Move most of face_text_pos() into grid.c, leaving in loopy.c only the
[sgt/puzzles] / keen.c
CommitLineData
c8c23a7f 1/*
2 * keen.c: an implementation of the Times's 'KenKen' puzzle.
3 */
4
5#include <stdio.h>
6#include <stdlib.h>
7#include <string.h>
8#include <assert.h>
9#include <ctype.h>
10#include <math.h>
11
12#include "puzzles.h"
13#include "latin.h"
14
15/*
16 * Difficulty levels. I do some macro ickery here to ensure that my
17 * enum and the various forms of my name list always match up.
18 */
19#define DIFFLIST(A) \
20 A(EASY,Easy,solver_easy,e) \
21 A(NORMAL,Normal,solver_normal,n) \
22 A(HARD,Hard,solver_hard,h) \
23 A(EXTREME,Extreme,NULL,x) \
24 A(UNREASONABLE,Unreasonable,NULL,u)
25#define ENUM(upper,title,func,lower) DIFF_ ## upper,
26#define TITLE(upper,title,func,lower) #title,
27#define ENCODE(upper,title,func,lower) #lower
28#define CONFIG(upper,title,func,lower) ":" #title
29enum { DIFFLIST(ENUM) DIFFCOUNT };
30static char const *const keen_diffnames[] = { DIFFLIST(TITLE) };
31static char const keen_diffchars[] = DIFFLIST(ENCODE);
32#define DIFFCONFIG DIFFLIST(CONFIG)
33
34/*
35 * Clue notation. Important here that ADD and MUL come before SUB
36 * and DIV, and that DIV comes last.
37 */
38#define C_ADD 0x00000000L
39#define C_MUL 0x20000000L
40#define C_SUB 0x40000000L
41#define C_DIV 0x60000000L
42#define CMASK 0x60000000L
43#define CUNIT 0x20000000L
44
45enum {
46 COL_BACKGROUND,
47 COL_GRID,
48 COL_USER,
49 COL_HIGHLIGHT,
50 COL_ERROR,
51 COL_PENCIL,
52 NCOLOURS
53};
54
55struct game_params {
56 int w, diff;
57};
58
59struct clues {
60 int refcount;
61 int w;
62 int *dsf;
63 long *clues;
64};
65
66struct game_state {
67 game_params par;
68 struct clues *clues;
69 digit *grid;
70 int *pencil; /* bitmaps using bits 1<<1..1<<n */
71 int completed, cheated;
72};
73
74static game_params *default_params(void)
75{
76 game_params *ret = snew(game_params);
77
78 ret->w = 6;
79 ret->diff = DIFF_NORMAL;
80
81 return ret;
82}
83
84const static struct game_params keen_presets[] = {
85 { 4, DIFF_EASY },
86 { 5, DIFF_EASY },
87 { 6, DIFF_EASY },
88 { 6, DIFF_NORMAL },
89 { 6, DIFF_HARD },
90 { 6, DIFF_EXTREME },
91 { 6, DIFF_UNREASONABLE },
92 { 9, DIFF_NORMAL },
93};
94
95static int game_fetch_preset(int i, char **name, game_params **params)
96{
97 game_params *ret;
98 char buf[80];
99
100 if (i < 0 || i >= lenof(keen_presets))
101 return FALSE;
102
103 ret = snew(game_params);
104 *ret = keen_presets[i]; /* structure copy */
105
106 sprintf(buf, "%dx%d %s", ret->w, ret->w, keen_diffnames[ret->diff]);
107
108 *name = dupstr(buf);
109 *params = ret;
110 return TRUE;
111}
112
113static void free_params(game_params *params)
114{
115 sfree(params);
116}
117
118static game_params *dup_params(game_params *params)
119{
120 game_params *ret = snew(game_params);
121 *ret = *params; /* structure copy */
122 return ret;
123}
124
125static void decode_params(game_params *params, char const *string)
126{
127 char const *p = string;
128
129 params->w = atoi(p);
130 while (*p && isdigit((unsigned char)*p)) p++;
131
132 if (*p == 'd') {
133 int i;
134 p++;
135 params->diff = DIFFCOUNT+1; /* ...which is invalid */
136 if (*p) {
137 for (i = 0; i < DIFFCOUNT; i++) {
138 if (*p == keen_diffchars[i])
139 params->diff = i;
140 }
141 p++;
142 }
143 }
144}
145
146static char *encode_params(game_params *params, int full)
147{
148 char ret[80];
149
150 sprintf(ret, "%d", params->w);
151 if (full)
152 sprintf(ret + strlen(ret), "d%c", keen_diffchars[params->diff]);
153
154 return dupstr(ret);
155}
156
157static config_item *game_configure(game_params *params)
158{
159 config_item *ret;
160 char buf[80];
161
162 ret = snewn(3, config_item);
163
164 ret[0].name = "Grid size";
165 ret[0].type = C_STRING;
166 sprintf(buf, "%d", params->w);
167 ret[0].sval = dupstr(buf);
168 ret[0].ival = 0;
169
170 ret[1].name = "Difficulty";
171 ret[1].type = C_CHOICES;
172 ret[1].sval = DIFFCONFIG;
173 ret[1].ival = params->diff;
174
175 ret[2].name = NULL;
176 ret[2].type = C_END;
177 ret[2].sval = NULL;
178 ret[2].ival = 0;
179
180 return ret;
181}
182
183static game_params *custom_params(config_item *cfg)
184{
185 game_params *ret = snew(game_params);
186
187 ret->w = atoi(cfg[0].sval);
188 ret->diff = cfg[1].ival;
189
190 return ret;
191}
192
193static char *validate_params(game_params *params, int full)
194{
195 if (params->w < 3 || params->w > 9)
196 return "Grid size must be between 3 and 9";
197 if (params->diff >= DIFFCOUNT)
198 return "Unknown difficulty rating";
199 return NULL;
200}
201
202/* ----------------------------------------------------------------------
203 * Solver.
204 */
205
206struct solver_ctx {
207 int w, diff;
208 int nboxes;
209 int *boxes, *boxlist, *whichbox;
210 long *clues;
211 digit *soln;
212 digit *dscratch;
213 int *iscratch;
214};
215
216static void solver_clue_candidate(struct solver_ctx *ctx, int diff, int box)
217{
218 int w = ctx->w;
219 int n = ctx->boxes[box+1] - ctx->boxes[box];
220 int j;
221
222 /*
223 * This function is called from the main clue-based solver
224 * routine when we discover a candidate layout for a given clue
225 * box consistent with everything we currently know about the
226 * digit constraints in that box. We expect to find the digits
227 * of the candidate layout in ctx->dscratch, and we update
228 * ctx->iscratch as appropriate.
229 */
230 if (diff == DIFF_EASY) {
231 unsigned mask = 0;
232 /*
233 * Easy-mode clue deductions: we do not record information
234 * about which squares take which values, so we amalgamate
235 * all the values in dscratch and OR them all into
236 * everywhere.
237 */
238 for (j = 0; j < n; j++)
239 mask |= 1 << ctx->dscratch[j];
240 for (j = 0; j < n; j++)
241 ctx->iscratch[j] |= mask;
242 } else if (diff == DIFF_NORMAL) {
243 /*
244 * Normal-mode deductions: we process the information in
245 * dscratch in the obvious way.
246 */
247 for (j = 0; j < n; j++)
248 ctx->iscratch[j] |= 1 << ctx->dscratch[j];
249 } else if (diff == DIFF_HARD) {
250 /*
251 * Hard-mode deductions: instead of ruling things out
252 * _inside_ the clue box, we look for numbers which occur in
253 * a given row or column in all candidate layouts, and rule
254 * them out of all squares in that row or column that
255 * _aren't_ part of this clue box.
256 */
257 int *sq = ctx->boxlist + ctx->boxes[box];
258
259 for (j = 0; j < 2*w; j++)
260 ctx->iscratch[2*w+j] = 0;
261 for (j = 0; j < n; j++) {
262 int x = sq[j] / w, y = sq[j] % w;
263 ctx->iscratch[2*w+x] |= 1 << ctx->dscratch[j];
264 ctx->iscratch[3*w+y] |= 1 << ctx->dscratch[j];
265 }
266 for (j = 0; j < 2*w; j++)
267 ctx->iscratch[j] &= ctx->iscratch[2*w+j];
268 }
269}
270
271static int solver_common(struct latin_solver *solver, void *vctx, int diff)
272{
273 struct solver_ctx *ctx = (struct solver_ctx *)vctx;
274 int w = ctx->w;
275 int box, i, j, k;
276 int ret = 0, total;
277
278 /*
279 * Iterate over each clue box and deduce what we can.
280 */
281 for (box = 0; box < ctx->nboxes; box++) {
282 int *sq = ctx->boxlist + ctx->boxes[box];
283 int n = ctx->boxes[box+1] - ctx->boxes[box];
450d3df0 284 long value = ctx->clues[box] & ~CMASK;
285 long op = ctx->clues[box] & CMASK;
c8c23a7f 286
287 if (diff == DIFF_HARD) {
288 for (i = 0; i < n; i++)
289 ctx->iscratch[i] = (1 << (w+1)) - (1 << 1);
290 } else {
291 for (i = 0; i < n; i++)
292 ctx->iscratch[i] = 0;
293 }
294
295 switch (op) {
296 case C_SUB:
297 case C_DIV:
298 /*
299 * These two clue types must always apply to a box of
300 * area 2. Also, the two digits in these boxes can never
301 * be the same (because any domino must have its two
302 * squares in either the same row or the same column).
303 * So we simply iterate over all possibilities for the
304 * two squares (both ways round), rule out any which are
305 * inconsistent with the digit constraints we already
306 * have, and update the digit constraints with any new
307 * information thus garnered.
308 */
309 assert(n == 2);
310
311 for (i = 1; i <= w; i++) {
312 j = (op == C_SUB ? i + value : i * value);
313 if (j > w) break;
314
315 /* (i,j) is a valid digit pair. Try it both ways round. */
316
317 if (solver->cube[sq[0]*w+i-1] &&
318 solver->cube[sq[1]*w+j-1]) {
319 ctx->dscratch[0] = i;
320 ctx->dscratch[1] = j;
321 solver_clue_candidate(ctx, diff, box);
322 }
323
324 if (solver->cube[sq[0]*w+j-1] &&
325 solver->cube[sq[1]*w+i-1]) {
326 ctx->dscratch[0] = j;
327 ctx->dscratch[1] = i;
328 solver_clue_candidate(ctx, diff, box);
329 }
330 }
331
332 break;
333
334 case C_ADD:
335 case C_MUL:
336 /*
337 * For these clue types, I have no alternative but to go
338 * through all possible number combinations.
339 *
340 * Instead of a tedious physical recursion, I iterate in
341 * the scratch array through all possibilities. At any
342 * given moment, i indexes the element of the box that
343 * will next be incremented.
344 */
345 i = 0;
346 ctx->dscratch[i] = 0;
347 total = value; /* start with the identity */
348 while (1) {
349 if (i < n) {
350 /*
351 * Find the next valid value for cell i.
352 */
353 for (j = ctx->dscratch[i] + 1; j <= w; j++) {
354 if (op == C_ADD ? (total < j) : (total % j != 0))
355 continue; /* this one won't fit */
356 if (!solver->cube[sq[i]*w+j-1])
357 continue; /* this one is ruled out already */
358 for (k = 0; k < i; k++)
359 if (ctx->dscratch[k] == j &&
360 (sq[k] % w == sq[i] % w ||
361 sq[k] / w == sq[i] / w))
362 break; /* clashes with another row/col */
363 if (k < i)
364 continue;
365
366 /* Found one. */
367 break;
368 }
369
370 if (j > w) {
371 /* No valid values left; drop back. */
372 i--;
373 if (i < 0)
374 break; /* overall iteration is finished */
375 if (op == C_ADD)
376 total += ctx->dscratch[i];
377 else
378 total *= ctx->dscratch[i];
379 } else {
380 /* Got a valid value; store it and move on. */
381 ctx->dscratch[i++] = j;
382 if (op == C_ADD)
383 total -= j;
384 else
385 total /= j;
386 ctx->dscratch[i] = 0;
387 }
388 } else {
389 if (total == (op == C_ADD ? 0 : 1))
390 solver_clue_candidate(ctx, diff, box);
391 i--;
392 if (op == C_ADD)
393 total += ctx->dscratch[i];
394 else
395 total *= ctx->dscratch[i];
396 }
397 }
398
399 break;
400 }
401
402 if (diff < DIFF_HARD) {
403#ifdef STANDALONE_SOLVER
404 char prefix[256];
405
406 if (solver_show_working)
407 sprintf(prefix, "%*susing clue at (%d,%d):\n",
408 solver_recurse_depth*4, "",
409 sq[0]/w+1, sq[0]%w+1);
410 else
411 prefix[0] = '\0'; /* placate optimiser */
412#endif
413
414 for (i = 0; i < n; i++)
415 for (j = 1; j <= w; j++) {
416 if (solver->cube[sq[i]*w+j-1] &&
417 !(ctx->iscratch[i] & (1 << j))) {
418#ifdef STANDALONE_SOLVER
419 if (solver_show_working) {
420 printf("%s%*s ruling out %d at (%d,%d)\n",
421 prefix, solver_recurse_depth*4, "",
422 j, sq[i]/w+1, sq[i]%w+1);
423 prefix[0] = '\0';
424 }
425#endif
426 solver->cube[sq[i]*w+j-1] = 0;
427 ret = 1;
428 }
429 }
430 } else {
431#ifdef STANDALONE_SOLVER
432 char prefix[256];
433
434 if (solver_show_working)
435 sprintf(prefix, "%*susing clue at (%d,%d):\n",
436 solver_recurse_depth*4, "",
437 sq[0]/w+1, sq[0]%w+1);
438 else
439 prefix[0] = '\0'; /* placate optimiser */
440#endif
441
442 for (i = 0; i < 2*w; i++) {
443 int start = (i < w ? i*w : i-w);
444 int step = (i < w ? 1 : w);
445 for (j = 1; j <= w; j++) if (ctx->iscratch[i] & (1 << j)) {
446#ifdef STANDALONE_SOLVER
447 char prefix2[256];
448
449 if (solver_show_working)
450 sprintf(prefix2, "%*s this clue requires %d in"
451 " %s %d:\n", solver_recurse_depth*4, "",
452 j, i < w ? "column" : "row", i%w+1);
453 else
454 prefix2[0] = '\0'; /* placate optimiser */
455#endif
456
457 for (k = 0; k < w; k++) {
458 int pos = start + k*step;
459 if (ctx->whichbox[pos] != box &&
460 solver->cube[pos*w+j-1]) {
461#ifdef STANDALONE_SOLVER
462 if (solver_show_working) {
463 printf("%s%s%*s ruling out %d at (%d,%d)\n",
464 prefix, prefix2,
465 solver_recurse_depth*4, "",
466 j, pos/w+1, pos%w+1);
467 prefix[0] = prefix2[0] = '\0';
468 }
469#endif
470 solver->cube[pos*w+j-1] = 0;
471 ret = 1;
472 }
473 }
474 }
475 }
476
477 /*
478 * Once we find one block we can do something with in
479 * this way, revert to trying easier deductions, so as
480 * not to generate solver diagnostics that make the
481 * problem look harder than it is. (We have to do this
482 * for the Hard deductions but not the Easy/Normal ones,
483 * because only the Hard deductions are cross-box.)
484 */
485 if (ret)
486 return ret;
487 }
488 }
489
490 return ret;
491}
492
493static int solver_easy(struct latin_solver *solver, void *vctx)
494{
495 /*
496 * Omit the EASY deductions when solving at NORMAL level, since
497 * the NORMAL deductions are a superset of them anyway and it
498 * saves on time and confusing solver diagnostics.
499 *
500 * Note that this breaks the natural semantics of the return
501 * value of latin_solver. Without this hack, you could determine
502 * a puzzle's difficulty in one go by trying to solve it at
503 * maximum difficulty and seeing what difficulty value was
504 * returned; but with this hack, solving an Easy puzzle on
505 * Normal difficulty will typically return Normal. Hence the
506 * uses of the solver to determine difficulty are all arranged
507 * so as to double-check by re-solving at the next difficulty
508 * level down and making sure it failed.
509 */
510 struct solver_ctx *ctx = (struct solver_ctx *)vctx;
511 if (ctx->diff > DIFF_EASY)
512 return 0;
513 return solver_common(solver, vctx, DIFF_EASY);
514}
515
516static int solver_normal(struct latin_solver *solver, void *vctx)
517{
518 return solver_common(solver, vctx, DIFF_NORMAL);
519}
520
521static int solver_hard(struct latin_solver *solver, void *vctx)
522{
523 return solver_common(solver, vctx, DIFF_HARD);
524}
525
526#define SOLVER(upper,title,func,lower) func,
527static usersolver_t const keen_solvers[] = { DIFFLIST(SOLVER) };
528
529static int solver(int w, int *dsf, long *clues, digit *soln, int maxdiff)
530{
531 int a = w*w;
532 struct solver_ctx ctx;
533 int ret;
534 int i, j, n, m;
535
536 ctx.w = w;
537 ctx.soln = soln;
538 ctx.diff = maxdiff;
539
540 /*
541 * Transform the dsf-formatted clue list into one over which we
542 * can iterate more easily.
543 *
544 * Also transpose the x- and y-coordinates at this point,
545 * because the 'cube' array in the general Latin square solver
546 * puts x first (oops).
547 */
548 for (ctx.nboxes = i = 0; i < a; i++)
549 if (dsf_canonify(dsf, i) == i)
550 ctx.nboxes++;
551 ctx.boxlist = snewn(a, int);
552 ctx.boxes = snewn(ctx.nboxes+1, int);
553 ctx.clues = snewn(ctx.nboxes, long);
554 ctx.whichbox = snewn(a, int);
555 for (n = m = i = 0; i < a; i++)
556 if (dsf_canonify(dsf, i) == i) {
557 ctx.clues[n] = clues[i];
558 ctx.boxes[n] = m;
559 for (j = 0; j < a; j++)
560 if (dsf_canonify(dsf, j) == i) {
561 ctx.boxlist[m++] = (j % w) * w + (j / w); /* transpose */
562 ctx.whichbox[ctx.boxlist[m-1]] = n;
563 }
564 n++;
565 }
566 assert(n == ctx.nboxes);
567 assert(m == a);
568 ctx.boxes[n] = m;
569
570 ctx.dscratch = snewn(a+1, digit);
571 ctx.iscratch = snewn(max(a+1, 4*w), int);
572
573 ret = latin_solver(soln, w, maxdiff,
574 DIFF_EASY, DIFF_HARD, DIFF_EXTREME,
575 DIFF_EXTREME, DIFF_UNREASONABLE,
576 keen_solvers, &ctx, NULL, NULL);
577
578 sfree(ctx.dscratch);
579 sfree(ctx.iscratch);
580 sfree(ctx.whichbox);
581 sfree(ctx.boxlist);
582 sfree(ctx.boxes);
583 sfree(ctx.clues);
584
585 return ret;
586}
587
588/* ----------------------------------------------------------------------
589 * Grid generation.
590 */
591
592static char *encode_block_structure(char *p, int w, int *dsf)
593{
594 int i, currrun = 0;
595 char *orig, *q, *r, c;
596
597 orig = p;
598
599 /*
600 * Encode the block structure. We do this by encoding the
601 * pattern of dividing lines: first we iterate over the w*(w-1)
602 * internal vertical grid lines in ordinary reading order, then
603 * over the w*(w-1) internal horizontal ones in transposed
604 * reading order.
605 *
606 * We encode the number of non-lines between the lines; _ means
607 * zero (two adjacent divisions), a means 1, ..., y means 25,
608 * and z means 25 non-lines _and no following line_ (so that za
609 * means 26, zb 27 etc).
610 */
611 for (i = 0; i <= 2*w*(w-1); i++) {
612 int x, y, p0, p1, edge;
613
614 if (i == 2*w*(w-1)) {
615 edge = TRUE; /* terminating virtual edge */
616 } else {
617 if (i < w*(w-1)) {
618 y = i/(w-1);
619 x = i%(w-1);
620 p0 = y*w+x;
621 p1 = y*w+x+1;
622 } else {
623 x = i/(w-1) - w;
624 y = i%(w-1);
625 p0 = y*w+x;
626 p1 = (y+1)*w+x;
627 }
628 edge = (dsf_canonify(dsf, p0) != dsf_canonify(dsf, p1));
629 }
630
631 if (edge) {
632 while (currrun > 25)
633 *p++ = 'z', currrun -= 25;
634 if (currrun)
635 *p++ = 'a'-1 + currrun;
636 else
637 *p++ = '_';
638 currrun = 0;
639 } else
640 currrun++;
641 }
642
643 /*
644 * Now go through and compress the string by replacing runs of
645 * the same letter with a single copy of that letter followed by
646 * a repeat count, where that makes it shorter. (This puzzle
647 * seems to generate enough long strings of _ to make this a
648 * worthwhile step.)
649 */
650 for (q = r = orig; r < p ;) {
651 *q++ = c = *r;
652
653 for (i = 0; r+i < p && r[i] == c; i++);
654 r += i;
655
656 if (i == 2) {
657 *q++ = c;
658 } else if (i > 2) {
659 q += sprintf(q, "%d", i);
660 }
661 }
662
663 return q;
664}
665
666static char *parse_block_structure(const char **p, int w, int *dsf)
667{
668 int a = w*w;
669 int pos = 0;
670 int repc = 0, repn = 0;
671
672 dsf_init(dsf, a);
673
674 while (**p && (repn > 0 || **p != ',')) {
675 int c, adv;
676
677 if (repn > 0) {
678 repn--;
679 c = repc;
680 } else if (**p == '_' || (**p >= 'a' && **p <= 'z')) {
681 c = (**p == '_' ? 0 : **p - 'a' + 1);
682 (*p)++;
683 if (**p && isdigit((unsigned char)**p)) {
684 repc = c;
685 repn = atoi(*p)-1;
686 while (**p && isdigit((unsigned char)**p)) (*p)++;
687 }
688 } else
689 return "Invalid character in game description";
690
691 adv = (c != 25); /* 'z' is a special case */
692
693 while (c-- > 0) {
694 int p0, p1;
695
696 /*
697 * Non-edge; merge the two dsf classes on either
698 * side of it.
699 */
700 if (pos >= 2*w*(w-1))
701 return "Too much data in block structure specification";
702 if (pos < w*(w-1)) {
703 int y = pos/(w-1);
704 int x = pos%(w-1);
705 p0 = y*w+x;
706 p1 = y*w+x+1;
707 } else {
708 int x = pos/(w-1) - w;
709 int y = pos%(w-1);
710 p0 = y*w+x;
711 p1 = (y+1)*w+x;
712 }
713 dsf_merge(dsf, p0, p1);
714
715 pos++;
716 }
717 if (adv) {
718 pos++;
719 if (pos > 2*w*(w-1)+1)
720 return "Too much data in block structure specification";
721 }
722 }
723
724 /*
725 * When desc is exhausted, we expect to have gone exactly
726 * one space _past_ the end of the grid, due to the dummy
727 * edge at the end.
728 */
729 if (pos != 2*w*(w-1)+1)
730 return "Not enough data in block structure specification";
731
732 return NULL;
733}
734
735static char *new_game_desc(game_params *params, random_state *rs,
736 char **aux, int interactive)
737{
738 int w = params->w, a = w*w;
739 digit *grid, *soln;
740 int *order, *revorder, *singletons, *dsf;
741 long *clues, *cluevals;
742 int i, j, k, n, x, y, ret;
743 int diff = params->diff;
744 char *desc, *p;
745
746 /*
747 * Difficulty exceptions: 3x3 puzzles at difficulty Hard or
748 * higher are currently not generable - the generator will spin
749 * forever looking for puzzles of the appropriate difficulty. We
750 * dial each of these down to the next lower difficulty.
751 *
752 * Remember to re-test this whenever a change is made to the
753 * solver logic!
754 *
755 * I tested it using the following shell command:
756
757for d in e n h x u; do
758 for i in {3..9}; do
759 echo ./keen --generate 1 ${i}d${d}
760 perl -e 'alarm 30; exec @ARGV' ./keen --generate 5 ${i}d${d} >/dev/null \
761 || echo broken
762 done
763done
764
765 * Of course, it's better to do that after taking the exceptions
766 * _out_, so as to detect exceptions that should be removed as
767 * well as those which should be added.
768 */
769 if (w == 3 && diff > DIFF_NORMAL)
770 diff = DIFF_NORMAL;
771
772 grid = NULL;
773
774 order = snewn(a, int);
775 revorder = snewn(a, int);
776 singletons = snewn(a, int);
777 dsf = snew_dsf(a);
778 clues = snewn(a, long);
779 cluevals = snewn(a, long);
780 soln = snewn(a, digit);
781
782 while (1) {
783 /*
784 * First construct a latin square to be the solution.
785 */
786 sfree(grid);
787 grid = latin_generate(w, rs);
788
789 /*
790 * Divide the grid into arbitrarily sized blocks, but so as
791 * to arrange plenty of dominoes which can be SUB/DIV clues.
792 * We do this by first placing dominoes at random for a
793 * while, then tying the remaining singletons one by one
794 * into neighbouring blocks.
795 */
796 for (i = 0; i < a; i++)
797 order[i] = i;
798 shuffle(order, a, sizeof(*order), rs);
799 for (i = 0; i < a; i++)
800 revorder[order[i]] = i;
801
802 for (i = 0; i < a; i++)
803 singletons[i] = TRUE;
804
805 dsf_init(dsf, a);
806
807 /* Place dominoes. */
808 for (i = 0; i < a; i++) {
809 if (singletons[i]) {
810 int best = -1;
811
812 x = i % w;
813 y = i / w;
814
815 if (x > 0 && singletons[i-1] &&
816 (best == -1 || revorder[i-1] < revorder[best]))
817 best = i-1;
818 if (x+1 < w && singletons[i+1] &&
819 (best == -1 || revorder[i+1] < revorder[best]))
820 best = i+1;
821 if (y > 0 && singletons[i-w] &&
822 (best == -1 || revorder[i-w] < revorder[best]))
823 best = i-w;
824 if (y+1 < w && singletons[i+w] &&
825 (best == -1 || revorder[i+w] < revorder[best]))
826 best = i+w;
827
828 /*
829 * When we find a potential domino, we place it with
830 * probability 3/4, which seems to strike a decent
831 * balance between plenty of dominoes and leaving
832 * enough singletons to make interesting larger
833 * shapes.
834 */
835 if (best >= 0 && random_upto(rs, 4)) {
836 singletons[i] = singletons[best] = FALSE;
837 dsf_merge(dsf, i, best);
838 }
839 }
840 }
841
842 /* Fold in singletons. */
843 for (i = 0; i < a; i++) {
844 if (singletons[i]) {
845 int best = -1;
846
847 x = i % w;
848 y = i / w;
849
850 if (x > 0 &&
851 (best == -1 || revorder[i-1] < revorder[best]))
852 best = i-1;
853 if (x+1 < w &&
854 (best == -1 || revorder[i+1] < revorder[best]))
855 best = i+1;
856 if (y > 0 &&
857 (best == -1 || revorder[i-w] < revorder[best]))
858 best = i-w;
859 if (y+1 < w &&
860 (best == -1 || revorder[i+w] < revorder[best]))
861 best = i+w;
862
863 if (best >= 0) {
864 singletons[i] = FALSE;
865 dsf_merge(dsf, i, best);
866 }
867 }
868 }
869
870 /*
871 * Decide what would be acceptable clues for each block.
872 *
873 * Blocks larger than 2 have free choice of ADD or MUL;
874 * blocks of size 2 can be anything in principle (except
875 * that they can only be DIV if the two numbers have an
876 * integer quotient, of course), but we rule out (or try to
877 * avoid) some clues because they're of low quality.
878 *
879 * Hence, we iterate once over the grid, stopping at the
880 * canonical element of every >2 block and the _non_-
881 * canonical element of every 2-block; the latter means that
882 * we can make our decision about a 2-block in the knowledge
883 * of both numbers in it.
884 *
885 * We reuse the 'singletons' array (finished with in the
886 * above loop) to hold information about which blocks are
887 * suitable for what.
888 */
889#define F_ADD 0x01
890#define F_ADD_BAD 0x02
891#define F_SUB 0x04
892#define F_SUB_BAD 0x08
893#define F_MUL 0x10
894#define F_MUL_BAD 0x20
895#define F_DIV 0x40
896#define F_DIV_BAD 0x80
897 for (i = 0; i < a; i++) {
898 singletons[i] = 0;
899 j = dsf_canonify(dsf, i);
900 k = dsf_size(dsf, j);
901 if (j == i && k > 2) {
902 singletons[j] |= F_ADD | F_MUL;
903 } else if (j != i && k == 2) {
904 /* Fetch the two numbers and sort them into order. */
905 int p = grid[j], q = grid[i], v;
906 if (p < q) {
907 int t = p; p = q; q = t;
908 }
909
910 /*
911 * Addition clues are always allowed, but we try to
912 * avoid sums of 3, 4, (2w-1) and (2w-2) if we can,
913 * because they're too easy - they only leave one
914 * option for the pair of numbers involved.
915 */
916 v = p + q;
917 if (v > 4 && v < 2*w-2)
918 singletons[j] |= F_ADD;
919 else
920 singletons[j] |= F_ADD_BAD;
921
922 /*
923 * Multiplication clues: similarly, we prefer clues
924 * of this type which leave multiple options open.
925 * We can't rule out all the others, though, because
926 * there are very very few 2-square multiplication
927 * clues that _don't_ leave only one option.
928 */
929 v = p * q;
930 n = 0;
931 for (k = 1; k <= w; k++)
932 if (v % k == 0 && v / k <= w && v / k != k)
933 n++;
934 if (n > 1)
935 singletons[j] |= F_MUL;
936 else
937 singletons[j] |= F_MUL_BAD;
938
939 /*
940 * Subtraction: we completely avoid a difference of
941 * w-1.
942 */
943 v = p - q;
944 if (v < w-1)
945 singletons[j] |= F_SUB;
946
947 /*
948 * Division: for a start, the quotient must be an
949 * integer or the clue type is impossible. Also, we
950 * never use quotients strictly greater than w/2,
951 * because they're not only too easy but also
952 * inelegant.
953 */
954 if (p % q == 0 && 2 * (p / q) <= w)
955 singletons[j] |= F_DIV;
956 }
957 }
958
959 /*
960 * Actually choose a clue for each block, trying to keep the
961 * numbers of each type even, and starting with the
962 * preferred candidates for each type where possible.
963 *
964 * I'm sure there should be a faster algorithm for doing
965 * this, but I can't be bothered: O(N^2) is good enough when
966 * N is at most the number of dominoes that fits into a 9x9
967 * square.
968 */
969 shuffle(order, a, sizeof(*order), rs);
970 for (i = 0; i < a; i++)
971 clues[i] = 0;
972 while (1) {
973 int done_something = FALSE;
974
975 for (k = 0; k < 4; k++) {
976 long clue;
977 int good, bad;
978 switch (k) {
979 case 0: clue = C_DIV; good = F_DIV; bad = F_DIV_BAD; break;
980 case 1: clue = C_SUB; good = F_SUB; bad = F_SUB_BAD; break;
981 case 2: clue = C_MUL; good = F_MUL; bad = F_MUL_BAD; break;
982 default /* case 3 */ :
983 clue = C_ADD; good = F_ADD; bad = F_ADD_BAD; break;
984 }
985
986 for (i = 0; i < a; i++) {
987 j = order[i];
988 if (singletons[j] & good) {
989 clues[j] = clue;
990 singletons[j] = 0;
991 break;
992 }
993 }
994 if (i == a) {
995 /* didn't find a nice one, use a nasty one */
996 for (i = 0; i < a; i++) {
997 j = order[i];
998 if (singletons[j] & good) {
999 clues[j] = clue;
1000 singletons[j] = 0;
1001 break;
1002 }
1003 }
1004 }
1005 if (i < a)
1006 done_something = TRUE;
1007 }
1008
1009 if (!done_something)
1010 break;
1011 }
1012#undef F_ADD
1013#undef F_ADD_BAD
1014#undef F_SUB
1015#undef F_SUB_BAD
1016#undef F_MUL
1017#undef F_MUL_BAD
1018#undef F_DIV
1019#undef F_DIV_BAD
1020
1021 /*
1022 * Having chosen the clue types, calculate the clue values.
1023 */
1024 for (i = 0; i < a; i++) {
1025 j = dsf_canonify(dsf, i);
1026 if (j == i) {
1027 cluevals[j] = grid[i];
1028 } else {
1029 switch (clues[j]) {
1030 case C_ADD:
1031 cluevals[j] += grid[i];
1032 break;
1033 case C_MUL:
1034 cluevals[j] *= grid[i];
1035 break;
1036 case C_SUB:
1037 cluevals[j] = abs(cluevals[j] - grid[i]);
1038 break;
1039 case C_DIV:
1040 {
1041 int d1 = cluevals[j], d2 = grid[i];
1042 if (d1 == 0 || d2 == 0)
1043 cluevals[j] = 0;
1044 else
1045 cluevals[j] = d2/d1 + d1/d2;/* one is 0 :-) */
1046 }
1047 break;
1048 }
1049 }
1050 }
1051
1052 for (i = 0; i < a; i++) {
1053 j = dsf_canonify(dsf, i);
1054 if (j == i) {
1055 clues[j] |= cluevals[j];
1056 }
1057 }
1058
1059 /*
1060 * See if the game can be solved at the specified difficulty
1061 * level, but not at the one below.
1062 */
1063 if (diff > 0) {
1064 memset(soln, 0, a);
1065 ret = solver(w, dsf, clues, soln, diff-1);
1066 if (ret <= diff-1)
1067 continue;
1068 }
1069 memset(soln, 0, a);
1070 ret = solver(w, dsf, clues, soln, diff);
1071 if (ret != diff)
1072 continue; /* go round again */
1073
1074 /*
1075 * I wondered if at this point it would be worth trying to
1076 * merge adjacent blocks together, to make the puzzle
1077 * gradually more difficult if it's currently easier than
1078 * specced, increasing the chance of a given generation run
1079 * being successful.
1080 *
1081 * It doesn't seem to be critical for the generation speed,
1082 * though, so for the moment I'm leaving it out.
1083 */
1084
1085 /*
1086 * We've got a usable puzzle!
1087 */
1088 break;
1089 }
1090
1091 /*
1092 * Encode the puzzle description.
1093 */
1094 desc = snewn(40*a, char);
1095 p = desc;
1096 p = encode_block_structure(p, w, dsf);
1097 *p++ = ',';
1098 for (i = 0; i < a; i++) {
1099 j = dsf_canonify(dsf, i);
1100 if (j == i) {
1101 switch (clues[j] & CMASK) {
1102 case C_ADD: *p++ = 'a'; break;
1103 case C_SUB: *p++ = 's'; break;
1104 case C_MUL: *p++ = 'm'; break;
1105 case C_DIV: *p++ = 'd'; break;
1106 }
1107 p += sprintf(p, "%ld", clues[j] & ~CMASK);
1108 }
1109 }
1110 *p++ = '\0';
1111 desc = sresize(desc, p - desc, char);
1112
1113 /*
1114 * Encode the solution.
1115 */
1116 assert(memcmp(soln, grid, a) == 0);
1117 *aux = snewn(a+2, char);
1118 (*aux)[0] = 'S';
1119 for (i = 0; i < a; i++)
1120 (*aux)[i+1] = '0' + soln[i];
1121 (*aux)[a+1] = '\0';
1122
1123 sfree(grid);
1124 sfree(order);
1125 sfree(revorder);
1126 sfree(singletons);
1127 sfree(dsf);
1128 sfree(clues);
1129 sfree(cluevals);
1130 sfree(soln);
1131
1132 return desc;
1133}
1134
1135/* ----------------------------------------------------------------------
1136 * Gameplay.
1137 */
1138
1139static char *validate_desc(game_params *params, char *desc)
1140{
1141 int w = params->w, a = w*w;
1142 int *dsf;
1143 char *ret;
1144 const char *p = desc;
1145 int i;
1146
1147 /*
1148 * Verify that the block structure makes sense.
1149 */
1150 dsf = snew_dsf(a);
1151 ret = parse_block_structure(&p, w, dsf);
1152 if (ret) {
1153 sfree(dsf);
1154 return ret;
1155 }
1156
1157 if (*p != ',')
1158 return "Expected ',' after block structure description";
1159 p++;
1160
1161 /*
1162 * Verify that the right number of clues are given, and that SUB
1163 * and DIV clues don't apply to blocks of the wrong size.
1164 */
1165 for (i = 0; i < a; i++) {
1166 if (dsf_canonify(dsf, i) == i) {
1167 if (*p == 'a' || *p == 'm') {
1168 /* these clues need no validation */
1169 } else if (*p == 'd' || *p == 's') {
1170 if (dsf_size(dsf, i) != 2)
1171 return "Subtraction and division blocks must have area 2";
1172 } else if (!*p) {
1173 return "Too few clues for block structure";
1174 } else {
1175 return "Unrecognised clue type";
1176 }
1177 p++;
1178 while (*p && isdigit((unsigned char)*p)) p++;
1179 }
1180 }
1181 if (*p)
1182 return "Too many clues for block structure";
1183
1184 return NULL;
1185}
1186
1187static game_state *new_game(midend *me, game_params *params, char *desc)
1188{
1189 int w = params->w, a = w*w;
1190 game_state *state = snew(game_state);
1191 char *err;
1192 const char *p = desc;
1193 int i;
1194
1195 state->par = *params; /* structure copy */
1196 state->clues = snew(struct clues);
1197 state->clues->refcount = 1;
1198 state->clues->w = w;
1199 state->clues->dsf = snew_dsf(a);
1200 err = parse_block_structure(&p, w, state->clues->dsf);
1201
1202 assert(*p == ',');
1203 p++;
1204
1205 state->clues->clues = snewn(a, long);
1206 for (i = 0; i < a; i++) {
1207 if (dsf_canonify(state->clues->dsf, i) == i) {
1208 long clue = 0;
1209 switch (*p) {
1210 case 'a':
1211 clue = C_ADD;
1212 break;
1213 case 'm':
1214 clue = C_MUL;
1215 break;
1216 case 's':
1217 clue = C_SUB;
1218 assert(dsf_size(state->clues->dsf, i) == 2);
1219 break;
1220 case 'd':
1221 clue = C_DIV;
1222 assert(dsf_size(state->clues->dsf, i) == 2);
1223 break;
1224 default:
1225 assert(!"Bad description in new_game");
1226 }
1227 p++;
1228 clue |= atol(p);
1229 while (*p && isdigit((unsigned char)*p)) p++;
1230 state->clues->clues[i] = clue;
1231 } else
1232 state->clues->clues[i] = 0;
1233 }
1234
1235 state->grid = snewn(a, digit);
1236 state->pencil = snewn(a, int);
1237 for (i = 0; i < a; i++) {
1238 state->grid[i] = 0;
1239 state->pencil[i] = 0;
1240 }
1241
1242 state->completed = state->cheated = FALSE;
1243
1244 return state;
1245}
1246
1247static game_state *dup_game(game_state *state)
1248{
1249 int w = state->par.w, a = w*w;
1250 game_state *ret = snew(game_state);
1251
1252 ret->par = state->par; /* structure copy */
1253
1254 ret->clues = state->clues;
1255 ret->clues->refcount++;
1256
1257 ret->grid = snewn(a, digit);
1258 ret->pencil = snewn(a, int);
1259 memcpy(ret->grid, state->grid, a*sizeof(digit));
1260 memcpy(ret->pencil, state->pencil, a*sizeof(int));
1261
1262 ret->completed = state->completed;
1263 ret->cheated = state->cheated;
1264
1265 return ret;
1266}
1267
1268static void free_game(game_state *state)
1269{
1270 sfree(state->grid);
1271 sfree(state->pencil);
1272 if (--state->clues->refcount <= 0) {
1273 sfree(state->clues->dsf);
1274 sfree(state->clues->clues);
1275 sfree(state->clues);
1276 }
1277 sfree(state);
1278}
1279
1280static char *solve_game(game_state *state, game_state *currstate,
1281 char *aux, char **error)
1282{
1283 int w = state->par.w, a = w*w;
1284 int i, ret;
1285 digit *soln;
1286 char *out;
1287
1288 if (aux)
1289 return dupstr(aux);
1290
1291 soln = snewn(a, digit);
1292 memset(soln, 0, a);
1293
1294 ret = solver(w, state->clues->dsf, state->clues->clues,
1295 soln, DIFFCOUNT-1);
1296
1297 if (ret == diff_impossible) {
1298 *error = "No solution exists for this puzzle";
1299 out = NULL;
1300 } else if (ret == diff_ambiguous) {
1301 *error = "Multiple solutions exist for this puzzle";
1302 out = NULL;
1303 } else {
1304 out = snewn(a+2, char);
1305 out[0] = 'S';
1306 for (i = 0; i < a; i++)
1307 out[i+1] = '0' + soln[i];
1308 out[a+1] = '\0';
1309 }
1310
1311 sfree(soln);
1312 return out;
1313}
1314
1315static int game_can_format_as_text_now(game_params *params)
1316{
1317 return TRUE;
1318}
1319
1320static char *game_text_format(game_state *state)
1321{
1322 return NULL;
1323}
1324
1325struct game_ui {
1326 /*
1327 * These are the coordinates of the currently highlighted
1328 * square on the grid, if hshow = 1.
1329 */
1330 int hx, hy;
1331 /*
1332 * This indicates whether the current highlight is a
1333 * pencil-mark one or a real one.
1334 */
1335 int hpencil;
1336 /*
1337 * This indicates whether or not we're showing the highlight
1338 * (used to be hx = hy = -1); important so that when we're
1339 * using the cursor keys it doesn't keep coming back at a
1340 * fixed position. When hshow = 1, pressing a valid number
1341 * or letter key or Space will enter that number or letter in the grid.
1342 */
1343 int hshow;
1344 /*
1345 * This indicates whether we're using the highlight as a cursor;
1346 * it means that it doesn't vanish on a keypress, and that it is
1347 * allowed on immutable squares.
1348 */
1349 int hcursor;
1350};
1351
1352static game_ui *new_ui(game_state *state)
1353{
1354 game_ui *ui = snew(game_ui);
1355
1356 ui->hx = ui->hy = 0;
1357 ui->hpencil = ui->hshow = ui->hcursor = 0;
1358
1359 return ui;
1360}
1361
1362static void free_ui(game_ui *ui)
1363{
1364 sfree(ui);
1365}
1366
1367static char *encode_ui(game_ui *ui)
1368{
1369 return NULL;
1370}
1371
1372static void decode_ui(game_ui *ui, char *encoding)
1373{
1374}
1375
1376static void game_changed_state(game_ui *ui, game_state *oldstate,
1377 game_state *newstate)
1378{
1379 int w = newstate->par.w;
1380 /*
1381 * We prevent pencil-mode highlighting of a filled square, unless
1382 * we're using the cursor keys. So if the user has just filled in
1383 * a square which we had a pencil-mode highlight in (by Undo, or
1384 * by Redo, or by Solve), then we cancel the highlight.
1385 */
1386 if (ui->hshow && ui->hpencil && !ui->hcursor &&
1387 newstate->grid[ui->hy * w + ui->hx] != 0) {
1388 ui->hshow = 0;
1389 }
1390}
1391
1392#define PREFERRED_TILESIZE 48
1393#define TILESIZE (ds->tilesize)
1394#define BORDER (TILESIZE / 2)
1395#define GRIDEXTRA max((TILESIZE / 32),1)
1396#define COORD(x) ((x)*TILESIZE + BORDER)
1397#define FROMCOORD(x) (((x)+(TILESIZE-BORDER)) / TILESIZE - 1)
1398
1399#define FLASH_TIME 0.4F
1400
1401#define DF_PENCIL_SHIFT 16
1402#define DF_ERR_LATIN 0x8000
1403#define DF_ERR_CLUE 0x4000
1404#define DF_HIGHLIGHT 0x2000
1405#define DF_HIGHLIGHT_PENCIL 0x1000
1406#define DF_DIGIT_MASK 0x000F
1407
1408struct game_drawstate {
1409 int tilesize;
1410 int started;
1411 long *tiles;
1412 long *errors;
1413 char *minus_sign, *times_sign, *divide_sign;
1414};
1415
1416static int check_errors(game_state *state, long *errors)
1417{
1418 int w = state->par.w, a = w*w;
1419 int i, j, x, y, errs = FALSE;
1420 long *cluevals;
1421 int *full;
1422
1423 cluevals = snewn(a, long);
1424 full = snewn(a, int);
1425
1426 if (errors)
1427 for (i = 0; i < a; i++) {
1428 errors[i] = 0;
1429 full[i] = TRUE;
1430 }
1431
1432 for (i = 0; i < a; i++) {
1433 long clue;
1434
1435 j = dsf_canonify(state->clues->dsf, i);
1436 if (j == i) {
1437 cluevals[i] = state->grid[i];
1438 } else {
1439 clue = state->clues->clues[j] & CMASK;
1440
1441 switch (clue) {
1442 case C_ADD:
1443 cluevals[j] += state->grid[i];
1444 break;
1445 case C_MUL:
1446 cluevals[j] *= state->grid[i];
1447 break;
1448 case C_SUB:
1449 cluevals[j] = abs(cluevals[j] - state->grid[i]);
1450 break;
1451 case C_DIV:
1452 {
ff483c16 1453 int d1 = min(cluevals[j], state->grid[i]);
1454 int d2 = max(cluevals[j], state->grid[i]);
1455 if (d1 == 0 || d2 % d1 != 0)
c8c23a7f 1456 cluevals[j] = 0;
1457 else
ff483c16 1458 cluevals[j] = d2 / d1;
c8c23a7f 1459 }
1460 break;
1461 }
1462 }
1463
1464 if (!state->grid[i])
1465 full[j] = FALSE;
1466 }
1467
1468 for (i = 0; i < a; i++) {
1469 j = dsf_canonify(state->clues->dsf, i);
1470 if (j == i) {
1471 if ((state->clues->clues[j] & ~CMASK) != cluevals[i]) {
1472 errs = TRUE;
1473 if (errors && full[j])
1474 errors[j] |= DF_ERR_CLUE;
1475 }
1476 }
1477 }
1478
1479 sfree(cluevals);
1480 sfree(full);
1481
1482 for (y = 0; y < w; y++) {
1483 int mask = 0, errmask = 0;
1484 for (x = 0; x < w; x++) {
1485 int bit = 1 << state->grid[y*w+x];
1486 errmask |= (mask & bit);
1487 mask |= bit;
1488 }
1489
1490 if (mask != (1 << (w+1)) - (1 << 1)) {
1491 errs = TRUE;
1492 errmask &= ~1;
1493 if (errors) {
1494 for (x = 0; x < w; x++)
1495 if (errmask & (1 << state->grid[y*w+x]))
1496 errors[y*w+x] |= DF_ERR_LATIN;
1497 }
1498 }
1499 }
1500
1501 for (x = 0; x < w; x++) {
1502 int mask = 0, errmask = 0;
1503 for (y = 0; y < w; y++) {
1504 int bit = 1 << state->grid[y*w+x];
1505 errmask |= (mask & bit);
1506 mask |= bit;
1507 }
1508
1509 if (mask != (1 << (w+1)) - (1 << 1)) {
1510 errs = TRUE;
1511 errmask &= ~1;
1512 if (errors) {
1513 for (y = 0; y < w; y++)
1514 if (errmask & (1 << state->grid[y*w+x]))
1515 errors[y*w+x] |= DF_ERR_LATIN;
1516 }
1517 }
1518 }
1519
1520 return errs;
1521}
1522
1523static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1524 int x, int y, int button)
1525{
1526 int w = state->par.w;
1527 int tx, ty;
1528 char buf[80];
1529
1530 button &= ~MOD_MASK;
1531
1532 tx = FROMCOORD(x);
1533 ty = FROMCOORD(y);
1534
1535 if (tx >= 0 && tx < w && ty >= 0 && ty < w) {
1536 if (button == LEFT_BUTTON) {
1537 if (tx == ui->hx && ty == ui->hy &&
1538 ui->hshow && ui->hpencil == 0) {
1539 ui->hshow = 0;
1540 } else {
1541 ui->hx = tx;
1542 ui->hy = ty;
1543 ui->hshow = 1;
1544 ui->hpencil = 0;
1545 }
1546 ui->hcursor = 0;
1547 return ""; /* UI activity occurred */
1548 }
1549 if (button == RIGHT_BUTTON) {
1550 /*
1551 * Pencil-mode highlighting for non filled squares.
1552 */
1553 if (state->grid[ty*w+tx] == 0) {
1554 if (tx == ui->hx && ty == ui->hy &&
1555 ui->hshow && ui->hpencil) {
1556 ui->hshow = 0;
1557 } else {
1558 ui->hpencil = 1;
1559 ui->hx = tx;
1560 ui->hy = ty;
1561 ui->hshow = 1;
1562 }
1563 } else {
1564 ui->hshow = 0;
1565 }
1566 ui->hcursor = 0;
1567 return ""; /* UI activity occurred */
1568 }
1569 }
1570 if (IS_CURSOR_MOVE(button)) {
1571 move_cursor(button, &ui->hx, &ui->hy, w, w, 0);
1572 ui->hshow = ui->hcursor = 1;
1573 return "";
1574 }
1575 if (ui->hshow &&
1576 (button == CURSOR_SELECT)) {
1577 ui->hpencil = 1 - ui->hpencil;
1578 ui->hcursor = 1;
1579 return "";
1580 }
1581
1582 if (ui->hshow &&
1583 ((button >= '0' && button <= '9' && button - '0' <= w) ||
1584 button == CURSOR_SELECT2 || button == '\b')) {
1585 int n = button - '0';
1586 if (button == CURSOR_SELECT2 || button == '\b')
1587 n = 0;
1588
1589 /*
1590 * Can't make pencil marks in a filled square. This can only
1591 * become highlighted if we're using cursor keys.
1592 */
1593 if (ui->hpencil && state->grid[ui->hy*w+ui->hx])
1594 return NULL;
1595
1596 sprintf(buf, "%c%d,%d,%d",
1597 (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
1598
1599 if (!ui->hcursor) ui->hshow = 0;
1600
1601 return dupstr(buf);
1602 }
1603
1604 if (button == 'M' || button == 'm')
1605 return dupstr("M");
1606
1607 return NULL;
1608}
1609
1610static game_state *execute_move(game_state *from, char *move)
1611{
1612 int w = from->par.w, a = w*w;
1613 game_state *ret;
1614 int x, y, i, n;
1615
1616 if (move[0] == 'S') {
1617 ret = dup_game(from);
1618 ret->completed = ret->cheated = TRUE;
1619
1620 for (i = 0; i < a; i++) {
1621 if (move[i+1] < '1' || move[i+1] > '0'+w) {
1622 free_game(ret);
1623 return NULL;
1624 }
1625 ret->grid[i] = move[i+1] - '0';
1626 ret->pencil[i] = 0;
1627 }
1628
1629 if (move[a+1] != '\0') {
1630 free_game(ret);
1631 return NULL;
1632 }
1633
1634 return ret;
1635 } else if ((move[0] == 'P' || move[0] == 'R') &&
1636 sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
1637 x >= 0 && x < w && y >= 0 && y < w && n >= 0 && n <= w) {
1638
1639 ret = dup_game(from);
1640 if (move[0] == 'P' && n > 0) {
1641 ret->pencil[y*w+x] ^= 1 << n;
1642 } else {
1643 ret->grid[y*w+x] = n;
1644 ret->pencil[y*w+x] = 0;
1645
1646 if (!ret->completed && !check_errors(ret, NULL))
1647 ret->completed = TRUE;
1648 }
1649 return ret;
1650 } else if (move[0] == 'M') {
1651 /*
1652 * Fill in absolutely all pencil marks everywhere. (I
1653 * wouldn't use this for actual play, but it's a handy
1654 * starting point when following through a set of
1655 * diagnostics output by the standalone solver.)
1656 */
1657 ret = dup_game(from);
1658 for (i = 0; i < a; i++) {
1659 if (!ret->grid[i])
1660 ret->pencil[i] = (1 << (w+1)) - (1 << 1);
1661 }
1662 return ret;
1663 } else
1664 return NULL; /* couldn't parse move string */
1665}
1666
1667/* ----------------------------------------------------------------------
1668 * Drawing routines.
1669 */
1670
1671#define SIZE(w) ((w) * TILESIZE + 2*BORDER)
1672
1673static void game_compute_size(game_params *params, int tilesize,
1674 int *x, int *y)
1675{
1676 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1677 struct { int tilesize; } ads, *ds = &ads;
1678 ads.tilesize = tilesize;
1679
1680 *x = *y = SIZE(params->w);
1681}
1682
1683static void game_set_size(drawing *dr, game_drawstate *ds,
1684 game_params *params, int tilesize)
1685{
1686 ds->tilesize = tilesize;
1687}
1688
1689static float *game_colours(frontend *fe, int *ncolours)
1690{
1691 float *ret = snewn(3 * NCOLOURS, float);
1692
1693 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1694
1695 ret[COL_GRID * 3 + 0] = 0.0F;
1696 ret[COL_GRID * 3 + 1] = 0.0F;
1697 ret[COL_GRID * 3 + 2] = 0.0F;
1698
1699 ret[COL_USER * 3 + 0] = 0.0F;
1700 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1701 ret[COL_USER * 3 + 2] = 0.0F;
1702
1703 ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
1704 ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
1705 ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
1706
1707 ret[COL_ERROR * 3 + 0] = 1.0F;
1708 ret[COL_ERROR * 3 + 1] = 0.0F;
1709 ret[COL_ERROR * 3 + 2] = 0.0F;
1710
1711 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1712 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1713 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
1714
1715 *ncolours = NCOLOURS;
1716 return ret;
1717}
1718
1719static const char *const minus_signs[] = { "\xE2\x88\x92", "-" };
1720static const char *const times_signs[] = { "\xC3\x97", "*" };
1721static const char *const divide_signs[] = { "\xC3\xB7", "/" };
1722
1723static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1724{
1725 int w = state->par.w, a = w*w;
1726 struct game_drawstate *ds = snew(struct game_drawstate);
1727 int i;
1728
1729 ds->tilesize = 0;
1730 ds->started = FALSE;
1731 ds->tiles = snewn(a, long);
1732 for (i = 0; i < a; i++)
1733 ds->tiles[i] = -1;
1734 ds->errors = snewn(a, long);
1735 ds->minus_sign = text_fallback(dr, minus_signs, lenof(minus_signs));
1736 ds->times_sign = text_fallback(dr, times_signs, lenof(times_signs));
1737 ds->divide_sign = text_fallback(dr, divide_signs, lenof(divide_signs));
1738
1739 return ds;
1740}
1741
1742static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1743{
1744 sfree(ds->tiles);
1745 sfree(ds->errors);
1746 sfree(ds->minus_sign);
1747 sfree(ds->times_sign);
1748 sfree(ds->divide_sign);
1749 sfree(ds);
1750}
1751
d2cfd12c 1752static void draw_tile(drawing *dr, game_drawstate *ds, struct clues *clues,
1753 int x, int y, long tile)
c8c23a7f 1754{
1755 int w = clues->w /* , a = w*w */;
1756 int tx, ty, tw, th;
1757 int cx, cy, cw, ch;
1758 char str[64];
1759
1760 tx = BORDER + x * TILESIZE + 1 + GRIDEXTRA;
1761 ty = BORDER + y * TILESIZE + 1 + GRIDEXTRA;
1762
1763 cx = tx;
1764 cy = ty;
1765 cw = tw = TILESIZE-1-2*GRIDEXTRA;
1766 ch = th = TILESIZE-1-2*GRIDEXTRA;
1767
1768 if (x > 0 && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, y*w+x-1))
1769 cx -= GRIDEXTRA, cw += GRIDEXTRA;
1770 if (x+1 < w && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, y*w+x+1))
1771 cw += GRIDEXTRA;
1772 if (y > 0 && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, (y-1)*w+x))
1773 cy -= GRIDEXTRA, ch += GRIDEXTRA;
1774 if (y+1 < w && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, (y+1)*w+x))
1775 ch += GRIDEXTRA;
1776
1777 clip(dr, cx, cy, cw, ch);
1778
1779 /* background needs erasing */
1780 draw_rect(dr, cx, cy, cw, ch,
1781 (tile & DF_HIGHLIGHT) ? COL_HIGHLIGHT : COL_BACKGROUND);
1782
1783 /*
1784 * Draw the corners of thick lines in corner-adjacent squares,
1785 * which jut into this square by one pixel.
1786 */
1787 if (x > 0 && y > 0 && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y-1)*w+x-1))
1788 draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1789 if (x+1 < w && y > 0 && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y-1)*w+x+1))
1790 draw_rect(dr, tx+TILESIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1791 if (x > 0 && y+1 < w && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y+1)*w+x-1))
1792 draw_rect(dr, tx-GRIDEXTRA, ty+TILESIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1793 if (x+1 < w && y+1 < w && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y+1)*w+x+1))
1794 draw_rect(dr, tx+TILESIZE-1-2*GRIDEXTRA, ty+TILESIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1795
1796 /* pencil-mode highlight */
1797 if (tile & DF_HIGHLIGHT_PENCIL) {
1798 int coords[6];
1799 coords[0] = cx;
1800 coords[1] = cy;
1801 coords[2] = cx+cw/2;
1802 coords[3] = cy;
1803 coords[4] = cx;
1804 coords[5] = cy+ch/2;
1805 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1806 }
1807
1808 /* Draw the box clue. */
1809 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1810 long clue = clues->clues[y*w+x];
1811 long cluetype = clue & CMASK, clueval = clue & ~CMASK;
1812 int size = dsf_size(clues->dsf, y*w+x);
1813 /*
1814 * Special case of clue-drawing: a box with only one square
1815 * is written as just the number, with no operation, because
1816 * it doesn't matter whether the operation is ADD or MUL.
1817 * The generation code above should never produce puzzles
1818 * containing such a thing - I think they're inelegant - but
1819 * it's possible to type in game IDs from elsewhere, so I
1820 * want to display them right if so.
1821 */
1822 sprintf (str, "%ld%s", clueval,
1823 (size == 1 ? "" :
1824 cluetype == C_ADD ? "+" :
1825 cluetype == C_SUB ? ds->minus_sign :
1826 cluetype == C_MUL ? ds->times_sign :
1827 /* cluetype == C_DIV ? */ ds->divide_sign));
1828 draw_text(dr, tx + GRIDEXTRA * 2, ty + GRIDEXTRA * 2 + TILESIZE/4,
1829 FONT_VARIABLE, TILESIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
1830 (tile & DF_ERR_CLUE ? COL_ERROR : COL_GRID), str);
1831 }
1832
1833 /* new number needs drawing? */
1834 if (tile & DF_DIGIT_MASK) {
1835 str[1] = '\0';
1836 str[0] = (tile & DF_DIGIT_MASK) + '0';
1837 draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1838 FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
1839 (tile & DF_ERR_LATIN) ? COL_ERROR : COL_USER, str);
1840 } else {
1841 int i, j, npencil;
1842 int pl, pr, pt, pb;
1843 float bestsize;
1844 int pw, ph, minph, pbest, fontsize;
1845
1846 /* Count the pencil marks required. */
1847 for (i = 1, npencil = 0; i <= w; i++)
04b82990 1848 if (tile & (1L << (i + DF_PENCIL_SHIFT)))
c8c23a7f 1849 npencil++;
1850 if (npencil) {
1851
1852 minph = 2;
1853
1854 /*
1855 * Determine the bounding rectangle within which we're going
1856 * to put the pencil marks.
1857 */
1858 /* Start with the whole square */
1859 pl = tx + GRIDEXTRA;
1860 pr = pl + TILESIZE - GRIDEXTRA;
1861 pt = ty + GRIDEXTRA;
1862 pb = pt + TILESIZE - GRIDEXTRA;
130de411 1863 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1864 /*
1865 * Make space for the clue text.
1866 */
1867 pt += TILESIZE/4;
1868 /* minph--; */
1869 }
c8c23a7f 1870
1871 /*
1872 * We arrange our pencil marks in a grid layout, with
1873 * the number of rows and columns adjusted to allow the
1874 * maximum font size.
1875 *
1876 * So now we work out what the grid size ought to be.
1877 */
1878 bestsize = 0.0;
1879 pbest = 0;
1880 /* Minimum */
1881 for (pw = 3; pw < max(npencil,4); pw++) {
1882 float fw, fh, fs;
1883
1884 ph = (npencil + pw - 1) / pw;
1885 ph = max(ph, minph);
1886 fw = (pr - pl) / (float)pw;
1887 fh = (pb - pt) / (float)ph;
1888 fs = min(fw, fh);
1889 if (fs > bestsize) {
1890 bestsize = fs;
1891 pbest = pw;
1892 }
1893 }
1894 assert(pbest > 0);
1895 pw = pbest;
1896 ph = (npencil + pw - 1) / pw;
1897 ph = max(ph, minph);
1898
1899 /*
1900 * Now we've got our grid dimensions, work out the pixel
1901 * size of a grid element, and round it to the nearest
1902 * pixel. (We don't want rounding errors to make the
1903 * grid look uneven at low pixel sizes.)
1904 */
1905 fontsize = min((pr - pl) / pw, (pb - pt) / ph);
1906
1907 /*
1908 * Centre the resulting figure in the square.
1909 */
1910 pl = tx + (TILESIZE - fontsize * pw) / 2;
1911 pt = ty + (TILESIZE - fontsize * ph) / 2;
1912
1913 /*
1914 * And move it down a bit if it's collided with some
1915 * clue text.
1916 */
1917 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1918 pt = max(pt, ty + GRIDEXTRA * 3 + TILESIZE/4);
1919 }
1920
1921 /*
1922 * Now actually draw the pencil marks.
1923 */
1924 for (i = 1, j = 0; i <= w; i++)
04b82990 1925 if (tile & (1L << (i + DF_PENCIL_SHIFT))) {
c8c23a7f 1926 int dx = j % pw, dy = j / pw;
1927
1928 str[1] = '\0';
1929 str[0] = i + '0';
1930 draw_text(dr, pl + fontsize * (2*dx+1) / 2,
1931 pt + fontsize * (2*dy+1) / 2,
1932 FONT_VARIABLE, fontsize,
1933 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
1934 j++;
1935 }
1936 }
1937 }
1938
1939 unclip(dr);
1940
1941 draw_update(dr, cx, cy, cw, ch);
1942}
1943
1944static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1945 game_state *state, int dir, game_ui *ui,
1946 float animtime, float flashtime)
1947{
1948 int w = state->par.w /*, a = w*w */;
1949 int x, y;
1950
1951 if (!ds->started) {
1952 /*
1953 * The initial contents of the window are not guaranteed and
1954 * can vary with front ends. To be on the safe side, all
1955 * games should start by drawing a big background-colour
1956 * rectangle covering the whole window.
1957 */
1958 draw_rect(dr, 0, 0, SIZE(w), SIZE(w), COL_BACKGROUND);
1959
1960 /*
1961 * Big containing rectangle.
1962 */
1963 draw_rect(dr, COORD(0) - GRIDEXTRA, COORD(0) - GRIDEXTRA,
1964 w*TILESIZE+1+GRIDEXTRA*2, w*TILESIZE+1+GRIDEXTRA*2,
1965 COL_GRID);
1966
1967 draw_update(dr, 0, 0, SIZE(w), SIZE(w));
1968
1969 ds->started = TRUE;
1970 }
1971
1972 check_errors(state, ds->errors);
1973
1974 for (y = 0; y < w; y++) {
1975 for (x = 0; x < w; x++) {
1976 long tile = 0L;
1977
1978 if (state->grid[y*w+x])
1979 tile = state->grid[y*w+x];
1980 else
1981 tile = (long)state->pencil[y*w+x] << DF_PENCIL_SHIFT;
1982
1983 if (ui->hshow && ui->hx == x && ui->hy == y)
1984 tile |= (ui->hpencil ? DF_HIGHLIGHT_PENCIL : DF_HIGHLIGHT);
1985
1986 if (flashtime > 0 &&
1987 (flashtime <= FLASH_TIME/3 ||
1988 flashtime >= FLASH_TIME*2/3))
1989 tile |= DF_HIGHLIGHT; /* completion flash */
1990
1991 tile |= ds->errors[y*w+x];
1992
1993 if (ds->tiles[y*w+x] != tile) {
1994 ds->tiles[y*w+x] = tile;
1995 draw_tile(dr, ds, state->clues, x, y, tile);
1996 }
1997 }
1998 }
1999}
2000
2001static float game_anim_length(game_state *oldstate, game_state *newstate,
2002 int dir, game_ui *ui)
2003{
2004 return 0.0F;
2005}
2006
2007static float game_flash_length(game_state *oldstate, game_state *newstate,
2008 int dir, game_ui *ui)
2009{
2010 if (!oldstate->completed && newstate->completed &&
2011 !oldstate->cheated && !newstate->cheated)
2012 return FLASH_TIME;
2013 return 0.0F;
2014}
2015
4496362f 2016static int game_is_solved(game_state *state)
2017{
2018 return state->completed;
2019}
2020
c8c23a7f 2021static int game_timing_state(game_state *state, game_ui *ui)
2022{
2023 if (state->completed)
2024 return FALSE;
2025 return TRUE;
2026}
2027
2028static void game_print_size(game_params *params, float *x, float *y)
2029{
2030 int pw, ph;
2031
2032 /*
2033 * We use 9mm squares by default, like Solo.
2034 */
2035 game_compute_size(params, 900, &pw, &ph);
2036 *x = pw / 100.0F;
2037 *y = ph / 100.0F;
2038}
2039
2040/*
2041 * Subfunction to draw the thick lines between cells. In order to do
2042 * this using the line-drawing rather than rectangle-drawing API (so
2043 * as to get line thicknesses to scale correctly) and yet have
2044 * correctly mitred joins between lines, we must do this by tracing
2045 * the boundary of each sub-block and drawing it in one go as a
2046 * single polygon.
2047 */
2048static void outline_block_structure(drawing *dr, game_drawstate *ds,
2049 int w, int *dsf, int ink)
2050{
2051 int a = w*w;
2052 int *coords;
2053 int i, n;
2054 int x, y, dx, dy, sx, sy, sdx, sdy;
2055
2056 coords = snewn(4*a, int);
2057
2058 /*
2059 * Iterate over all the blocks.
2060 */
2061 for (i = 0; i < a; i++) {
2062 if (dsf_canonify(dsf, i) != i)
2063 continue;
2064
2065 /*
2066 * For each block, we need a starting square within it which
2067 * has a boundary at the left. Conveniently, we have one
2068 * right here, by construction.
2069 */
2070 x = i % w;
2071 y = i / w;
2072 dx = -1;
2073 dy = 0;
2074
2075 /*
2076 * Now begin tracing round the perimeter. At all
2077 * times, (x,y) describes some square within the
2078 * block, and (x+dx,y+dy) is some adjacent square
2079 * outside it; so the edge between those two squares
2080 * is always an edge of the block.
2081 */
2082 sx = x, sy = y, sdx = dx, sdy = dy; /* save starting position */
2083 n = 0;
2084 do {
2085 int cx, cy, tx, ty, nin;
2086
2087 /*
2088 * Advance to the next edge, by looking at the two
2089 * squares beyond it. If they're both outside the block,
2090 * we turn right (by leaving x,y the same and rotating
2091 * dx,dy clockwise); if they're both inside, we turn
2092 * left (by rotating dx,dy anticlockwise and contriving
2093 * to leave x+dx,y+dy unchanged); if one of each, we go
2094 * straight on (and may enforce by assertion that
2095 * they're one of each the _right_ way round).
2096 */
2097 nin = 0;
2098 tx = x - dy + dx;
2099 ty = y + dx + dy;
2100 nin += (tx >= 0 && tx < w && ty >= 0 && ty < w &&
2101 dsf_canonify(dsf, ty*w+tx) == i);
2102 tx = x - dy;
2103 ty = y + dx;
2104 nin += (tx >= 0 && tx < w && ty >= 0 && ty < w &&
2105 dsf_canonify(dsf, ty*w+tx) == i);
2106 if (nin == 0) {
2107 /*
2108 * Turn right.
2109 */
2110 int tmp;
2111 tmp = dx;
2112 dx = -dy;
2113 dy = tmp;
2114 } else if (nin == 2) {
2115 /*
2116 * Turn left.
2117 */
2118 int tmp;
2119
2120 x += dx;
2121 y += dy;
2122
2123 tmp = dx;
2124 dx = dy;
2125 dy = -tmp;
2126
2127 x -= dx;
2128 y -= dy;
2129 } else {
2130 /*
2131 * Go straight on.
2132 */
2133 x -= dy;
2134 y += dx;
2135 }
2136
2137 /*
2138 * Now enforce by assertion that we ended up
2139 * somewhere sensible.
2140 */
2141 assert(x >= 0 && x < w && y >= 0 && y < w &&
2142 dsf_canonify(dsf, y*w+x) == i);
2143 assert(x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= w ||
2144 dsf_canonify(dsf, (y+dy)*w+(x+dx)) != i);
2145
2146 /*
2147 * Record the point we just went past at one end of the
2148 * edge. To do this, we translate (x,y) down and right
2149 * by half a unit (so they're describing a point in the
2150 * _centre_ of the square) and then translate back again
2151 * in a manner rotated by dy and dx.
2152 */
2153 assert(n < 2*w+2);
2154 cx = ((2*x+1) + dy + dx) / 2;
2155 cy = ((2*y+1) - dx + dy) / 2;
2156 coords[2*n+0] = BORDER + cx * TILESIZE;
2157 coords[2*n+1] = BORDER + cy * TILESIZE;
2158 n++;
2159
2160 } while (x != sx || y != sy || dx != sdx || dy != sdy);
2161
2162 /*
2163 * That's our polygon; now draw it.
2164 */
2165 draw_polygon(dr, coords, n, -1, ink);
2166 }
2167
2168 sfree(coords);
2169}
2170
2171static void game_print(drawing *dr, game_state *state, int tilesize)
2172{
2173 int w = state->par.w;
2174 int ink = print_mono_colour(dr, 0);
2175 int x, y;
2176 char *minus_sign, *times_sign, *divide_sign;
2177
2178 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2179 game_drawstate ads, *ds = &ads;
2180 game_set_size(dr, ds, NULL, tilesize);
2181
2182 minus_sign = text_fallback(dr, minus_signs, lenof(minus_signs));
2183 times_sign = text_fallback(dr, times_signs, lenof(times_signs));
2184 divide_sign = text_fallback(dr, divide_signs, lenof(divide_signs));
2185
2186 /*
2187 * Border.
2188 */
2189 print_line_width(dr, 3 * TILESIZE / 40);
2190 draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, w*TILESIZE, ink);
2191
2192 /*
2193 * Main grid.
2194 */
2195 for (x = 1; x < w; x++) {
2196 print_line_width(dr, TILESIZE / 40);
2197 draw_line(dr, BORDER+x*TILESIZE, BORDER,
2198 BORDER+x*TILESIZE, BORDER+w*TILESIZE, ink);
2199 }
2200 for (y = 1; y < w; y++) {
2201 print_line_width(dr, TILESIZE / 40);
2202 draw_line(dr, BORDER, BORDER+y*TILESIZE,
2203 BORDER+w*TILESIZE, BORDER+y*TILESIZE, ink);
2204 }
2205
2206 /*
2207 * Thick lines between cells.
2208 */
2209 print_line_width(dr, 3 * TILESIZE / 40);
2210 outline_block_structure(dr, ds, w, state->clues->dsf, ink);
2211
2212 /*
2213 * Clues.
2214 */
2215 for (y = 0; y < w; y++)
2216 for (x = 0; x < w; x++)
2217 if (dsf_canonify(state->clues->dsf, y*w+x) == y*w+x) {
2218 long clue = state->clues->clues[y*w+x];
2219 long cluetype = clue & CMASK, clueval = clue & ~CMASK;
2220 int size = dsf_size(state->clues->dsf, y*w+x);
2221 char str[64];
2222
2223 /*
2224 * As in the drawing code, we omit the operator for
2225 * blocks of area 1.
2226 */
2227 sprintf (str, "%ld%s", clueval,
2228 (size == 1 ? "" :
2229 cluetype == C_ADD ? "+" :
2230 cluetype == C_SUB ? minus_sign :
2231 cluetype == C_MUL ? times_sign :
2232 /* cluetype == C_DIV ? */ divide_sign));
2233
2234 draw_text(dr,
2235 BORDER+x*TILESIZE + 5*TILESIZE/80,
2236 BORDER+y*TILESIZE + 20*TILESIZE/80,
2237 FONT_VARIABLE, TILESIZE/4,
2238 ALIGN_VNORMAL | ALIGN_HLEFT,
2239 ink, str);
2240 }
2241
2242 /*
2243 * Numbers for the solution, if any.
2244 */
2245 for (y = 0; y < w; y++)
2246 for (x = 0; x < w; x++)
2247 if (state->grid[y*w+x]) {
2248 char str[2];
2249 str[1] = '\0';
2250 str[0] = state->grid[y*w+x] + '0';
2251 draw_text(dr, BORDER + x*TILESIZE + TILESIZE/2,
2252 BORDER + y*TILESIZE + TILESIZE/2,
2253 FONT_VARIABLE, TILESIZE/2,
2254 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
2255 }
87f798e8 2256
2257 sfree(minus_sign);
2258 sfree(times_sign);
2259 sfree(divide_sign);
c8c23a7f 2260}
2261
2262#ifdef COMBINED
2263#define thegame keen
2264#endif
2265
2266const struct game thegame = {
2267 "Keen", "games.keen", "keen",
2268 default_params,
2269 game_fetch_preset,
2270 decode_params,
2271 encode_params,
2272 free_params,
2273 dup_params,
2274 TRUE, game_configure, custom_params,
2275 validate_params,
2276 new_game_desc,
2277 validate_desc,
2278 new_game,
2279 dup_game,
2280 free_game,
2281 TRUE, solve_game,
2282 FALSE, game_can_format_as_text_now, game_text_format,
2283 new_ui,
2284 free_ui,
2285 encode_ui,
2286 decode_ui,
2287 game_changed_state,
2288 interpret_move,
2289 execute_move,
2290 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2291 game_colours,
2292 game_new_drawstate,
2293 game_free_drawstate,
2294 game_redraw,
2295 game_anim_length,
2296 game_flash_length,
4496362f 2297 game_is_solved,
c8c23a7f 2298 TRUE, FALSE, game_print_size, game_print,
2299 FALSE, /* wants_statusbar */
2300 FALSE, game_timing_state,
2301 REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */
2302};
2303
2304#ifdef STANDALONE_SOLVER
2305
2306#include <stdarg.h>
2307
2308int main(int argc, char **argv)
2309{
2310 game_params *p;
2311 game_state *s;
2312 char *id = NULL, *desc, *err;
2313 int grade = FALSE;
2314 int ret, diff, really_show_working = FALSE;
2315
2316 while (--argc > 0) {
2317 char *p = *++argv;
2318 if (!strcmp(p, "-v")) {
2319 really_show_working = TRUE;
2320 } else if (!strcmp(p, "-g")) {
2321 grade = TRUE;
2322 } else if (*p == '-') {
2323 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2324 return 1;
2325 } else {
2326 id = p;
2327 }
2328 }
2329
2330 if (!id) {
2331 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2332 return 1;
2333 }
2334
2335 desc = strchr(id, ':');
2336 if (!desc) {
2337 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2338 return 1;
2339 }
2340 *desc++ = '\0';
2341
2342 p = default_params();
2343 decode_params(p, id);
2344 err = validate_desc(p, desc);
2345 if (err) {
2346 fprintf(stderr, "%s: %s\n", argv[0], err);
2347 return 1;
2348 }
2349 s = new_game(NULL, p, desc);
2350
2351 /*
2352 * When solving an Easy puzzle, we don't want to bother the
2353 * user with Hard-level deductions. For this reason, we grade
2354 * the puzzle internally before doing anything else.
2355 */
2356 ret = -1; /* placate optimiser */
2357 solver_show_working = FALSE;
2358 for (diff = 0; diff < DIFFCOUNT; diff++) {
2359 memset(s->grid, 0, p->w * p->w);
2360 ret = solver(p->w, s->clues->dsf, s->clues->clues,
2361 s->grid, diff);
2362 if (ret <= diff)
2363 break;
2364 }
2365
2366 if (diff == DIFFCOUNT) {
2367 if (grade)
2368 printf("Difficulty rating: ambiguous\n");
2369 else
2370 printf("Unable to find a unique solution\n");
2371 } else {
2372 if (grade) {
2373 if (ret == diff_impossible)
2374 printf("Difficulty rating: impossible (no solution exists)\n");
2375 else
2376 printf("Difficulty rating: %s\n", keen_diffnames[ret]);
2377 } else {
2378 solver_show_working = really_show_working;
2379 memset(s->grid, 0, p->w * p->w);
2380 ret = solver(p->w, s->clues->dsf, s->clues->clues,
2381 s->grid, diff);
2382 if (ret != diff)
2383 printf("Puzzle is inconsistent\n");
2384 else {
2385 /*
2386 * We don't have a game_text_format for this game,
2387 * so we have to output the solution manually.
2388 */
2389 int x, y;
2390 for (y = 0; y < p->w; y++) {
2391 for (x = 0; x < p->w; x++) {
2392 printf("%s%c", x>0?" ":"", '0' + s->grid[y*p->w+x]);
2393 }
2394 putchar('\n');
2395 }
2396 }
2397 }
2398 }
2399
2400 return 0;
2401}
2402
2403#endif
2404
2405/* vim: set shiftwidth=4 tabstop=8: */