Typo fixes from Debian bug#554341.
[sgt/puzzles] / dominosa.c
index 6d4e462..68422b7 100644 (file)
@@ -109,8 +109,12 @@ static int game_fetch_preset(int i, char **name, game_params **params)
 
     switch (i) {
       case 0: n = 3; break;
-      case 1: n = 6; break;
-      case 2: n = 9; break;
+      case 1: n = 4; break;
+      case 2: n = 5; break;
+      case 3: n = 6; break;
+      case 4: n = 7; break;
+      case 5: n = 8; break;
+      case 6: n = 9; break;
       default: return FALSE;
     }
 
@@ -546,7 +550,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
 {
     int n = params->n, w = n+2, h = n+1, wh = w*h;
     int *grid, *grid2, *list;
-    int i, j, k, m, todo, done, len;
+    int i, j, k, len;
     char *ret;
 
     /*
@@ -586,241 +590,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
      */
 
     do {
-        /*
-         * To begin with, set grid[i] = i for all i to indicate
-         * that all squares are currently singletons. Later we'll
-         * set grid[i] to be the index of the other end of the
-         * domino on i.
-         */
-        for (i = 0; i < wh; i++)
-            grid[i] = i;
-
-        /*
-         * Now prepare a list of the possible domino locations. There
-         * are w*(h-1) possible vertical locations, and (w-1)*h
-         * horizontal ones, for a total of 2*wh - h - w.
-         *
-         * I'm going to denote the vertical domino placement with
-         * its top in square i as 2*i, and the horizontal one with
-         * its left half in square i as 2*i+1.
-         */
-        k = 0;
-        for (j = 0; j < h-1; j++)
-            for (i = 0; i < w; i++)
-                list[k++] = 2 * (j*w+i);   /* vertical positions */
-        for (j = 0; j < h; j++)
-            for (i = 0; i < w-1; i++)
-                list[k++] = 2 * (j*w+i) + 1;   /* horizontal positions */
-        assert(k == 2*wh - h - w);
-
-        /*
-         * Shuffle the list.
-         */
-        shuffle(list, k, sizeof(*list), rs);
-
-        /*
-         * Work down the shuffled list, placing a domino everywhere
-         * we can.
-         */
-        for (i = 0; i < k; i++) {
-            int horiz, xy, xy2;
-
-            horiz = list[i] % 2;
-            xy = list[i] / 2;
-            xy2 = xy + (horiz ? 1 : w);
-
-            if (grid[xy] == xy && grid[xy2] == xy2) {
-                /*
-                 * We can place this domino. Do so.
-                 */
-                grid[xy] = xy2;
-                grid[xy2] = xy;
-            }
-        }
-
-#ifdef GENERATION_DIAGNOSTICS
-        printf("generated initial layout\n");
-#endif
-
-        /*
-         * Now we've placed as many dominoes as we can immediately
-         * manage. There will be squares remaining, but they'll be
-         * singletons. So loop round and deal with the singletons
-         * two by two.
-         */
-        while (1) {
-#ifdef GENERATION_DIAGNOSTICS
-            for (j = 0; j < h; j++) {
-                for (i = 0; i < w; i++) {
-                    int xy = j*w+i;
-                    int v = grid[xy];
-                    int c = (v == xy+1 ? '[' : v == xy-1 ? ']' :
-                             v == xy+w ? 'n' : v == xy-w ? 'U' : '.');
-                    putchar(c);
-                }
-                putchar('\n');
-            }
-            putchar('\n');
-#endif
-
-            /*
-             * Our strategy is:
-             *
-             * First find a singleton square.
-             *
-             * Then breadth-first search out from the starting
-             * square. From that square (and any others we reach on
-             * the way), examine all four neighbours of the square.
-             * If one is an end of a domino, we move to the _other_
-             * end of that domino before looking at neighbours
-             * again. When we encounter another singleton on this
-             * search, stop.
-             *
-             * This will give us a path of adjacent squares such
-             * that all but the two ends are covered in dominoes.
-             * So we can now shuffle every domino on the path up by
-             * one.
-             *
-             * (Chessboard colours are mathematically important
-             * here: we always end up pairing each singleton with a
-             * singleton of the other colour. However, we never
-             * have to track this manually, since it's
-             * automatically taken care of by the fact that we
-             * always make an even number of orthogonal moves.)
-             */
-            for (i = 0; i < wh; i++)
-                if (grid[i] == i)
-                    break;
-            if (i == wh)
-                break;                 /* no more singletons; we're done. */
-
-#ifdef GENERATION_DIAGNOSTICS
-            printf("starting b.f.s. at singleton %d\n", i);
-#endif
-            /*
-             * Set grid2 to -1 everywhere. It will hold our
-             * distance-from-start values, and also our
-             * backtracking data, during the b.f.s.
-             */
-            for (j = 0; j < wh; j++)
-                grid2[j] = -1;
-            grid2[i] = 0;              /* starting square has distance zero */
-
-            /*
-             * Start our to-do list of squares. It'll live in
-             * `list'; since the b.f.s can cover every square at
-             * most once there is no need for it to be circular.
-             * We'll just have two counters tracking the end of the
-             * list and the squares we've already dealt with.
-             */
-            done = 0;
-            todo = 1;
-            list[0] = i;
-
-            /*
-             * Now begin the b.f.s. loop.
-             */
-            while (done < todo) {
-                int d[4], nd, x, y;
-
-                i = list[done++];
-
-#ifdef GENERATION_DIAGNOSTICS
-                printf("b.f.s. iteration from %d\n", i);
-#endif
-                x = i % w;
-                y = i / w;
-                nd = 0;
-                if (x > 0)
-                    d[nd++] = i - 1;
-                if (x+1 < w)
-                    d[nd++] = i + 1;
-                if (y > 0)
-                    d[nd++] = i - w;
-                if (y+1 < h)
-                    d[nd++] = i + w;
-                /*
-                 * To avoid directional bias, process the
-                 * neighbours of this square in a random order.
-                 */
-                shuffle(d, nd, sizeof(*d), rs);
-
-                for (j = 0; j < nd; j++) {
-                    k = d[j];
-                    if (grid[k] == k) {
-#ifdef GENERATION_DIAGNOSTICS
-                        printf("found neighbouring singleton %d\n", k);
-#endif
-                        grid2[k] = i;
-                        break;         /* found a target singleton! */
-                    }
-
-                    /*
-                     * We're moving through a domino here, so we
-                     * have two entries in grid2 to fill with
-                     * useful data. In grid[k] - the square
-                     * adjacent to where we came from - I'm going
-                     * to put the address _of_ the square we came
-                     * from. In the other end of the domino - the
-                     * square from which we will continue the
-                     * search - I'm going to put the distance.
-                     */
-                    m = grid[k];
-
-                    if (grid2[m] < 0 || grid2[m] > grid2[i]+1) {
-#ifdef GENERATION_DIAGNOSTICS
-                        printf("found neighbouring domino %d/%d\n", k, m);
-#endif
-                        grid2[m] = grid2[i]+1;
-                        grid2[k] = i;
-                        /*
-                         * And since we've now visited a new
-                         * domino, add m to the to-do list.
-                         */
-                        assert(todo < wh);
-                        list[todo++] = m;
-                    }
-                }
-
-                if (j < nd) {
-                    i = k;
-#ifdef GENERATION_DIAGNOSTICS
-                    printf("terminating b.f.s. loop, i = %d\n", i);
-#endif
-                    break;
-                }
-
-                i = -1;                /* just in case the loop terminates */
-            }
-
-            /*
-             * We expect this b.f.s. to have found us a target
-             * square.
-             */
-            assert(i >= 0);
-
-            /*
-             * Now we can follow the trail back to our starting
-             * singleton, re-laying dominoes as we go.
-             */
-            while (1) {
-                j = grid2[i];
-                assert(j >= 0 && j < wh);
-                k = grid[j];
-
-                grid[i] = j;
-                grid[j] = i;
-#ifdef GENERATION_DIAGNOSTICS
-                printf("filling in domino %d/%d (next %d)\n", i, j, k);
-#endif
-                if (j == k)
-                    break;             /* we've reached the other singleton */
-                i = k;
-            }
-#ifdef GENERATION_DIAGNOSTICS
-            printf("fixup path completed\n");
-#endif
-        }
+        domino_layout_prealloc(w, h, rs, grid, grid2, list);
 
         /*
          * Now we have a complete layout covering the whole
@@ -1171,6 +941,11 @@ static char *solve_game(game_state *state, game_state *currstate,
     return ret;
 }
 
+static int game_can_format_as_text_now(game_params *params)
+{
+    return TRUE;
+}
+
 static char *game_text_format(game_state *state)
 {
     return NULL;
@@ -1439,7 +1214,7 @@ static void game_set_size(drawing *dr, game_drawstate *ds,
     ds->tilesize = tilesize;
 }
 
-static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+static float *game_colours(frontend *fe, int *ncolours)
 {
     float *ret = snewn(3 * NCOLOURS, float);
 
@@ -1682,11 +1457,6 @@ static float game_flash_length(game_state *oldstate, game_state *newstate,
     return 0.0F;
 }
 
-static int game_wants_statusbar(void)
-{
-    return FALSE;
-}
-
 static int game_timing_state(game_state *state, game_ui *ui)
 {
     return TRUE;
@@ -1700,8 +1470,8 @@ static void game_print_size(game_params *params, float *x, float *y)
      * I'll use 6mm squares by default.
      */
     game_compute_size(params, 600, &pw, &ph);
-    *x = pw / 100.0;
-    *y = ph / 100.0;
+    *x = pw / 100.0F;
+    *y = ph / 100.0F;
 }
 
 static void game_print(drawing *dr, game_state *state, int tilesize)
@@ -1711,7 +1481,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
 
     /* Ick: fake up `ds->tilesize' for macro expansion purposes */
     game_drawstate ads, *ds = &ads;
-    ads.tilesize = tilesize;
+    game_set_size(dr, ds, NULL, tilesize);
 
     c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
     c = print_mono_colour(dr, 0); assert(c == COL_TEXT);
@@ -1745,7 +1515,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
 #endif
 
 const struct game thegame = {
-    "Dominosa", "games.dominosa",
+    "Dominosa", "games.dominosa", "dominosa",
     default_params,
     game_fetch_preset,
     decode_params,
@@ -1760,7 +1530,7 @@ const struct game thegame = {
     dup_game,
     free_game,
     TRUE, solve_game,
-    FALSE, game_text_format,
+    FALSE, game_can_format_as_text_now, game_text_format,
     new_ui,
     free_ui,
     encode_ui,
@@ -1776,7 +1546,10 @@ const struct game thegame = {
     game_anim_length,
     game_flash_length,
     TRUE, FALSE, game_print_size, game_print,
-    game_wants_statusbar,
+    FALSE,                            /* wants_statusbar */
     FALSE, game_timing_state,
-    0,                                /* mouse_priorities */
+    0,                                /* flags */
 };
+
+/* vim: set shiftwidth=4 :set textwidth=80: */
+