Remove strange punctuation.
[sgt/puzzles] / slant.c
diff --git a/slant.c b/slant.c
index c3b9f17..25dd4bc 100644 (file)
--- a/slant.c
+++ b/slant.c
@@ -83,7 +83,6 @@ typedef struct game_clues {
 
 #define ERR_VERTEX 1
 #define ERR_SQUARE 2
-#define ERR_SQUARE_TMP 4
 
 struct game_state {
     struct game_params p;
@@ -1259,7 +1258,7 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
     state->clues->h = h;
     state->clues->clues = snewn(W*H, signed char);
     state->clues->refcount = 1;
-    state->clues->tmpdsf = snewn(W*H, int);
+    state->clues->tmpdsf = snewn(W*H*2+W+H, int);
     memset(state->clues->clues, -1, W*H);
     while (*desc) {
         int n = *desc++;
@@ -1353,159 +1352,92 @@ static int vertex_degree(int w, int h, signed char *soln, int x, int y,
 static int check_completion(game_state *state)
 {
     int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
-    int i, x, y, err = FALSE;
+    int x, y, err = FALSE;
     int *dsf;
 
     memset(state->errors, 0, W*H);
 
     /*
      * To detect loops in the grid, we iterate through each edge
-     * building up a dsf of connected components, and raise the
-     * alarm whenever we find an edge that connects two
-     * already-connected vertices.
-     * 
+     * building up a dsf of connected components of the space
+     * around the edges; if there's more than one such component,
+     * we have a loop, and in particular we can then easily
+     * identify and highlight every edge forming part of a loop
+     * because it separates two nonequivalent regions.
+     *
      * We use the `tmpdsf' scratch space in the shared clues
      * structure, to avoid mallocing too often.
-     * 
-     * When we find such an edge, we then search around the grid to
-     * find the loop it is a part of, so that we can highlight it
-     * as an error for the user. We do this by the hand-on-one-wall
-     * technique: the search will follow branches off the inside of
-     * the loop, discover they're dead ends, and unhighlight them
-     * again when returning to the actual loop.
-     * 
-     * This technique guarantees that every loop it tracks will
-     * surround a disjoint area of the grid (since if an existing
-     * loop appears on the boundary of a new one, so that there are
-     * multiple possible paths that would come back to the starting
-     * point, it will pick the one that allows it to turn right
-     * most sharply and hence the one that does not re-surround the
-     * area of the previous one). Thus, the total time taken in
-     * searching round loops is linear in the grid area since every
-     * edge is visited at most twice.
+     *
+     * For these purposes, the grid is considered to be divided
+     * into diamond-shaped regions surrounding an orthogonal edge.
+     * This means we have W*h vertical edges and w*H horizontal
+     * ones; so our vertical edges are indexed in the dsf as
+     * (y*W+x) (0<=y<h, 0<=x<W), and the horizontal ones as (W*h +
+     * y*w+x) (0<=y<H, 0<=x<w), where (x,y) is the topmost or
+     * leftmost point on the edge.
      */
     dsf = state->clues->tmpdsf;
-    dsf_init(dsf, W*H);
+    dsf_init(dsf, W*h + w*H);
+    /* Start by identifying all the outer edges with each other. */
+    for (y = 0; y < h; y++) {
+       dsf_merge(dsf, 0, y*W+0);
+       dsf_merge(dsf, 0, y*W+w);
+    }
+    for (x = 0; x < w; x++) {
+       dsf_merge(dsf, 0, W*h + 0*w+x);
+       dsf_merge(dsf, 0, W*h + h*w+x);
+    }
+    /* Now go through the actual grid. */
     for (y = 0; y < h; y++)
         for (x = 0; x < w; x++) {
-            int i1, i2;
-
-            if (state->soln[y*w+x] == 0)
-                continue;
-            if (state->soln[y*w+x] < 0) {
-                i1 = y*W+x;
-                i2 = (y+1)*W+(x+1);
-            } else {
-                i1 = y*W+(x+1);
-                i2 = (y+1)*W+x;
-            }
-
-            /*
-             * Our edge connects i1 with i2. If they're already
-             * connected, flag an error. Otherwise, link them.
-             */
-            if (dsf_canonify(dsf, i1) == dsf_canonify(dsf, i2)) {
-               int x1, y1, x2, y2, dx, dy, dt, pass;
-
-               err = TRUE;
-
+            if (state->soln[y*w+x] >= 0) {
                /*
-                * Now search around the boundary of the loop to
-                * highlight it.
-                * 
-                * We have to do this in two passes. The first
-                * time, we toggle ERR_SQUARE_TMP on each edge;
-                * this pass terminates with ERR_SQUARE_TMP set on
-                * exactly the loop edges. In the second pass, we
-                * trace round that loop again and turn
-                * ERR_SQUARE_TMP into ERR_SQUARE. We have to do
-                * this because otherwise we might cancel part of a
-                * loop highlighted in a previous iteration of the
-                * outer loop.
+                * There isn't a \ in this square, so we can unify
+                * the top edge with the left, and the bottom with
+                * the right.
                 */
-
-               for (pass = 0; pass < 2; pass++) {
-
-                   x1 = i1 % W;
-                   y1 = i1 / W;
-                   x2 = i2 % W;
-                   y2 = i2 / W;
-
-                   do {
-                       /* Mark this edge. */
-                       if (pass == 0) {
-                           state->errors[min(y1,y2)*W+min(x1,x2)] ^=
-                               ERR_SQUARE_TMP;
-                       } else {
-                           state->errors[min(y1,y2)*W+min(x1,x2)] |=
-                               ERR_SQUARE;
-                           state->errors[min(y1,y2)*W+min(x1,x2)] &=
-                               ~ERR_SQUARE_TMP;
-                       }
-
-                       /*
-                        * Progress to the next edge by turning as
-                        * sharply right as possible. In fact we do
-                        * this by facing back along the edge and
-                        * turning _left_ until we see an edge we
-                        * can follow.
-                        */
-                       dx = x1 - x2;
-                       dy = y1 - y2;
-
-                       for (i = 0; i < 4; i++) {
-                           /*
-                            * Rotate (dx,dy) to the left.
-                            */
-                           dt = dx; dx = dy; dy = -dt;
-
-                           /*
-                            * See if (x2,y2) has an edge in direction
-                            * (dx,dy).
-                            */
-                           if (x2+dx < 0 || x2+dx >= W ||
-                               y2+dy < 0 || y2+dy >= H)
-                               continue;  /* off the side of the grid */
-                           /* In the second pass, ignore unmarked edges. */
-                           if (pass == 1 &&
-                               !(state->errors[(y2-(dy<0))*W+x2-(dx<0)] &
-                                 ERR_SQUARE_TMP))
-                               continue;
-                           if (state->soln[(y2-(dy<0))*w+x2-(dx<0)] ==
-                               (dx==dy ? -1 : +1))
-                               break;
-                       }
-
-                       /*
-                        * In pass 0, we expect to have found
-                        * _some_ edge we can follow, even if it
-                        * was found by rotating all the way round
-                        * and going back the way we came.
-                        * 
-                        * In pass 1, because we're removing the
-                        * mark on each edge that allows us to
-                        * follow it, we expect to find _no_ edge
-                        * we can follow when we've come all the
-                        * way round the loop.
-                        */
-                       if (pass == 1 && i == 4)
-                           break;
-                       assert(i < 4);
-
-                       /*
-                        * Set x1,y1 to x2,y2, and x2,y2 to be the
-                        * other end of the new edge.
-                        */
-                       x1 = x2;
-                       y1 = y2;
-                       x2 += dx;
-                       y2 += dy;
-                   } while (y2*W+x2 != i2);
-
-               }
-               
-           } else
-                dsf_merge(dsf, i1, i2);
+               dsf_merge(dsf, y*W+x, W*h + y*w+x);
+               dsf_merge(dsf, y*W+(x+1), W*h + (y+1)*w+x);
+           }
+            if (state->soln[y*w+x] <= 0) {
+               /*
+                * There isn't a / in this square, so we can unify
+                * the top edge with the right, and the bottom
+                * with the left.
+                */
+               dsf_merge(dsf, y*W+x, W*h + (y+1)*w+x);
+               dsf_merge(dsf, y*W+(x+1), W*h + y*w+x);
+           }
+        }
+    /* Now go through again and mark the appropriate edges as erroneous. */
+    for (y = 0; y < h; y++)
+        for (x = 0; x < w; x++) {
+           int erroneous = 0;
+            if (state->soln[y*w+x] > 0) {
+               /*
+                * A / separates the top and left edges (which
+                * must already have been identified with each
+                * other) from the bottom and right (likewise).
+                * Hence it is erroneous if and only if the top
+                * and right edges are nonequivalent.
+                */
+               erroneous = (dsf_canonify(dsf, y*W+(x+1)) !=
+                            dsf_canonify(dsf, W*h + y*w+x));
+           } else if (state->soln[y*w+x] < 0) {
+               /*
+                * A \ separates the top and right edges (which
+                * must already have been identified with each
+                * other) from the bottom and left (likewise).
+                * Hence it is erroneous if and only if the top
+                * and left edges are nonequivalent.
+                */
+               erroneous = (dsf_canonify(dsf, y*W+x) !=
+                            dsf_canonify(dsf, W*h + y*w+x));
+           }
+           if (erroneous) {
+               state->errors[y*W+x] |= ERR_SQUARE;
+               err = TRUE;
+           }
         }
 
     /*