Stop the analysis pass in Loopy's redraw routine from being
[sgt/puzzles] / dominosa.c
index 40fb47d..2662410 100644 (file)
@@ -109,8 +109,12 @@ static int game_fetch_preset(int i, char **name, game_params **params)
 
     switch (i) {
       case 0: n = 3; break;
-      case 1: n = 6; break;
-      case 2: n = 9; break;
+      case 1: n = 4; break;
+      case 2: n = 5; break;
+      case 3: n = 6; break;
+      case 4: n = 7; break;
+      case 5: n = 8; break;
+      case 6: n = 9; break;
       default: return FALSE;
     }
 
@@ -546,7 +550,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
 {
     int n = params->n, w = n+2, h = n+1, wh = w*h;
     int *grid, *grid2, *list;
-    int i, j, k, m, todo, done, len;
+    int i, j, k, len;
     char *ret;
 
     /*
@@ -586,241 +590,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
      */
 
     do {
-        /*
-         * To begin with, set grid[i] = i for all i to indicate
-         * that all squares are currently singletons. Later we'll
-         * set grid[i] to be the index of the other end of the
-         * domino on i.
-         */
-        for (i = 0; i < wh; i++)
-            grid[i] = i;
-
-        /*
-         * Now prepare a list of the possible domino locations. There
-         * are w*(h-1) possible vertical locations, and (w-1)*h
-         * horizontal ones, for a total of 2*wh - h - w.
-         *
-         * I'm going to denote the vertical domino placement with
-         * its top in square i as 2*i, and the horizontal one with
-         * its left half in square i as 2*i+1.
-         */
-        k = 0;
-        for (j = 0; j < h-1; j++)
-            for (i = 0; i < w; i++)
-                list[k++] = 2 * (j*w+i);   /* vertical positions */
-        for (j = 0; j < h; j++)
-            for (i = 0; i < w-1; i++)
-                list[k++] = 2 * (j*w+i) + 1;   /* horizontal positions */
-        assert(k == 2*wh - h - w);
-
-        /*
-         * Shuffle the list.
-         */
-        shuffle(list, k, sizeof(*list), rs);
-
-        /*
-         * Work down the shuffled list, placing a domino everywhere
-         * we can.
-         */
-        for (i = 0; i < k; i++) {
-            int horiz, xy, xy2;
-
-            horiz = list[i] % 2;
-            xy = list[i] / 2;
-            xy2 = xy + (horiz ? 1 : w);
-
-            if (grid[xy] == xy && grid[xy2] == xy2) {
-                /*
-                 * We can place this domino. Do so.
-                 */
-                grid[xy] = xy2;
-                grid[xy2] = xy;
-            }
-        }
-
-#ifdef GENERATION_DIAGNOSTICS
-        printf("generated initial layout\n");
-#endif
-
-        /*
-         * Now we've placed as many dominoes as we can immediately
-         * manage. There will be squares remaining, but they'll be
-         * singletons. So loop round and deal with the singletons
-         * two by two.
-         */
-        while (1) {
-#ifdef GENERATION_DIAGNOSTICS
-            for (j = 0; j < h; j++) {
-                for (i = 0; i < w; i++) {
-                    int xy = j*w+i;
-                    int v = grid[xy];
-                    int c = (v == xy+1 ? '[' : v == xy-1 ? ']' :
-                             v == xy+w ? 'n' : v == xy-w ? 'U' : '.');
-                    putchar(c);
-                }
-                putchar('\n');
-            }
-            putchar('\n');
-#endif
-
-            /*
-             * Our strategy is:
-             *
-             * First find a singleton square.
-             *
-             * Then breadth-first search out from the starting
-             * square. From that square (and any others we reach on
-             * the way), examine all four neighbours of the square.
-             * If one is an end of a domino, we move to the _other_
-             * end of that domino before looking at neighbours
-             * again. When we encounter another singleton on this
-             * search, stop.
-             *
-             * This will give us a path of adjacent squares such
-             * that all but the two ends are covered in dominoes.
-             * So we can now shuffle every domino on the path up by
-             * one.
-             *
-             * (Chessboard colours are mathematically important
-             * here: we always end up pairing each singleton with a
-             * singleton of the other colour. However, we never
-             * have to track this manually, since it's
-             * automatically taken care of by the fact that we
-             * always make an even number of orthogonal moves.)
-             */
-            for (i = 0; i < wh; i++)
-                if (grid[i] == i)
-                    break;
-            if (i == wh)
-                break;                 /* no more singletons; we're done. */
-
-#ifdef GENERATION_DIAGNOSTICS
-            printf("starting b.f.s. at singleton %d\n", i);
-#endif
-            /*
-             * Set grid2 to -1 everywhere. It will hold our
-             * distance-from-start values, and also our
-             * backtracking data, during the b.f.s.
-             */
-            for (j = 0; j < wh; j++)
-                grid2[j] = -1;
-            grid2[i] = 0;              /* starting square has distance zero */
-
-            /*
-             * Start our to-do list of squares. It'll live in
-             * `list'; since the b.f.s can cover every square at
-             * most once there is no need for it to be circular.
-             * We'll just have two counters tracking the end of the
-             * list and the squares we've already dealt with.
-             */
-            done = 0;
-            todo = 1;
-            list[0] = i;
-
-            /*
-             * Now begin the b.f.s. loop.
-             */
-            while (done < todo) {
-                int d[4], nd, x, y;
-
-                i = list[done++];
-
-#ifdef GENERATION_DIAGNOSTICS
-                printf("b.f.s. iteration from %d\n", i);
-#endif
-                x = i % w;
-                y = i / w;
-                nd = 0;
-                if (x > 0)
-                    d[nd++] = i - 1;
-                if (x+1 < w)
-                    d[nd++] = i + 1;
-                if (y > 0)
-                    d[nd++] = i - w;
-                if (y+1 < h)
-                    d[nd++] = i + w;
-                /*
-                 * To avoid directional bias, process the
-                 * neighbours of this square in a random order.
-                 */
-                shuffle(d, nd, sizeof(*d), rs);
-
-                for (j = 0; j < nd; j++) {
-                    k = d[j];
-                    if (grid[k] == k) {
-#ifdef GENERATION_DIAGNOSTICS
-                        printf("found neighbouring singleton %d\n", k);
-#endif
-                        grid2[k] = i;
-                        break;         /* found a target singleton! */
-                    }
-
-                    /*
-                     * We're moving through a domino here, so we
-                     * have two entries in grid2 to fill with
-                     * useful data. In grid[k] - the square
-                     * adjacent to where we came from - I'm going
-                     * to put the address _of_ the square we came
-                     * from. In the other end of the domino - the
-                     * square from which we will continue the
-                     * search - I'm going to put the distance.
-                     */
-                    m = grid[k];
-
-                    if (grid2[m] < 0 || grid2[m] > grid2[i]+1) {
-#ifdef GENERATION_DIAGNOSTICS
-                        printf("found neighbouring domino %d/%d\n", k, m);
-#endif
-                        grid2[m] = grid2[i]+1;
-                        grid2[k] = i;
-                        /*
-                         * And since we've now visited a new
-                         * domino, add m to the to-do list.
-                         */
-                        assert(todo < wh);
-                        list[todo++] = m;
-                    }
-                }
-
-                if (j < nd) {
-                    i = k;
-#ifdef GENERATION_DIAGNOSTICS
-                    printf("terminating b.f.s. loop, i = %d\n", i);
-#endif
-                    break;
-                }
-
-                i = -1;                /* just in case the loop terminates */
-            }
-
-            /*
-             * We expect this b.f.s. to have found us a target
-             * square.
-             */
-            assert(i >= 0);
-
-            /*
-             * Now we can follow the trail back to our starting
-             * singleton, re-laying dominoes as we go.
-             */
-            while (1) {
-                j = grid2[i];
-                assert(j >= 0 && j < wh);
-                k = grid[j];
-
-                grid[i] = j;
-                grid[j] = i;
-#ifdef GENERATION_DIAGNOSTICS
-                printf("filling in domino %d/%d (next %d)\n", i, j, k);
-#endif
-                if (j == k)
-                    break;             /* we've reached the other singleton */
-                i = k;
-            }
-#ifdef GENERATION_DIAGNOSTICS
-            printf("fixup path completed\n");
-#endif
-        }
+        domino_layout_prealloc(w, h, rs, grid, grid2, list);
 
         /*
          * Now we have a complete layout covering the whole
@@ -1171,18 +941,31 @@ static char *solve_game(game_state *state, game_state *currstate,
     return ret;
 }
 
+static int game_can_format_as_text_now(game_params *params)
+{
+    return TRUE;
+}
+
 static char *game_text_format(game_state *state)
 {
     return NULL;
 }
 
+struct game_ui {
+    int cur_x, cur_y, cur_visible;
+};
+
 static game_ui *new_ui(game_state *state)
 {
-    return NULL;
+    game_ui *ui = snew(game_ui);
+    ui->cur_x = ui->cur_y = 0;
+    ui->cur_visible = 0;
+    return ui;
 }
 
 static void free_ui(game_ui *ui)
 {
+    sfree(ui);
 }
 
 static char *encode_ui(game_ui *ui)
@@ -1197,6 +980,8 @@ static void decode_ui(game_ui *ui, char *encoding)
 static void game_changed_state(game_ui *ui, game_state *oldstate,
                                game_state *newstate)
 {
+    if (!oldstate->completed && newstate->completed)
+        ui->cur_visible = 0;
 }
 
 #define PREFERRED_TILESIZE 32
@@ -1205,6 +990,7 @@ static void game_changed_state(game_ui *ui, game_state *oldstate,
 #define DOMINO_GUTTER (TILESIZE / 16)
 #define DOMINO_RADIUS (TILESIZE / 8)
 #define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
+#define CURSOR_RADIUS (TILESIZE / 4)
 
 #define COORD(x) ( (x) * TILESIZE + BORDER )
 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
@@ -1215,7 +1001,7 @@ struct game_drawstate {
     unsigned long *visible;
 };
 
-static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
                            int x, int y, int button)
 {
     int w = state->w, h = state->h;
@@ -1258,8 +1044,32 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
             (state->grid[d1] != d1 || state->grid[d2] != d2))
             return NULL;
 
+        ui->cur_visible = 0;
         sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2);
         return dupstr(buf);
+    } else if (IS_CURSOR_MOVE(button)) {
+       ui->cur_visible = 1;
+
+        move_cursor(button, &ui->cur_x, &ui->cur_y, 2*w-1, 2*h-1, 0);
+
+       return "";
+    } else if (IS_CURSOR_SELECT(button)) {
+        int d1, d2;
+
+       if (!((ui->cur_x ^ ui->cur_y) & 1))
+           return NULL;               /* must have exactly one dimension odd */
+       d1 = (ui->cur_y / 2) * w + (ui->cur_x / 2);
+       d2 = ((ui->cur_y+1) / 2) * w + ((ui->cur_x+1) / 2);
+
+        /*
+         * We can't mark an edge next to any domino.
+         */
+        if (button == CURSOR_SELECT2 &&
+            (state->grid[d1] != d1 || state->grid[d2] != d2))
+            return NULL;
+
+        sprintf(buf, "%c%d,%d", (int)(button == CURSOR_SELECT2 ? 'E' : 'D'), d1, d2);
+        return dupstr(buf);
     }
 
     return NULL;
@@ -1461,7 +1271,7 @@ static float *game_colours(frontend *fe, int *ncolours)
     ret[COL_DOMINOTEXT * 3 + 1] = 1.0F;
     ret[COL_DOMINOTEXT * 3 + 2] = 1.0F;
 
-    ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3; 
+    ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3;
     ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3;
     ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3;
 
@@ -1500,6 +1310,24 @@ enum {
     TYPE_MASK = 0x0F
 };
 
+/* These flags must be disjoint with:
+   * the above enum (TYPE_*)    [0x000 -- 0x00F]
+   * EDGE_*                     [0x100 -- 0xF00]
+ * and must fit into an unsigned long (32 bits).
+ */
+#define DF_FLASH        0x40
+#define DF_CLASH        0x80
+
+#define DF_CURSOR        0x01000
+#define DF_CURSOR_USEFUL 0x02000
+#define DF_CURSOR_XBASE  0x10000
+#define DF_CURSOR_XMASK  0x30000
+#define DF_CURSOR_YBASE  0x40000
+#define DF_CURSOR_YMASK  0xC0000
+
+#define CEDGE_OFF       (TILESIZE / 8)
+#define IS_EMPTY(s,x,y) ((s)->grid[(y)*(s)->w+(x)] == ((y)*(s)->w+(x)))
+
 static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
                       int x, int y, int type)
 {
@@ -1509,6 +1337,7 @@ static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
     char str[80];
     int flags;
 
+    clip(dr, cx, cy, TILESIZE, TILESIZE);
     draw_rect(dr, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND);
 
     flags = type &~ TYPE_MASK;
@@ -1525,13 +1354,13 @@ static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
          *  - a slight shift in the number
          */
 
-        if (flags & 0x80)
+        if (flags & DF_CLASH)
             bg = COL_DOMINOCLASH;
         else
             bg = COL_DOMINO;
         nc = COL_DOMINOTEXT;
 
-        if (flags & 0x40) {
+        if (flags & DF_FLASH) {
             int tmp = nc;
             nc = bg;
             bg = tmp;
@@ -1585,11 +1414,23 @@ static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
         nc = COL_TEXT;
     }
 
+    if (flags & DF_CURSOR) {
+       int curx = ((flags & DF_CURSOR_XMASK) / DF_CURSOR_XBASE) & 3;
+       int cury = ((flags & DF_CURSOR_YMASK) / DF_CURSOR_YBASE) & 3;
+       int ox = cx + curx*TILESIZE/2;
+       int oy = cy + cury*TILESIZE/2;
+
+       draw_rect_corners(dr, ox, oy, CURSOR_RADIUS, nc);
+        if (flags & DF_CURSOR_USEFUL)
+           draw_rect_corners(dr, ox, oy, CURSOR_RADIUS+1, nc);
+    }
+
     sprintf(str, "%d", state->numbers->numbers[y*w+x]);
     draw_text(dr, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2,
               ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str);
 
     draw_update(dr, cx, cy, TILESIZE, TILESIZE);
+    unclip(dr);
 }
 
 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
@@ -1650,13 +1491,25 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
                 n2 = state->numbers->numbers[state->grid[n]];
                 di = DINDEX(n1, n2);
                 if (used[di] > 1)
-                    c |= 0x80;         /* highlight a clash */
+                    c |= DF_CLASH;         /* highlight a clash */
             } else {
                 c |= state->edges[n];
             }
 
             if (flashtime != 0)
-                c |= 0x40;             /* we're flashing */
+                c |= DF_FLASH;             /* we're flashing */
+
+            if (ui->cur_visible) {
+               unsigned curx = (unsigned)(ui->cur_x - (2*x-1));
+               unsigned cury = (unsigned)(ui->cur_y - (2*y-1));
+               if (curx < 3 && cury < 3) {
+                   c |= (DF_CURSOR |
+                         (curx * DF_CURSOR_XBASE) |
+                         (cury * DF_CURSOR_YBASE));
+                    if ((ui->cur_x ^ ui->cur_y) & 1)
+                        c |= DF_CURSOR_USEFUL;
+                }
+            }
 
            if (ds->visible[n] != c) {
                draw_tile(dr, ds, state, x, y, c);
@@ -1682,9 +1535,9 @@ static float game_flash_length(game_state *oldstate, game_state *newstate,
     return 0.0F;
 }
 
-static int game_wants_statusbar(void)
+static int game_status(game_state *state)
 {
-    return FALSE;
+    return state->completed ? +1 : 0;
 }
 
 static int game_timing_state(game_state *state, game_ui *ui)
@@ -1700,8 +1553,8 @@ static void game_print_size(game_params *params, float *x, float *y)
      * I'll use 6mm squares by default.
      */
     game_compute_size(params, 600, &pw, &ph);
-    *x = pw / 100.0;
-    *y = ph / 100.0;
+    *x = pw / 100.0F;
+    *y = ph / 100.0F;
 }
 
 static void game_print(drawing *dr, game_state *state, int tilesize)
@@ -1745,7 +1598,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
 #endif
 
 const struct game thegame = {
-    "Dominosa", "games.dominosa",
+    "Dominosa", "games.dominosa", "dominosa",
     default_params,
     game_fetch_preset,
     decode_params,
@@ -1760,7 +1613,7 @@ const struct game thegame = {
     dup_game,
     free_game,
     TRUE, solve_game,
-    FALSE, game_text_format,
+    FALSE, game_can_format_as_text_now, game_text_format,
     new_ui,
     free_ui,
     encode_ui,
@@ -1775,8 +1628,12 @@ const struct game thegame = {
     game_redraw,
     game_anim_length,
     game_flash_length,
+    game_status,
     TRUE, FALSE, game_print_size, game_print,
-    game_wants_statusbar,
+    FALSE,                            /* wants_statusbar */
     FALSE, game_timing_state,
     0,                                /* flags */
 };
+
+/* vim: set shiftwidth=4 :set textwidth=80: */
+