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) -#define BORDER_WIDTH (TILE_SIZE / 32) +#define BORDER_WIDTH (max(TILE_SIZE / 32, 1)) struct game_drawstate { struct game_params params; @@ -917,7 +1036,7 @@ struct game_drawstate { int *dsf_scratch, *border_scratch; }; -static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, +static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { const int w = state->shared->params.w; @@ -926,73 +1045,123 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1; const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1; + char *move = NULL; + int i; + assert(ui); assert(ds); button &= ~MOD_MASK; - if (tx >= 0 && tx < w && ty >= 0 && ty < h) { + if (button == LEFT_BUTTON || button == LEFT_DRAG) { + /* A left-click anywhere will clear the current selection. */ if (button == LEFT_BUTTON) { - if ((tx == ui->x && ty == ui->y) || state->shared->clues[w*ty+tx]) - ui->x = ui->y = -1; - else ui->x = tx, ui->y = ty; - return ""; /* redraw */ + if (ui->sel) { + sfree(ui->sel); + ui->sel = NULL; + } + } + if (tx >= 0 && tx < w && ty >= 0 && ty < h) { + if (!ui->sel) { + ui->sel = snewn(w*h, int); + memset(ui->sel, 0, w*h*sizeof(int)); + } + if (!state->shared->clues[w*ty+tx]) + ui->sel[w*ty+tx] = 1; } + ui->cur_visible = 0; + return ""; /* redraw */ } - assert((ui->x == -1) == (ui->y == -1)); - if (ui->x == -1) return NULL; - assert(state->shared->clues[w*ui->y + ui->x] == 0); + if (IS_CURSOR_MOVE(button)) { + ui->cur_visible = 1; + move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, 0); + return ""; + } + if (IS_CURSOR_SELECT(button)) { + if (!ui->cur_visible) { + ui->cur_visible = 1; + return ""; + } + if (!ui->sel) { + ui->sel = snewn(w*h, int); + memset(ui->sel, 0, w*h*sizeof(int)); + } + if (state->shared->clues[w*ui->cur_y + ui->cur_x] == 0) + ui->sel[w*ui->cur_y + ui->cur_x] ^= 1; + return ""; + } switch (button) { case ' ': case '\r': case '\n': case '\b': - case '\177': button = 0; break; default: - if (!isdigit(button)) return NULL; + if (button < '0' || button > '9') return NULL; button -= '0'; if (button > (w == 2 && h == 2? 3: max(w, h))) return NULL; } - { - const int i = w*ui->y + ui->x; - char buf[64]; - ui->x = ui->y = -1; - if (state->board[i] == button) { - return ""; /* no change - just update ui */ - } else { - sprintf(buf, "%d_%d", i, button); - return dupstr(buf); - } + for (i = 0; i < w*h; i++) { + char buf[32]; + if ((ui->sel && ui->sel[i]) || + (!ui->sel && ui->cur_visible && (w*ui->cur_y+ui->cur_x) == i)) { + if (state->shared->clues[i] != 0) continue; /* in case cursor is on clue */ + if (state->board[i] != button) { + sprintf(buf, "%s%d", move ? "," : "", i); + if (move) { + move = srealloc(move, strlen(move)+strlen(buf)+1); + strcat(move, buf); + } else { + move = smalloc(strlen(buf)+1); + strcpy(move, buf); + } + } + } + } + if (move) { + char buf[32]; + sprintf(buf, "_%d", button); + move = srealloc(move, strlen(move)+strlen(buf)+1); + strcat(move, buf); } + if (!ui->sel) return move ? move : NULL; + sfree(ui->sel); + ui->sel = NULL; + /* Need to update UI at least, as we cleared the selection */ + return move ? move : ""; } static game_state *execute_move(game_state *state, char *move) { - game_state *new_state; + game_state *new_state = NULL; + const int sz = state->shared->params.w * state->shared->params.h; if (*move == 's') { - const int sz = state->shared->params.w * state->shared->params.h; int i = 0; new_state = dup_game(state); for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0'; new_state->cheated = TRUE; } else { - char *endptr; - const int i = strtol(move, &endptr, 0); int value; - if (endptr == move) return NULL; - if (*endptr != '_') return NULL; - move = endptr + 1; - value = strtol(move, &endptr, 0); - if (endptr == move) return NULL; - if (*endptr != '\0') return NULL; + char *endptr, *delim = strchr(move, '_'); + if (!delim) goto err; + value = strtol(delim+1, &endptr, 0); + if (*endptr || endptr == delim+1) goto err; + if (value < 0 || value > 9) goto err; new_state = dup_game(state); - new_state->board[i] = value; + while (*move) { + const int i = strtol(move, &endptr, 0); + if (endptr == move) goto err; + if (i < 0 || i >= sz) goto err; + new_state->board[i] = value; + if (*endptr == '_') break; + if (*endptr != ',') goto err; + move = endptr + 1; + } } /* @@ -1011,6 +1180,10 @@ static game_state *execute_move(game_state *state, char *move) } return new_state; + +err: + if (new_state) free_game(new_state); + return NULL; } /* ---------------------------------------------------------------------- @@ -1027,6 +1200,7 @@ enum { COL_CORRECT, COL_ERROR, COL_USER, + COL_CURSOR, NCOLOURS }; @@ -1061,6 +1235,10 @@ static float *game_colours(frontend *fe, int *ncolours) ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2]; + ret[COL_CURSOR * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; + ret[COL_CURSOR * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; + ret[COL_CURSOR * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; + ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2]; @@ -1108,10 +1286,11 @@ static void game_free_drawstate(drawing *dr, game_drawstate *ds) #define BORDER_DR 0x020 #define BORDER_UL 0x040 #define BORDER_DL 0x080 -#define CURSOR_BG 0x100 +#define HIGH_BG 0x100 #define CORRECT_BG 0x200 #define ERROR_BG 0x400 #define USER_COL 0x800 +#define CURSOR_SQ 0x1000 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, int n, int flags) @@ -1133,7 +1312,7 @@ static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, BORDER + y*TILE_SIZE, TILE_SIZE, TILE_SIZE, - (flags & CURSOR_BG ? COL_HIGHLIGHT : + (flags & HIGH_BG ? COL_HIGHLIGHT : flags & ERROR_BG ? COL_ERROR : flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND)); @@ -1222,6 +1401,16 @@ static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, BORDER_WIDTH, COL_GRID); + if (flags & CURSOR_SQ) { + int coff = TILE_SIZE/8; + draw_rect_outline(dr, + BORDER + x*TILE_SIZE + coff, + BORDER + y*TILE_SIZE + coff, + TILE_SIZE - coff*2, + TILE_SIZE - coff*2, + COL_CURSOR); + } + unclip(dr); draw_update(dr, @@ -1305,20 +1494,38 @@ static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state, /* * Determine what we need to draw in this square. */ - int v = state->board[y*w+x]; + int i = y*w+x, v = state->board[i]; int flags = 0; if (flashy || !shading) { /* clear all background flags */ - } else if (x == ui->x && y == ui->y) { - flags |= CURSOR_BG; + } else if (ui && ui->sel && ui->sel[i]) { + flags |= HIGH_BG; } else if (v) { - int size = dsf_size(ds->dsf_scratch, y*w+x); + int size = dsf_size(ds->dsf_scratch, i); if (size == v) flags |= CORRECT_BG; else if (size > v) flags |= ERROR_BG; + else { + int rt = dsf_canonify(ds->dsf_scratch, i), j; + for (j = 0; j < w*h; ++j) { + int k; + if (dsf_canonify(ds->dsf_scratch, j) != rt) continue; + for (k = 0; k < 4; ++k) { + const int xx = j % w + dx[k], yy = j / w + dy[k]; + if (xx >= 0 && xx < w && yy >= 0 && yy < h && + state->board[yy*w + xx] == EMPTY) + goto noflag; + } + } + flags |= ERROR_BG; + noflag: + ; + } } + if (ui && ui->cur_visible && x == ui->cur_x && y == ui->cur_y) + flags |= CURSOR_SQ; /* * Borders at the very edges of the grid are @@ -1388,7 +1595,8 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, * should start by drawing a big background-colour rectangle * covering the whole window. */ - draw_rect(dr, 0, 0, 10*ds->tilesize, 10*ds->tilesize, COL_BACKGROUND); + draw_rect(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER, + COL_BACKGROUND); /* * Smaller black rectangle which is the main grid. @@ -1398,6 +1606,8 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, h*TILE_SIZE + 2*BORDER_WIDTH + 1, COL_GRID); + draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER); + ds->started = TRUE; } @@ -1423,6 +1633,11 @@ static float game_flash_length(game_state *oldstate, game_state *newstate, return 0.0F; } +static int game_status(game_state *state) +{ + return state->completed ? +1 : 0; +} + static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; @@ -1436,8 +1651,8 @@ static void game_print_size(game_params *params, float *x, float *y) * I'll use 6mm squares by default. */ game_compute_size(params, 600, &pw, &ph); - *x = pw / 100.0; - *y = ph / 100.0; + *x = pw / 100.0F; + *y = ph / 100.0F; } static void game_print(drawing *dr, game_state *state, int tilesize) @@ -1506,7 +1721,7 @@ const struct game thegame = { dup_game, free_game, TRUE, solve_game, - TRUE, game_text_format, + TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, @@ -1521,6 +1736,7 @@ const struct game thegame = { game_redraw, game_anim_length, game_flash_length, + game_status, TRUE, FALSE, game_print_size, game_print, FALSE, /* wants_statusbar */ FALSE, game_timing_state, @@ -1556,3 +1772,5 @@ int main(int argc, char **argv) { } #endif + +/* vim: set shiftwidth=4 tabstop=8: */