X-Git-Url: https://git.distorted.org.uk/~mdw/sgt/puzzles/blobdiff_plain/4413ef0febdc131ec0ea3661fcd3466063b31494..HEAD:/dominosa.c diff --git a/dominosa.c b/dominosa.c index f9d55d6..2662410 100644 --- a/dominosa.c +++ b/dominosa.c @@ -109,8 +109,12 @@ static int game_fetch_preset(int i, char **name, game_params **params) switch (i) { case 0: n = 3; break; - case 1: n = 6; break; - case 2: n = 9; break; + case 1: n = 4; break; + case 2: n = 5; break; + case 3: n = 6; break; + case 4: n = 7; break; + case 5: n = 8; break; + case 6: n = 9; break; default: return FALSE; } @@ -546,7 +550,7 @@ static char *new_game_desc(game_params *params, random_state *rs, { int n = params->n, w = n+2, h = n+1, wh = w*h; int *grid, *grid2, *list; - int i, j, k, m, todo, done, len; + int i, j, k, len; char *ret; /* @@ -586,241 +590,7 @@ static char *new_game_desc(game_params *params, random_state *rs, */ do { - /* - * To begin with, set grid[i] = i for all i to indicate - * that all squares are currently singletons. Later we'll - * set grid[i] to be the index of the other end of the - * domino on i. - */ - for (i = 0; i < wh; i++) - grid[i] = i; - - /* - * Now prepare a list of the possible domino locations. There - * are w*(h-1) possible vertical locations, and (w-1)*h - * horizontal ones, for a total of 2*wh - h - w. - * - * I'm going to denote the vertical domino placement with - * its top in square i as 2*i, and the horizontal one with - * its left half in square i as 2*i+1. - */ - k = 0; - for (j = 0; j < h-1; j++) - for (i = 0; i < w; i++) - list[k++] = 2 * (j*w+i); /* vertical positions */ - for (j = 0; j < h; j++) - for (i = 0; i < w-1; i++) - list[k++] = 2 * (j*w+i) + 1; /* horizontal positions */ - assert(k == 2*wh - h - w); - - /* - * Shuffle the list. - */ - shuffle(list, k, sizeof(*list), rs); - - /* - * Work down the shuffled list, placing a domino everywhere - * we can. - */ - for (i = 0; i < k; i++) { - int horiz, xy, xy2; - - horiz = list[i] % 2; - xy = list[i] / 2; - xy2 = xy + (horiz ? 1 : w); - - if (grid[xy] == xy && grid[xy2] == xy2) { - /* - * We can place this domino. Do so. - */ - grid[xy] = xy2; - grid[xy2] = xy; - } - } - -#ifdef GENERATION_DIAGNOSTICS - printf("generated initial layout\n"); -#endif - - /* - * Now we've placed as many dominoes as we can immediately - * manage. There will be squares remaining, but they'll be - * singletons. So loop round and deal with the singletons - * two by two. - */ - while (1) { -#ifdef GENERATION_DIAGNOSTICS - for (j = 0; j < h; j++) { - for (i = 0; i < w; i++) { - int xy = j*w+i; - int v = grid[xy]; - int c = (v == xy+1 ? '[' : v == xy-1 ? ']' : - v == xy+w ? 'n' : v == xy-w ? 'U' : '.'); - putchar(c); - } - putchar('\n'); - } - putchar('\n'); -#endif - - /* - * Our strategy is: - * - * First find a singleton square. - * - * Then breadth-first search out from the starting - * square. From that square (and any others we reach on - * the way), examine all four neighbours of the square. - * If one is an end of a domino, we move to the _other_ - * end of that domino before looking at neighbours - * again. When we encounter another singleton on this - * search, stop. - * - * This will give us a path of adjacent squares such - * that all but the two ends are covered in dominoes. - * So we can now shuffle every domino on the path up by - * one. - * - * (Chessboard colours are mathematically important - * here: we always end up pairing each singleton with a - * singleton of the other colour. However, we never - * have to track this manually, since it's - * automatically taken care of by the fact that we - * always make an even number of orthogonal moves.) - */ - for (i = 0; i < wh; i++) - if (grid[i] == i) - break; - if (i == wh) - break; /* no more singletons; we're done. */ - -#ifdef GENERATION_DIAGNOSTICS - printf("starting b.f.s. at singleton %d\n", i); -#endif - /* - * Set grid2 to -1 everywhere. It will hold our - * distance-from-start values, and also our - * backtracking data, during the b.f.s. - */ - for (j = 0; j < wh; j++) - grid2[j] = -1; - grid2[i] = 0; /* starting square has distance zero */ - - /* - * Start our to-do list of squares. It'll live in - * `list'; since the b.f.s can cover every square at - * most once there is no need for it to be circular. - * We'll just have two counters tracking the end of the - * list and the squares we've already dealt with. - */ - done = 0; - todo = 1; - list[0] = i; - - /* - * Now begin the b.f.s. loop. - */ - while (done < todo) { - int d[4], nd, x, y; - - i = list[done++]; - -#ifdef GENERATION_DIAGNOSTICS - printf("b.f.s. iteration from %d\n", i); -#endif - x = i % w; - y = i / w; - nd = 0; - if (x > 0) - d[nd++] = i - 1; - if (x+1 < w) - d[nd++] = i + 1; - if (y > 0) - d[nd++] = i - w; - if (y+1 < h) - d[nd++] = i + w; - /* - * To avoid directional bias, process the - * neighbours of this square in a random order. - */ - shuffle(d, nd, sizeof(*d), rs); - - for (j = 0; j < nd; j++) { - k = d[j]; - if (grid[k] == k) { -#ifdef GENERATION_DIAGNOSTICS - printf("found neighbouring singleton %d\n", k); -#endif - grid2[k] = i; - break; /* found a target singleton! */ - } - - /* - * We're moving through a domino here, so we - * have two entries in grid2 to fill with - * useful data. In grid[k] - the square - * adjacent to where we came from - I'm going - * to put the address _of_ the square we came - * from. In the other end of the domino - the - * square from which we will continue the - * search - I'm going to put the distance. - */ - m = grid[k]; - - if (grid2[m] < 0 || grid2[m] > grid2[i]+1) { -#ifdef GENERATION_DIAGNOSTICS - printf("found neighbouring domino %d/%d\n", k, m); -#endif - grid2[m] = grid2[i]+1; - grid2[k] = i; - /* - * And since we've now visited a new - * domino, add m to the to-do list. - */ - assert(todo < wh); - list[todo++] = m; - } - } - - if (j < nd) { - i = k; -#ifdef GENERATION_DIAGNOSTICS - printf("terminating b.f.s. loop, i = %d\n", i); -#endif - break; - } - - i = -1; /* just in case the loop terminates */ - } - - /* - * We expect this b.f.s. to have found us a target - * square. - */ - assert(i >= 0); - - /* - * Now we can follow the trail back to our starting - * singleton, re-laying dominoes as we go. - */ - while (1) { - j = grid2[i]; - assert(j >= 0 && j < wh); - k = grid[j]; - - grid[i] = j; - grid[j] = i; -#ifdef GENERATION_DIAGNOSTICS - printf("filling in domino %d/%d (next %d)\n", i, j, k); -#endif - if (j == k) - break; /* we've reached the other singleton */ - i = k; - } -#ifdef GENERATION_DIAGNOSTICS - printf("fixup path completed\n"); -#endif - } + domino_layout_prealloc(w, h, rs, grid, grid2, list); /* * Now we have a complete layout covering the whole @@ -1171,18 +941,31 @@ static char *solve_game(game_state *state, game_state *currstate, return ret; } +static int game_can_format_as_text_now(game_params *params) +{ + return TRUE; +} + static char *game_text_format(game_state *state) { return NULL; } +struct game_ui { + int cur_x, cur_y, cur_visible; +}; + static game_ui *new_ui(game_state *state) { - return NULL; + game_ui *ui = snew(game_ui); + ui->cur_x = ui->cur_y = 0; + ui->cur_visible = 0; + return ui; } static void free_ui(game_ui *ui) { + sfree(ui); } static char *encode_ui(game_ui *ui) @@ -1197,6 +980,8 @@ static void decode_ui(game_ui *ui, char *encoding) static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { + if (!oldstate->completed && newstate->completed) + ui->cur_visible = 0; } #define PREFERRED_TILESIZE 32 @@ -1205,6 +990,7 @@ static void game_changed_state(game_ui *ui, game_state *oldstate, #define DOMINO_GUTTER (TILESIZE / 16) #define DOMINO_RADIUS (TILESIZE / 8) #define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS) +#define CURSOR_RADIUS (TILESIZE / 4) #define COORD(x) ( (x) * TILESIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 ) @@ -1215,7 +1001,7 @@ struct game_drawstate { unsigned long *visible; }; -static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, +static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->w, h = state->h; @@ -1258,8 +1044,32 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, (state->grid[d1] != d1 || state->grid[d2] != d2)) return NULL; + ui->cur_visible = 0; sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2); return dupstr(buf); + } else if (IS_CURSOR_MOVE(button)) { + ui->cur_visible = 1; + + move_cursor(button, &ui->cur_x, &ui->cur_y, 2*w-1, 2*h-1, 0); + + return ""; + } else if (IS_CURSOR_SELECT(button)) { + int d1, d2; + + if (!((ui->cur_x ^ ui->cur_y) & 1)) + return NULL; /* must have exactly one dimension odd */ + d1 = (ui->cur_y / 2) * w + (ui->cur_x / 2); + d2 = ((ui->cur_y+1) / 2) * w + ((ui->cur_x+1) / 2); + + /* + * We can't mark an edge next to any domino. + */ + if (button == CURSOR_SELECT2 && + (state->grid[d1] != d1 || state->grid[d2] != d2)) + return NULL; + + sprintf(buf, "%c%d,%d", (int)(button == CURSOR_SELECT2 ? 'E' : 'D'), d1, d2); + return dupstr(buf); } return NULL; @@ -1439,7 +1249,7 @@ static void game_set_size(drawing *dr, game_drawstate *ds, ds->tilesize = tilesize; } -static float *game_colours(frontend *fe, game_state *state, int *ncolours) +static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); @@ -1461,7 +1271,7 @@ static float *game_colours(frontend *fe, game_state *state, int *ncolours) ret[COL_DOMINOTEXT * 3 + 1] = 1.0F; ret[COL_DOMINOTEXT * 3 + 2] = 1.0F; - ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3; + ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3; ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3; ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3; @@ -1500,6 +1310,24 @@ enum { TYPE_MASK = 0x0F }; +/* These flags must be disjoint with: + * the above enum (TYPE_*) [0x000 -- 0x00F] + * EDGE_* [0x100 -- 0xF00] + * and must fit into an unsigned long (32 bits). + */ +#define DF_FLASH 0x40 +#define DF_CLASH 0x80 + +#define DF_CURSOR 0x01000 +#define DF_CURSOR_USEFUL 0x02000 +#define DF_CURSOR_XBASE 0x10000 +#define DF_CURSOR_XMASK 0x30000 +#define DF_CURSOR_YBASE 0x40000 +#define DF_CURSOR_YMASK 0xC0000 + +#define CEDGE_OFF (TILESIZE / 8) +#define IS_EMPTY(s,x,y) ((s)->grid[(y)*(s)->w+(x)] == ((y)*(s)->w+(x))) + static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state, int x, int y, int type) { @@ -1509,6 +1337,7 @@ static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state, char str[80]; int flags; + clip(dr, cx, cy, TILESIZE, TILESIZE); draw_rect(dr, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND); flags = type &~ TYPE_MASK; @@ -1525,13 +1354,13 @@ static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state, * - a slight shift in the number */ - if (flags & 0x80) + if (flags & DF_CLASH) bg = COL_DOMINOCLASH; else bg = COL_DOMINO; nc = COL_DOMINOTEXT; - if (flags & 0x40) { + if (flags & DF_FLASH) { int tmp = nc; nc = bg; bg = tmp; @@ -1585,11 +1414,23 @@ static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state, nc = COL_TEXT; } + if (flags & DF_CURSOR) { + int curx = ((flags & DF_CURSOR_XMASK) / DF_CURSOR_XBASE) & 3; + int cury = ((flags & DF_CURSOR_YMASK) / DF_CURSOR_YBASE) & 3; + int ox = cx + curx*TILESIZE/2; + int oy = cy + cury*TILESIZE/2; + + draw_rect_corners(dr, ox, oy, CURSOR_RADIUS, nc); + if (flags & DF_CURSOR_USEFUL) + draw_rect_corners(dr, ox, oy, CURSOR_RADIUS+1, nc); + } + sprintf(str, "%d", state->numbers->numbers[y*w+x]); draw_text(dr, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str); draw_update(dr, cx, cy, TILESIZE, TILESIZE); + unclip(dr); } static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, @@ -1650,13 +1491,25 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, n2 = state->numbers->numbers[state->grid[n]]; di = DINDEX(n1, n2); if (used[di] > 1) - c |= 0x80; /* highlight a clash */ + c |= DF_CLASH; /* highlight a clash */ } else { c |= state->edges[n]; } if (flashtime != 0) - c |= 0x40; /* we're flashing */ + c |= DF_FLASH; /* we're flashing */ + + if (ui->cur_visible) { + unsigned curx = (unsigned)(ui->cur_x - (2*x-1)); + unsigned cury = (unsigned)(ui->cur_y - (2*y-1)); + if (curx < 3 && cury < 3) { + c |= (DF_CURSOR | + (curx * DF_CURSOR_XBASE) | + (cury * DF_CURSOR_YBASE)); + if ((ui->cur_x ^ ui->cur_y) & 1) + c |= DF_CURSOR_USEFUL; + } + } if (ds->visible[n] != c) { draw_tile(dr, ds, state, x, y, c); @@ -1682,9 +1535,9 @@ static float game_flash_length(game_state *oldstate, game_state *newstate, return 0.0F; } -static int game_wants_statusbar(void) +static int game_status(game_state *state) { - return FALSE; + return state->completed ? +1 : 0; } static int game_timing_state(game_state *state, game_ui *ui) @@ -1700,8 +1553,8 @@ static void game_print_size(game_params *params, float *x, float *y) * I'll use 6mm squares by default. */ game_compute_size(params, 600, &pw, &ph); - *x = pw / 100.0; - *y = ph / 100.0; + *x = pw / 100.0F; + *y = ph / 100.0F; } static void game_print(drawing *dr, game_state *state, int tilesize) @@ -1745,7 +1598,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize) #endif const struct game thegame = { - "Dominosa", "games.dominosa", + "Dominosa", "games.dominosa", "dominosa", default_params, game_fetch_preset, decode_params, @@ -1760,7 +1613,7 @@ const struct game thegame = { dup_game, free_game, TRUE, solve_game, - FALSE, game_text_format, + FALSE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, @@ -1775,8 +1628,12 @@ const struct game thegame = { game_redraw, game_anim_length, game_flash_length, + game_status, TRUE, FALSE, game_print_size, game_print, - game_wants_statusbar, + FALSE, /* wants_statusbar */ FALSE, game_timing_state, - 0, /* mouse_priorities */ + 0, /* flags */ }; + +/* vim: set shiftwidth=4 :set textwidth=80: */ +