Stop the analysis pass in Loopy's redraw routine from being
[sgt/puzzles] / map.c
CommitLineData
c51c7de6 1/*
2 * map.c: Game involving four-colouring a map.
3 */
4
5/*
6 * TODO:
7 *
c51c7de6 8 * - clue marking
c51c7de6 9 * - better four-colouring algorithm?
c51c7de6 10 */
11
12#include <stdio.h>
13#include <stdlib.h>
14#include <string.h>
15#include <assert.h>
16#include <ctype.h>
17#include <math.h>
18
19#include "puzzles.h"
20
21/*
e857e161 22 * In standalone solver mode, `verbose' is a variable which can be
23 * set by command-line option; in debugging mode it's simply always
24 * true.
25 */
26#if defined STANDALONE_SOLVER
27#define SOLVER_DIAGNOSTICS
28int verbose = FALSE;
29#elif defined SOLVER_DIAGNOSTICS
30#define verbose TRUE
31#endif
32
33/*
c51c7de6 34 * I don't seriously anticipate wanting to change the number of
35 * colours used in this game, but it doesn't cost much to use a
36 * #define just in case :-)
37 */
38#define FOUR 4
39#define THREE (FOUR-1)
40#define FIVE (FOUR+1)
41#define SIX (FOUR+2)
42
43/*
44 * Ghastly run-time configuration option, just for Gareth (again).
45 */
46static int flash_type = -1;
47static float flash_length;
48
49/*
50 * Difficulty levels. I do some macro ickery here to ensure that my
51 * enum and the various forms of my name list always match up.
52 */
53#define DIFFLIST(A) \
54 A(EASY,Easy,e) \
b3728d72 55 A(NORMAL,Normal,n) \
1cdd1306 56 A(HARD,Hard,h) \
b3728d72 57 A(RECURSE,Unreasonable,u)
c51c7de6 58#define ENUM(upper,title,lower) DIFF_ ## upper,
59#define TITLE(upper,title,lower) #title,
60#define ENCODE(upper,title,lower) #lower
61#define CONFIG(upper,title,lower) ":" #title
62enum { DIFFLIST(ENUM) DIFFCOUNT };
63static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
64static char const map_diffchars[] = DIFFLIST(ENCODE);
65#define DIFFCONFIG DIFFLIST(CONFIG)
66
67enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */
68
69enum {
70 COL_BACKGROUND,
71 COL_GRID,
72 COL_0, COL_1, COL_2, COL_3,
756a9f15 73 COL_ERROR, COL_ERRTEXT,
c51c7de6 74 NCOLOURS
75};
76
77struct game_params {
78 int w, h, n, diff;
79};
80
81struct map {
82 int refcount;
83 int *map;
84 int *graph;
85 int n;
86 int ngraph;
87 int *immutable;
e857e161 88 int *edgex, *edgey; /* position of a point on each edge */
89 int *regionx, *regiony; /* position of a point in each region */
c51c7de6 90};
91
92struct game_state {
93 game_params p;
94 struct map *map;
1cdd1306 95 int *colouring, *pencil;
c51c7de6 96 int completed, cheated;
97};
98
99static game_params *default_params(void)
100{
101 game_params *ret = snew(game_params);
102
cb0c7d4a 103#ifdef PORTRAIT_SCREEN
104 ret->w = 16;
105 ret->h = 18;
106#else
c51c7de6 107 ret->w = 20;
108 ret->h = 15;
cb0c7d4a 109#endif
c51c7de6 110 ret->n = 30;
111 ret->diff = DIFF_NORMAL;
112
113 return ret;
114}
115
116static const struct game_params map_presets[] = {
cb0c7d4a 117#ifdef PORTRAIT_SCREEN
118 {16, 18, 30, DIFF_EASY},
119 {16, 18, 30, DIFF_NORMAL},
120 {16, 18, 30, DIFF_HARD},
121 {16, 18, 30, DIFF_RECURSE},
122 {25, 30, 75, DIFF_NORMAL},
123 {25, 30, 75, DIFF_HARD},
124#else
c51c7de6 125 {20, 15, 30, DIFF_EASY},
126 {20, 15, 30, DIFF_NORMAL},
1cdd1306 127 {20, 15, 30, DIFF_HARD},
128 {20, 15, 30, DIFF_RECURSE},
c51c7de6 129 {30, 25, 75, DIFF_NORMAL},
1cdd1306 130 {30, 25, 75, DIFF_HARD},
cb0c7d4a 131#endif
c51c7de6 132};
133
134static int game_fetch_preset(int i, char **name, game_params **params)
135{
136 game_params *ret;
137 char str[80];
138
139 if (i < 0 || i >= lenof(map_presets))
140 return FALSE;
141
142 ret = snew(game_params);
143 *ret = map_presets[i];
144
145 sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
146 map_diffnames[ret->diff]);
147
148 *name = dupstr(str);
149 *params = ret;
150 return TRUE;
151}
152
153static void free_params(game_params *params)
154{
155 sfree(params);
156}
157
158static game_params *dup_params(game_params *params)
159{
160 game_params *ret = snew(game_params);
161 *ret = *params; /* structure copy */
162 return ret;
163}
164
165static void decode_params(game_params *params, char const *string)
166{
167 char const *p = string;
168
169 params->w = atoi(p);
170 while (*p && isdigit((unsigned char)*p)) p++;
171 if (*p == 'x') {
172 p++;
173 params->h = atoi(p);
174 while (*p && isdigit((unsigned char)*p)) p++;
175 } else {
176 params->h = params->w;
177 }
178 if (*p == 'n') {
179 p++;
180 params->n = atoi(p);
181 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
182 } else {
183 params->n = params->w * params->h / 8;
184 }
185 if (*p == 'd') {
186 int i;
187 p++;
188 for (i = 0; i < DIFFCOUNT; i++)
189 if (*p == map_diffchars[i])
190 params->diff = i;
191 if (*p) p++;
192 }
193}
194
195static char *encode_params(game_params *params, int full)
196{
197 char ret[400];
198
199 sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
200 if (full)
201 sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
202
203 return dupstr(ret);
204}
205
206static config_item *game_configure(game_params *params)
207{
208 config_item *ret;
209 char buf[80];
210
211 ret = snewn(5, config_item);
212
213 ret[0].name = "Width";
214 ret[0].type = C_STRING;
215 sprintf(buf, "%d", params->w);
216 ret[0].sval = dupstr(buf);
217 ret[0].ival = 0;
218
219 ret[1].name = "Height";
220 ret[1].type = C_STRING;
221 sprintf(buf, "%d", params->h);
222 ret[1].sval = dupstr(buf);
223 ret[1].ival = 0;
224
225 ret[2].name = "Regions";
226 ret[2].type = C_STRING;
227 sprintf(buf, "%d", params->n);
228 ret[2].sval = dupstr(buf);
229 ret[2].ival = 0;
230
231 ret[3].name = "Difficulty";
232 ret[3].type = C_CHOICES;
233 ret[3].sval = DIFFCONFIG;
234 ret[3].ival = params->diff;
235
236 ret[4].name = NULL;
237 ret[4].type = C_END;
238 ret[4].sval = NULL;
239 ret[4].ival = 0;
240
241 return ret;
242}
243
244static game_params *custom_params(config_item *cfg)
245{
246 game_params *ret = snew(game_params);
247
248 ret->w = atoi(cfg[0].sval);
249 ret->h = atoi(cfg[1].sval);
250 ret->n = atoi(cfg[2].sval);
251 ret->diff = cfg[3].ival;
252
253 return ret;
254}
255
256static char *validate_params(game_params *params, int full)
257{
258 if (params->w < 2 || params->h < 2)
259 return "Width and height must be at least two";
260 if (params->n < 5)
261 return "Must have at least five regions";
262 if (params->n > params->w * params->h)
263 return "Too many regions to fit in grid";
264 return NULL;
265}
266
267/* ----------------------------------------------------------------------
268 * Cumulative frequency table functions.
269 */
270
271/*
272 * Initialise a cumulative frequency table. (Hardly worth writing
273 * this function; all it does is to initialise everything in the
274 * array to zero.)
275 */
276static void cf_init(int *table, int n)
277{
278 int i;
279
280 for (i = 0; i < n; i++)
281 table[i] = 0;
282}
283
284/*
285 * Increment the count of symbol `sym' by `count'.
286 */
287static void cf_add(int *table, int n, int sym, int count)
288{
289 int bit;
290
291 bit = 1;
292 while (sym != 0) {
293 if (sym & bit) {
294 table[sym] += count;
295 sym &= ~bit;
296 }
297 bit <<= 1;
298 }
299
300 table[0] += count;
301}
302
303/*
304 * Cumulative frequency lookup: return the total count of symbols
305 * with value less than `sym'.
306 */
307static int cf_clookup(int *table, int n, int sym)
308{
309 int bit, index, limit, count;
310
311 if (sym == 0)
312 return 0;
313
314 assert(0 < sym && sym <= n);
315
316 count = table[0]; /* start with the whole table size */
317
318 bit = 1;
319 while (bit < n)
320 bit <<= 1;
321
322 limit = n;
323
324 while (bit > 0) {
325 /*
326 * Find the least number with its lowest set bit in this
327 * position which is greater than or equal to sym.
328 */
329 index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
330
331 if (index < limit) {
332 count -= table[index];
333 limit = index;
334 }
335
336 bit >>= 1;
337 }
338
339 return count;
340}
341
342/*
343 * Single frequency lookup: return the count of symbol `sym'.
344 */
345static int cf_slookup(int *table, int n, int sym)
346{
347 int count, bit;
348
349 assert(0 <= sym && sym < n);
350
351 count = table[sym];
352
353 for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
354 count -= table[sym+bit];
355
356 return count;
357}
358
359/*
360 * Return the largest symbol index such that the cumulative
361 * frequency up to that symbol is less than _or equal to_ count.
362 */
363static int cf_whichsym(int *table, int n, int count) {
364 int bit, sym, top;
365
366 assert(count >= 0 && count < table[0]);
367
368 bit = 1;
369 while (bit < n)
370 bit <<= 1;
371
372 sym = 0;
373 top = table[0];
374
375 while (bit > 0) {
376 if (sym+bit < n) {
377 if (count >= top - table[sym+bit])
378 sym += bit;
379 else
380 top -= table[sym+bit];
381 }
382
383 bit >>= 1;
384 }
385
386 return sym;
387}
388
389/* ----------------------------------------------------------------------
390 * Map generation.
391 *
392 * FIXME: this isn't entirely optimal at present, because it
393 * inherently prioritises growing the largest region since there
394 * are more squares adjacent to it. This acts as a destabilising
395 * influence leading to a few large regions and mostly small ones.
396 * It might be better to do it some other way.
397 */
398
399#define WEIGHT_INCREASED 2 /* for increased perimeter */
400#define WEIGHT_DECREASED 4 /* for decreased perimeter */
401#define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */
402
403/*
404 * Look at a square and decide which colours can be extended into
405 * it.
406 *
407 * If called with index < 0, it adds together one of
408 * WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
409 * colour that has a valid extension (according to the effect that
410 * it would have on the perimeter of the region being extended) and
411 * returns the overall total.
412 *
413 * If called with index >= 0, it returns one of the possible
414 * colours depending on the value of index, in such a way that the
415 * number of possible inputs which would give rise to a given
416 * return value correspond to the weight of that value.
417 */
418static int extend_options(int w, int h, int n, int *map,
419 int x, int y, int index)
420{
421 int c, i, dx, dy;
422 int col[8];
423 int total = 0;
424
425 if (map[y*w+x] >= 0) {
426 assert(index < 0);
427 return 0; /* can't do this square at all */
428 }
429
430 /*
431 * Fetch the eight neighbours of this square, in order around
432 * the square.
433 */
434 for (dy = -1; dy <= +1; dy++)
435 for (dx = -1; dx <= +1; dx++) {
436 int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
437 if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
438 col[index] = map[(y+dy)*w+(x+dx)];
439 else
440 col[index] = -1;
441 }
442
443 /*
444 * Iterate over each colour that might be feasible.
445 *
446 * FIXME: this routine currently has O(n) running time. We
447 * could turn it into O(FOUR) by only bothering to iterate over
448 * the colours mentioned in the four neighbouring squares.
449 */
450
451 for (c = 0; c < n; c++) {
452 int count, neighbours, runs;
453
454 /*
455 * One of the even indices of col (representing the
456 * orthogonal neighbours of this square) must be equal to
457 * c, or else this square is not adjacent to region c and
458 * obviously cannot become an extension of it at this time.
459 */
460 neighbours = 0;
461 for (i = 0; i < 8; i += 2)
462 if (col[i] == c)
463 neighbours++;
464 if (!neighbours)
465 continue;
466
467 /*
468 * Now we know this square is adjacent to region c. The
469 * next question is, would extending it cause the region to
470 * become non-simply-connected? If so, we mustn't do it.
471 *
472 * We determine this by looking around col to see if we can
473 * find more than one separate run of colour c.
474 */
475 runs = 0;
476 for (i = 0; i < 8; i++)
477 if (col[i] == c && col[(i+1) & 7] != c)
478 runs++;
479 if (runs > 1)
480 continue;
481
482 assert(runs == 1);
483
484 /*
485 * This square is a possibility. Determine its effect on
486 * the region's perimeter (computed from the number of
487 * orthogonal neighbours - 1 means a perimeter increase, 3
488 * a decrease, 2 no change; 4 is impossible because the
489 * region would already not be simply connected) and we're
490 * done.
491 */
492 assert(neighbours > 0 && neighbours < 4);
493 count = (neighbours == 1 ? WEIGHT_INCREASED :
494 neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
495
496 total += count;
497 if (index >= 0 && index < count)
498 return c;
499 else
500 index -= count;
501 }
502
503 assert(index < 0);
504
505 return total;
506}
507
508static void genmap(int w, int h, int n, int *map, random_state *rs)
509{
510 int wh = w*h;
511 int x, y, i, k;
512 int *tmp;
513
514 assert(n <= wh);
515 tmp = snewn(wh, int);
516
517 /*
518 * Clear the map, and set up `tmp' as a list of grid indices.
519 */
520 for (i = 0; i < wh; i++) {
521 map[i] = -1;
522 tmp[i] = i;
523 }
524
525 /*
526 * Place the region seeds by selecting n members from `tmp'.
527 */
528 k = wh;
529 for (i = 0; i < n; i++) {
530 int j = random_upto(rs, k);
531 map[tmp[j]] = i;
532 tmp[j] = tmp[--k];
533 }
534
535 /*
536 * Re-initialise `tmp' as a cumulative frequency table. This
537 * will store the number of possible region colours we can
538 * extend into each square.
539 */
540 cf_init(tmp, wh);
541
542 /*
543 * Go through the grid and set up the initial cumulative
544 * frequencies.
545 */
546 for (y = 0; y < h; y++)
547 for (x = 0; x < w; x++)
548 cf_add(tmp, wh, y*w+x,
549 extend_options(w, h, n, map, x, y, -1));
550
551 /*
552 * Now repeatedly choose a square we can extend a region into,
553 * and do so.
554 */
555 while (tmp[0] > 0) {
556 int k = random_upto(rs, tmp[0]);
557 int sq;
558 int colour;
559 int xx, yy;
560
561 sq = cf_whichsym(tmp, wh, k);
562 k -= cf_clookup(tmp, wh, sq);
563 x = sq % w;
564 y = sq / w;
565 colour = extend_options(w, h, n, map, x, y, k);
566
567 map[sq] = colour;
568
569 /*
570 * Re-scan the nine cells around the one we've just
571 * modified.
572 */
573 for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
574 for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
575 cf_add(tmp, wh, yy*w+xx,
576 -cf_slookup(tmp, wh, yy*w+xx) +
577 extend_options(w, h, n, map, xx, yy, -1));
578 }
579 }
580
581 /*
582 * Finally, go through and normalise the region labels into
583 * order, meaning that indistinguishable maps are actually
584 * identical.
585 */
586 for (i = 0; i < n; i++)
587 tmp[i] = -1;
588 k = 0;
589 for (i = 0; i < wh; i++) {
590 assert(map[i] >= 0);
591 if (tmp[map[i]] < 0)
592 tmp[map[i]] = k++;
593 map[i] = tmp[map[i]];
594 }
595
596 sfree(tmp);
597}
598
599/* ----------------------------------------------------------------------
600 * Functions to handle graphs.
601 */
602
603/*
604 * Having got a map in a square grid, convert it into a graph
605 * representation.
606 */
607static int gengraph(int w, int h, int n, int *map, int *graph)
608{
609 int i, j, x, y;
610
611 /*
612 * Start by setting the graph up as an adjacency matrix. We'll
613 * turn it into a list later.
614 */
615 for (i = 0; i < n*n; i++)
616 graph[i] = 0;
617
618 /*
619 * Iterate over the map looking for all adjacencies.
620 */
621 for (y = 0; y < h; y++)
622 for (x = 0; x < w; x++) {
623 int v, vx, vy;
624 v = map[y*w+x];
625 if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
626 graph[v*n+vx] = graph[vx*n+v] = 1;
627 if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
628 graph[v*n+vy] = graph[vy*n+v] = 1;
629 }
630
631 /*
632 * Turn the matrix into a list.
633 */
634 for (i = j = 0; i < n*n; i++)
635 if (graph[i])
636 graph[j++] = i;
637
638 return j;
639}
640
756a9f15 641static int graph_edge_index(int *graph, int n, int ngraph, int i, int j)
c51c7de6 642{
643 int v = i*n+j;
644 int top, bot, mid;
645
646 bot = -1;
647 top = ngraph;
648 while (top - bot > 1) {
649 mid = (top + bot) / 2;
650 if (graph[mid] == v)
756a9f15 651 return mid;
c51c7de6 652 else if (graph[mid] < v)
653 bot = mid;
654 else
655 top = mid;
656 }
756a9f15 657 return -1;
c51c7de6 658}
659
756a9f15 660#define graph_adjacent(graph, n, ngraph, i, j) \
661 (graph_edge_index((graph), (n), (ngraph), (i), (j)) >= 0)
662
c51c7de6 663static int graph_vertex_start(int *graph, int n, int ngraph, int i)
664{
665 int v = i*n;
666 int top, bot, mid;
667
668 bot = -1;
669 top = ngraph;
670 while (top - bot > 1) {
671 mid = (top + bot) / 2;
672 if (graph[mid] < v)
673 bot = mid;
674 else
675 top = mid;
676 }
677 return top;
678}
679
680/* ----------------------------------------------------------------------
681 * Generate a four-colouring of a graph.
682 *
683 * FIXME: it would be nice if we could convert this recursion into
684 * pseudo-recursion using some sort of explicit stack array, for
685 * the sake of the Palm port and its limited stack.
686 */
687
688static int fourcolour_recurse(int *graph, int n, int ngraph,
689 int *colouring, int *scratch, random_state *rs)
690{
691 int nfree, nvert, start, i, j, k, c, ci;
692 int cs[FOUR];
693
694 /*
695 * Find the smallest number of free colours in any uncoloured
696 * vertex, and count the number of such vertices.
697 */
698
699 nfree = FIVE; /* start off bigger than FOUR! */
700 nvert = 0;
701 for (i = 0; i < n; i++)
702 if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
703 if (nfree > scratch[i*FIVE+FOUR]) {
704 nfree = scratch[i*FIVE+FOUR];
705 nvert = 0;
706 }
707 nvert++;
708 }
709
710 /*
711 * If there aren't any uncoloured vertices at all, we're done.
712 */
713 if (nvert == 0)
714 return TRUE; /* we've got a colouring! */
715
716 /*
717 * Pick a random vertex in that set.
718 */
719 j = random_upto(rs, nvert);
720 for (i = 0; i < n; i++)
721 if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
722 if (j-- == 0)
723 break;
724 assert(i < n);
725 start = graph_vertex_start(graph, n, ngraph, i);
726
727 /*
728 * Loop over the possible colours for i, and recurse for each
729 * one.
730 */
731 ci = 0;
732 for (c = 0; c < FOUR; c++)
733 if (scratch[i*FIVE+c] == 0)
734 cs[ci++] = c;
735 shuffle(cs, ci, sizeof(*cs), rs);
736
737 while (ci-- > 0) {
738 c = cs[ci];
739
740 /*
741 * Fill in this colour.
742 */
743 colouring[i] = c;
744
745 /*
746 * Update the scratch space to reflect a new neighbour
747 * of this colour for each neighbour of vertex i.
748 */
749 for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
750 k = graph[j] - i*n;
751 if (scratch[k*FIVE+c] == 0)
752 scratch[k*FIVE+FOUR]--;
753 scratch[k*FIVE+c]++;
754 }
755
756 /*
757 * Recurse.
758 */
759 if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
760 return TRUE; /* got one! */
761
762 /*
763 * If that didn't work, clean up and try again with a
764 * different colour.
765 */
766 for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
767 k = graph[j] - i*n;
768 scratch[k*FIVE+c]--;
769 if (scratch[k*FIVE+c] == 0)
770 scratch[k*FIVE+FOUR]++;
771 }
772 colouring[i] = -1;
773 }
774
775 /*
776 * If we reach here, we were unable to find a colouring at all.
777 * (This doesn't necessarily mean the Four Colour Theorem is
778 * violated; it might just mean we've gone down a dead end and
779 * need to back up and look somewhere else. It's only an FCT
780 * violation if we get all the way back up to the top level and
781 * still fail.)
782 */
783 return FALSE;
784}
785
786static void fourcolour(int *graph, int n, int ngraph, int *colouring,
787 random_state *rs)
788{
789 int *scratch;
790 int i;
791
792 /*
793 * For each vertex and each colour, we store the number of
794 * neighbours that have that colour. Also, we store the number
795 * of free colours for the vertex.
796 */
797 scratch = snewn(n * FIVE, int);
798 for (i = 0; i < n * FIVE; i++)
799 scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
800
801 /*
802 * Clear the colouring to start with.
803 */
804 for (i = 0; i < n; i++)
805 colouring[i] = -1;
806
807 i = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
808 assert(i); /* by the Four Colour Theorem :-) */
809
810 sfree(scratch);
811}
812
813/* ----------------------------------------------------------------------
814 * Non-recursive solver.
815 */
816
817struct solver_scratch {
818 unsigned char *possible; /* bitmap of colours for each region */
870306c0 819
c51c7de6 820 int *graph;
870306c0 821 int n;
822 int ngraph;
823
1cdd1306 824 int *bfsqueue;
825 int *bfscolour;
e857e161 826#ifdef SOLVER_DIAGNOSTICS
827 int *bfsprev;
828#endif
870306c0 829
b3728d72 830 int depth;
c51c7de6 831};
832
833static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
834{
835 struct solver_scratch *sc;
836
837 sc = snew(struct solver_scratch);
838 sc->graph = graph;
839 sc->n = n;
840 sc->ngraph = ngraph;
841 sc->possible = snewn(n, unsigned char);
b3728d72 842 sc->depth = 0;
1cdd1306 843 sc->bfsqueue = snewn(n, int);
844 sc->bfscolour = snewn(n, int);
e857e161 845#ifdef SOLVER_DIAGNOSTICS
846 sc->bfsprev = snewn(n, int);
847#endif
c51c7de6 848
849 return sc;
850}
851
852static void free_scratch(struct solver_scratch *sc)
853{
854 sfree(sc->possible);
1cdd1306 855 sfree(sc->bfsqueue);
856 sfree(sc->bfscolour);
e857e161 857#ifdef SOLVER_DIAGNOSTICS
858 sfree(sc->bfsprev);
859#endif
c51c7de6 860 sfree(sc);
861}
862
1cdd1306 863/*
864 * Count the bits in a word. Only needs to cope with FOUR bits.
865 */
866static int bitcount(int word)
867{
868 assert(FOUR <= 4); /* or this needs changing */
869 word = ((word & 0xA) >> 1) + (word & 0x5);
870 word = ((word & 0xC) >> 2) + (word & 0x3);
871 return word;
872}
873
e857e161 874#ifdef SOLVER_DIAGNOSTICS
875static const char colnames[FOUR] = { 'R', 'Y', 'G', 'B' };
876#endif
877
c51c7de6 878static int place_colour(struct solver_scratch *sc,
e857e161 879 int *colouring, int index, int colour
880#ifdef SOLVER_DIAGNOSTICS
881 , char *verb
882#endif
883 )
c51c7de6 884{
885 int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
886 int j, k;
887
870306c0 888 if (!(sc->possible[index] & (1 << colour))) {
889#ifdef SOLVER_DIAGNOSTICS
890 if (verbose)
891 printf("%*scannot place %c in region %d\n", 2*sc->depth, "",
892 colnames[colour], index);
893#endif
c51c7de6 894 return FALSE; /* can't do it */
870306c0 895 }
c51c7de6 896
897 sc->possible[index] = 1 << colour;
898 colouring[index] = colour;
899
e857e161 900#ifdef SOLVER_DIAGNOSTICS
901 if (verbose)
870306c0 902 printf("%*s%s %c in region %d\n", 2*sc->depth, "",
903 verb, colnames[colour], index);
e857e161 904#endif
905
c51c7de6 906 /*
907 * Rule out this colour from all the region's neighbours.
908 */
909 for (j = graph_vertex_start(graph, n, ngraph, index);
910 j < ngraph && graph[j] < n*(index+1); j++) {
911 k = graph[j] - index*n;
e857e161 912#ifdef SOLVER_DIAGNOSTICS
913 if (verbose && (sc->possible[k] & (1 << colour)))
870306c0 914 printf("%*s ruling out %c in region %d\n", 2*sc->depth, "",
915 colnames[colour], k);
e857e161 916#endif
c51c7de6 917 sc->possible[k] &= ~(1 << colour);
918 }
919
920 return TRUE;
921}
922
e857e161 923#ifdef SOLVER_DIAGNOSTICS
924static char *colourset(char *buf, int set)
925{
926 int i;
927 char *p = buf;
928 char *sep = "";
929
930 for (i = 0; i < FOUR; i++)
931 if (set & (1 << i)) {
932 p += sprintf(p, "%s%c", sep, colnames[i]);
933 sep = ",";
934 }
935
936 return buf;
937}
938#endif
939
c51c7de6 940/*
941 * Returns 0 for impossible, 1 for success, 2 for failure to
942 * converge (i.e. puzzle is either ambiguous or just too
943 * difficult).
944 */
945static int map_solver(struct solver_scratch *sc,
946 int *graph, int n, int ngraph, int *colouring,
947 int difficulty)
948{
949 int i;
950
870306c0 951 if (sc->depth == 0) {
952 /*
953 * Initialise scratch space.
954 */
955 for (i = 0; i < n; i++)
956 sc->possible[i] = (1 << FOUR) - 1;
c51c7de6 957
870306c0 958 /*
959 * Place clues.
960 */
961 for (i = 0; i < n; i++)
962 if (colouring[i] >= 0) {
963 if (!place_colour(sc, colouring, i, colouring[i]
e857e161 964#ifdef SOLVER_DIAGNOSTICS
870306c0 965 , "initial clue:"
e857e161 966#endif
870306c0 967 )) {
968#ifdef SOLVER_DIAGNOSTICS
969 if (verbose)
970 printf("%*sinitial clue set is inconsistent\n",
971 2*sc->depth, "");
972#endif
973 return 0; /* the clues aren't even consistent! */
974 }
975 }
976 }
c51c7de6 977
978 /*
979 * Now repeatedly loop until we find nothing further to do.
980 */
981 while (1) {
982 int done_something = FALSE;
983
984 if (difficulty < DIFF_EASY)
985 break; /* can't do anything at all! */
986
987 /*
988 * Simplest possible deduction: find a region with only one
989 * possible colour.
990 */
991 for (i = 0; i < n; i++) if (colouring[i] < 0) {
992 int p = sc->possible[i];
993
870306c0 994 if (p == 0) {
995#ifdef SOLVER_DIAGNOSTICS
996 if (verbose)
997 printf("%*sregion %d has no possible colours left\n",
998 2*sc->depth, "", i);
999#endif
c51c7de6 1000 return 0; /* puzzle is inconsistent */
870306c0 1001 }
c51c7de6 1002
1003 if ((p & (p-1)) == 0) { /* p is a power of two */
870306c0 1004 int c, ret;
c51c7de6 1005 for (c = 0; c < FOUR; c++)
1006 if (p == (1 << c))
1007 break;
1008 assert(c < FOUR);
870306c0 1009 ret = place_colour(sc, colouring, i, c
e857e161 1010#ifdef SOLVER_DIAGNOSTICS
870306c0 1011 , "placing"
e857e161 1012#endif
870306c0 1013 );
1014 /*
1015 * place_colour() can only fail if colour c was not
1016 * even a _possibility_ for region i, and we're
1017 * pretty sure it was because we checked before
1018 * calling place_colour(). So we can safely assert
1019 * here rather than having to return a nice
1020 * friendly error code.
1021 */
1022 assert(ret);
c51c7de6 1023 done_something = TRUE;
1024 }
1025 }
1026
1027 if (done_something)
1028 continue;
1029
1030 if (difficulty < DIFF_NORMAL)
1031 break; /* can't do anything harder */
1032
1033 /*
1034 * Failing that, go up one level. Look for pairs of regions
1035 * which (a) both have the same pair of possible colours,
1036 * (b) are adjacent to one another, (c) are adjacent to the
1037 * same region, and (d) that region still thinks it has one
1038 * or both of those possible colours.
1039 *
1040 * Simplest way to do this is by going through the graph
1041 * edge by edge, so that we start with property (b) and
1042 * then look for (a) and finally (c) and (d).
1043 */
1044 for (i = 0; i < ngraph; i++) {
1045 int j1 = graph[i] / n, j2 = graph[i] % n;
1046 int j, k, v, v2;
e857e161 1047#ifdef SOLVER_DIAGNOSTICS
1048 int started = FALSE;
1049#endif
c51c7de6 1050
1051 if (j1 > j2)
1052 continue; /* done it already, other way round */
1053
1054 if (colouring[j1] >= 0 || colouring[j2] >= 0)
1055 continue; /* they're not undecided */
1056
1057 if (sc->possible[j1] != sc->possible[j2])
1058 continue; /* they don't have the same possibles */
1059
1060 v = sc->possible[j1];
1061 /*
1062 * See if v contains exactly two set bits.
1063 */
1064 v2 = v & -v; /* find lowest set bit */
1065 v2 = v & ~v2; /* clear it */
1066 if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */
1067 continue;
1068
1069 /*
1070 * We've found regions j1 and j2 satisfying properties
1071 * (a) and (b): they have two possible colours between
1072 * them, and since they're adjacent to one another they
1073 * must use _both_ those colours between them.
1074 * Therefore, if they are both adjacent to any other
1075 * region then that region cannot be either colour.
1076 *
1077 * Go through the neighbours of j1 and see if any are
1078 * shared with j2.
1079 */
1080 for (j = graph_vertex_start(graph, n, ngraph, j1);
1081 j < ngraph && graph[j] < n*(j1+1); j++) {
1082 k = graph[j] - j1*n;
1083 if (graph_adjacent(graph, n, ngraph, k, j2) &&
1084 (sc->possible[k] & v)) {
e857e161 1085#ifdef SOLVER_DIAGNOSTICS
1086 if (verbose) {
1087 char buf[80];
1088 if (!started)
870306c0 1089 printf("%*sadjacent regions %d,%d share colours"
1090 " %s\n", 2*sc->depth, "", j1, j2,
1091 colourset(buf, v));
e857e161 1092 started = TRUE;
870306c0 1093 printf("%*s ruling out %s in region %d\n",2*sc->depth,
1094 "", colourset(buf, sc->possible[k] & v), k);
e857e161 1095 }
1096#endif
c51c7de6 1097 sc->possible[k] &= ~v;
1098 done_something = TRUE;
1099 }
1100 }
1101 }
1102
1cdd1306 1103 if (done_something)
1104 continue;
1105
1106 if (difficulty < DIFF_HARD)
1107 break; /* can't do anything harder */
1108
1109 /*
1110 * Right; now we get creative. Now we're going to look for
1111 * `forcing chains'. A forcing chain is a path through the
1112 * graph with the following properties:
1113 *
1114 * (a) Each vertex on the path has precisely two possible
1115 * colours.
1116 *
1117 * (b) Each pair of vertices which are adjacent on the
1118 * path share at least one possible colour in common.
1119 *
1120 * (c) Each vertex in the middle of the path shares _both_
1121 * of its colours with at least one of its neighbours
1122 * (not the same one with both neighbours).
1123 *
1124 * These together imply that at least one of the possible
1125 * colour choices at one end of the path forces _all_ the
1126 * rest of the colours along the path. In order to make
1127 * real use of this, we need further properties:
1128 *
1129 * (c) Ruling out some colour C from the vertex at one end
1130 * of the path forces the vertex at the other end to
1131 * take colour C.
1132 *
1133 * (d) The two end vertices are mutually adjacent to some
1134 * third vertex.
1135 *
1136 * (e) That third vertex currently has C as a possibility.
1137 *
1138 * If we can find all of that lot, we can deduce that at
1139 * least one of the two ends of the forcing chain has
1140 * colour C, and that therefore the mutually adjacent third
1141 * vertex does not.
1142 *
1143 * To find forcing chains, we're going to start a bfs at
1144 * each suitable vertex of the graph, once for each of its
1145 * two possible colours.
1146 */
1147 for (i = 0; i < n; i++) {
1148 int c;
1149
1150 if (colouring[i] >= 0 || bitcount(sc->possible[i]) != 2)
1151 continue;
1152
1153 for (c = 0; c < FOUR; c++)
1154 if (sc->possible[i] & (1 << c)) {
1155 int j, k, gi, origc, currc, head, tail;
1156 /*
1157 * Try a bfs from this vertex, ruling out
1158 * colour c.
1159 *
1160 * Within this loop, we work in colour bitmaps
1161 * rather than actual colours, because
1162 * converting back and forth is a needless
1163 * computational expense.
1164 */
1165
1166 origc = 1 << c;
1167
e857e161 1168 for (j = 0; j < n; j++) {
1cdd1306 1169 sc->bfscolour[j] = -1;
e857e161 1170#ifdef SOLVER_DIAGNOSTICS
1171 sc->bfsprev[j] = -1;
1172#endif
1173 }
1cdd1306 1174 head = tail = 0;
1175 sc->bfsqueue[tail++] = i;
1176 sc->bfscolour[i] = sc->possible[i] &~ origc;
1177
1178 while (head < tail) {
1179 j = sc->bfsqueue[head++];
1180 currc = sc->bfscolour[j];
1181
1182 /*
1183 * Try neighbours of j.
1184 */
1185 for (gi = graph_vertex_start(graph, n, ngraph, j);
1186 gi < ngraph && graph[gi] < n*(j+1); gi++) {
1187 k = graph[gi] - j*n;
1188
1189 /*
1190 * To continue with the bfs in vertex
1191 * k, we need k to be
1192 * (a) not already visited
1193 * (b) have two possible colours
1194 * (c) those colours include currc.
1195 */
1196
1197 if (sc->bfscolour[k] < 0 &&
1198 colouring[k] < 0 &&
1199 bitcount(sc->possible[k]) == 2 &&
1200 (sc->possible[k] & currc)) {
1201 sc->bfsqueue[tail++] = k;
1202 sc->bfscolour[k] =
1203 sc->possible[k] &~ currc;
e857e161 1204#ifdef SOLVER_DIAGNOSTICS
1205 sc->bfsprev[k] = j;
1206#endif
1cdd1306 1207 }
1208
1209 /*
1210 * One other possibility is that k
1211 * might be the region in which we can
1212 * make a real deduction: if it's
1213 * adjacent to i, contains currc as a
1214 * possibility, and currc is equal to
1215 * the original colour we ruled out.
1216 */
1217 if (currc == origc &&
1218 graph_adjacent(graph, n, ngraph, k, i) &&
1219 (sc->possible[k] & currc)) {
e857e161 1220#ifdef SOLVER_DIAGNOSTICS
1221 if (verbose) {
1222 char buf[80], *sep = "";
1223 int r;
1224
870306c0 1225 printf("%*sforcing chain, colour %s, ",
1226 2*sc->depth, "",
e857e161 1227 colourset(buf, origc));
1228 for (r = j; r != -1; r = sc->bfsprev[r]) {
1229 printf("%s%d", sep, r);
1230 sep = "-";
1231 }
870306c0 1232 printf("\n%*s ruling out %s in region"
1233 " %d\n", 2*sc->depth, "",
e857e161 1234 colourset(buf, origc), k);
1235 }
1236#endif
1cdd1306 1237 sc->possible[k] &= ~origc;
1238 done_something = TRUE;
1239 }
1240 }
1241 }
1242
1243 assert(tail <= n);
1244 }
1245 }
1246
c51c7de6 1247 if (!done_something)
1248 break;
1249 }
1250
1251 /*
b3728d72 1252 * See if we've got a complete solution, and return if so.
c51c7de6 1253 */
1254 for (i = 0; i < n; i++)
1255 if (colouring[i] < 0)
b3728d72 1256 break;
870306c0 1257 if (i == n) {
1258#ifdef SOLVER_DIAGNOSTICS
1259 if (verbose)
1260 printf("%*sone solution found\n", 2*sc->depth, "");
1261#endif
b3728d72 1262 return 1; /* success! */
870306c0 1263 }
c51c7de6 1264
b3728d72 1265 /*
1266 * If recursion is not permissible, we now give up.
1267 */
870306c0 1268 if (difficulty < DIFF_RECURSE) {
1269#ifdef SOLVER_DIAGNOSTICS
1270 if (verbose)
1271 printf("%*sunable to proceed further without recursion\n",
1272 2*sc->depth, "");
1273#endif
b3728d72 1274 return 2; /* unable to complete */
870306c0 1275 }
b3728d72 1276
1277 /*
1278 * Now we've got to do something recursive. So first hunt for a
1279 * currently-most-constrained region.
1280 */
1281 {
1282 int best, bestc;
1283 struct solver_scratch *rsc;
1284 int *subcolouring, *origcolouring;
1285 int ret, subret;
1286 int we_already_got_one;
1287
1288 best = -1;
1289 bestc = FIVE;
1290
1291 for (i = 0; i < n; i++) if (colouring[i] < 0) {
1292 int p = sc->possible[i];
1293 enum { compile_time_assertion = 1 / (FOUR <= 4) };
1294 int c;
1295
1296 /* Count the set bits. */
1297 c = (p & 5) + ((p >> 1) & 5);
1298 c = (c & 3) + ((c >> 2) & 3);
1299 assert(c > 1); /* or colouring[i] would be >= 0 */
1300
1301 if (c < bestc) {
1302 best = i;
1303 bestc = c;
1304 }
1305 }
1306
1307 assert(best >= 0); /* or we'd be solved already */
1308
870306c0 1309#ifdef SOLVER_DIAGNOSTICS
1310 if (verbose)
1311 printf("%*srecursing on region %d\n", 2*sc->depth, "", best);
1312#endif
1313
b3728d72 1314 /*
1315 * Now iterate over the possible colours for this region.
1316 */
1317 rsc = new_scratch(graph, n, ngraph);
1318 rsc->depth = sc->depth + 1;
1319 origcolouring = snewn(n, int);
1320 memcpy(origcolouring, colouring, n * sizeof(int));
1321 subcolouring = snewn(n, int);
1322 we_already_got_one = FALSE;
1323 ret = 0;
1324
1325 for (i = 0; i < FOUR; i++) {
1326 if (!(sc->possible[best] & (1 << i)))
1327 continue;
1328
870306c0 1329 memcpy(rsc->possible, sc->possible, n);
b3728d72 1330 memcpy(subcolouring, origcolouring, n * sizeof(int));
870306c0 1331
1332 place_colour(rsc, subcolouring, best, i
1333#ifdef SOLVER_DIAGNOSTICS
1334 , "trying"
1335#endif
1336 );
1337
b3728d72 1338 subret = map_solver(rsc, graph, n, ngraph,
1339 subcolouring, difficulty);
1340
870306c0 1341#ifdef SOLVER_DIAGNOSTICS
1342 if (verbose) {
1343 printf("%*sretracting %c in region %d; found %s\n",
1344 2*sc->depth, "", colnames[i], best,
1345 subret == 0 ? "no solutions" :
1346 subret == 1 ? "one solution" : "multiple solutions");
1347 }
1348#endif
1349
b3728d72 1350 /*
1351 * If this possibility turned up more than one valid
1352 * solution, or if it turned up one and we already had
1353 * one, we're definitely ambiguous.
1354 */
1355 if (subret == 2 || (subret == 1 && we_already_got_one)) {
1356 ret = 2;
1357 break;
1358 }
1359
1360 /*
1361 * If this possibility turned up one valid solution and
1362 * it's the first we've seen, copy it into the output.
1363 */
1364 if (subret == 1) {
1365 memcpy(colouring, subcolouring, n * sizeof(int));
1366 we_already_got_one = TRUE;
1367 ret = 1;
1368 }
1369
1370 /*
1371 * Otherwise, this guess led to a contradiction, so we
1372 * do nothing.
1373 */
1374 }
1375
9a6d429a 1376 sfree(origcolouring);
b3728d72 1377 sfree(subcolouring);
1378 free_scratch(rsc);
1379
870306c0 1380#ifdef SOLVER_DIAGNOSTICS
1381 if (verbose && sc->depth == 0) {
1382 printf("%*s%s found\n",
1383 2*sc->depth, "",
1384 ret == 0 ? "no solutions" :
1385 ret == 1 ? "one solution" : "multiple solutions");
1386 }
1387#endif
b3728d72 1388 return ret;
1389 }
c51c7de6 1390}
1391
1392/* ----------------------------------------------------------------------
1393 * Game generation main function.
1394 */
1395
1396static char *new_game_desc(game_params *params, random_state *rs,
1397 char **aux, int interactive)
1398{
e5de700f 1399 struct solver_scratch *sc = NULL;
c51c7de6 1400 int *map, *graph, ngraph, *colouring, *colouring2, *regions;
1401 int i, j, w, h, n, solveret, cfreq[FOUR];
1402 int wh;
1403 int mindiff, tries;
1404#ifdef GENERATION_DIAGNOSTICS
1405 int x, y;
1406#endif
1407 char *ret, buf[80];
1408 int retlen, retsize;
1409
1410 w = params->w;
1411 h = params->h;
1412 n = params->n;
1413 wh = w*h;
1414
1415 *aux = NULL;
1416
1417 map = snewn(wh, int);
1418 graph = snewn(n*n, int);
1419 colouring = snewn(n, int);
1420 colouring2 = snewn(n, int);
1421 regions = snewn(n, int);
1422
1423 /*
1424 * This is the minimum difficulty below which we'll completely
1425 * reject a map design. Normally we set this to one below the
1426 * requested difficulty, ensuring that we have the right
1427 * result. However, for particularly dense maps or maps with
1428 * particularly few regions it might not be possible to get the
1429 * desired difficulty, so we will eventually drop this down to
1430 * -1 to indicate that any old map will do.
1431 */
1432 mindiff = params->diff;
1433 tries = 50;
1434
1435 while (1) {
1436
1437 /*
1438 * Create the map.
1439 */
1440 genmap(w, h, n, map, rs);
1441
1442#ifdef GENERATION_DIAGNOSTICS
1443 for (y = 0; y < h; y++) {
1444 for (x = 0; x < w; x++) {
1445 int v = map[y*w+x];
1446 if (v >= 62)
1447 putchar('!');
1448 else if (v >= 36)
1449 putchar('a' + v-36);
1450 else if (v >= 10)
1451 putchar('A' + v-10);
1452 else
1453 putchar('0' + v);
1454 }
1455 putchar('\n');
1456 }
1457#endif
1458
1459 /*
1460 * Convert the map into a graph.
1461 */
1462 ngraph = gengraph(w, h, n, map, graph);
1463
1464#ifdef GENERATION_DIAGNOSTICS
1465 for (i = 0; i < ngraph; i++)
1466 printf("%d-%d\n", graph[i]/n, graph[i]%n);
1467#endif
1468
1469 /*
1470 * Colour the map.
1471 */
1472 fourcolour(graph, n, ngraph, colouring, rs);
1473
1474#ifdef GENERATION_DIAGNOSTICS
1475 for (i = 0; i < n; i++)
1476 printf("%d: %d\n", i, colouring[i]);
1477
1478 for (y = 0; y < h; y++) {
1479 for (x = 0; x < w; x++) {
1480 int v = colouring[map[y*w+x]];
1481 if (v >= 36)
1482 putchar('a' + v-36);
1483 else if (v >= 10)
1484 putchar('A' + v-10);
1485 else
1486 putchar('0' + v);
1487 }
1488 putchar('\n');
1489 }
1490#endif
1491
1492 /*
1493 * Encode the solution as an aux string.
1494 */
1495 if (*aux) /* in case we've come round again */
1496 sfree(*aux);
1497 retlen = retsize = 0;
1498 ret = NULL;
1499 for (i = 0; i < n; i++) {
1500 int len;
1501
1502 if (colouring[i] < 0)
1503 continue;
1504
1505 len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
1506 if (retlen + len >= retsize) {
1507 retsize = retlen + len + 256;
1508 ret = sresize(ret, retsize, char);
1509 }
1510 strcpy(ret + retlen, buf);
1511 retlen += len;
1512 }
1513 *aux = ret;
1514
1515 /*
1516 * Remove the region colours one by one, keeping
1517 * solubility. Also ensure that there always remains at
1518 * least one region of every colour, so that the user can
1519 * drag from somewhere.
1520 */
1521 for (i = 0; i < FOUR; i++)
1522 cfreq[i] = 0;
1523 for (i = 0; i < n; i++) {
1524 regions[i] = i;
1525 cfreq[colouring[i]]++;
1526 }
1527 for (i = 0; i < FOUR; i++)
1528 if (cfreq[i] == 0)
1529 continue;
1530
1531 shuffle(regions, n, sizeof(*regions), rs);
1532
e5de700f 1533 if (sc) free_scratch(sc);
c51c7de6 1534 sc = new_scratch(graph, n, ngraph);
1535
1536 for (i = 0; i < n; i++) {
1537 j = regions[i];
1538
1539 if (cfreq[colouring[j]] == 1)
1540 continue; /* can't remove last region of colour */
1541
1542 memcpy(colouring2, colouring, n*sizeof(int));
1543 colouring2[j] = -1;
1544 solveret = map_solver(sc, graph, n, ngraph, colouring2,
1545 params->diff);
1546 assert(solveret >= 0); /* mustn't be impossible! */
1547 if (solveret == 1) {
1548 cfreq[colouring[j]]--;
1549 colouring[j] = -1;
1550 }
1551 }
1552
1553#ifdef GENERATION_DIAGNOSTICS
1554 for (i = 0; i < n; i++)
1555 if (colouring[i] >= 0) {
1556 if (i >= 62)
1557 putchar('!');
1558 else if (i >= 36)
1559 putchar('a' + i-36);
1560 else if (i >= 10)
1561 putchar('A' + i-10);
1562 else
1563 putchar('0' + i);
1564 printf(": %d\n", colouring[i]);
1565 }
1566#endif
1567
1568 /*
1569 * Finally, check that the puzzle is _at least_ as hard as
1570 * required, and indeed that it isn't already solved.
1571 * (Calling map_solver with negative difficulty ensures the
f65ec50c 1572 * latter - if a solver which _does nothing_ can solve it,
1573 * it's too easy!)
c51c7de6 1574 */
1575 memcpy(colouring2, colouring, n*sizeof(int));
1576 if (map_solver(sc, graph, n, ngraph, colouring2,
1577 mindiff - 1) == 1) {
1578 /*
1579 * Drop minimum difficulty if necessary.
1580 */
5008dea0 1581 if (mindiff > 0 && (n < 9 || n > 2*wh/3)) {
c51c7de6 1582 if (tries-- <= 0)
1583 mindiff = 0; /* give up and go for Easy */
1584 }
1585 continue;
1586 }
1587
1588 break;
1589 }
1590
1591 /*
1592 * Encode as a game ID. We do this by:
1593 *
1594 * - first going along the horizontal edges row by row, and
1595 * then the vertical edges column by column
1596 * - encoding the lengths of runs of edges and runs of
1597 * non-edges
1598 * - the decoder will reconstitute the region boundaries from
1599 * this and automatically number them the same way we did
1600 * - then we encode the initial region colours in a Slant-like
1601 * fashion (digits 0-3 interspersed with letters giving
1602 * lengths of runs of empty spaces).
1603 */
1604 retlen = retsize = 0;
1605 ret = NULL;
1606
1607 {
1608 int run, pv;
1609
1610 /*
1611 * Start with a notional non-edge, so that there'll be an
1612 * explicit `a' to distinguish the case where we start with
1613 * an edge.
1614 */
1615 run = 1;
1616 pv = 0;
1617
1618 for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
1619 int x, y, dx, dy, v;
1620
1621 if (i < w*(h-1)) {
1622 /* Horizontal edge. */
1623 y = i / w;
1624 x = i % w;
1625 dx = 0;
1626 dy = 1;
1627 } else {
1628 /* Vertical edge. */
1629 x = (i - w*(h-1)) / h;
1630 y = (i - w*(h-1)) % h;
1631 dx = 1;
1632 dy = 0;
1633 }
1634
1635 if (retlen + 10 >= retsize) {
1636 retsize = retlen + 256;
1637 ret = sresize(ret, retsize, char);
1638 }
1639
1640 v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
1641
1642 if (pv != v) {
1643 ret[retlen++] = 'a'-1 + run;
1644 run = 1;
1645 pv = v;
1646 } else {
1647 /*
1648 * 'z' is a special case in this encoding. Rather
1649 * than meaning a run of 26 and a state switch, it
1650 * means a run of 25 and _no_ state switch, because
1651 * otherwise there'd be no way to encode runs of
1652 * more than 26.
1653 */
1654 if (run == 25) {
1655 ret[retlen++] = 'z';
1656 run = 0;
1657 }
1658 run++;
1659 }
1660 }
1661
1662 ret[retlen++] = 'a'-1 + run;
1663 ret[retlen++] = ',';
1664
1665 run = 0;
1666 for (i = 0; i < n; i++) {
1667 if (retlen + 10 >= retsize) {
1668 retsize = retlen + 256;
1669 ret = sresize(ret, retsize, char);
1670 }
1671
1672 if (colouring[i] < 0) {
1673 /*
1674 * In _this_ encoding, 'z' is a run of 26, since
1675 * there's no implicit state switch after each run.
1676 * Confusingly different, but more compact.
1677 */
1678 if (run == 26) {
1679 ret[retlen++] = 'z';
1680 run = 0;
1681 }
1682 run++;
1683 } else {
1684 if (run > 0)
1685 ret[retlen++] = 'a'-1 + run;
1686 ret[retlen++] = '0' + colouring[i];
1687 run = 0;
1688 }
1689 }
1690 if (run > 0)
1691 ret[retlen++] = 'a'-1 + run;
1692 ret[retlen] = '\0';
1693
1694 assert(retlen < retsize);
1695 }
1696
1697 free_scratch(sc);
1698 sfree(regions);
1699 sfree(colouring2);
1700 sfree(colouring);
1701 sfree(graph);
1702 sfree(map);
1703
1704 return ret;
1705}
1706
1707static char *parse_edge_list(game_params *params, char **desc, int *map)
1708{
1709 int w = params->w, h = params->h, wh = w*h, n = params->n;
1710 int i, k, pos, state;
1711 char *p = *desc;
1712
cd28b679 1713 dsf_init(map+wh, wh);
c51c7de6 1714
1715 pos = -1;
1716 state = 0;
1717
1718 /*
1719 * Parse the game description to get the list of edges, and
1720 * build up a disjoint set forest as we go (by identifying
1721 * pairs of squares whenever the edge list shows a non-edge).
1722 */
1723 while (*p && *p != ',') {
1724 if (*p < 'a' || *p > 'z')
1725 return "Unexpected character in edge list";
1726 if (*p == 'z')
1727 k = 25;
1728 else
1729 k = *p - 'a' + 1;
1730 while (k-- > 0) {
1731 int x, y, dx, dy;
1732
1733 if (pos < 0) {
1734 pos++;
1735 continue;
1736 } else if (pos < w*(h-1)) {
1737 /* Horizontal edge. */
1738 y = pos / w;
1739 x = pos % w;
1740 dx = 0;
1741 dy = 1;
1742 } else if (pos < 2*wh-w-h) {
1743 /* Vertical edge. */
1744 x = (pos - w*(h-1)) / h;
1745 y = (pos - w*(h-1)) % h;
1746 dx = 1;
1747 dy = 0;
1748 } else
1749 return "Too much data in edge list";
1750 if (!state)
1751 dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
1752
1753 pos++;
1754 }
1755 if (*p != 'z')
1756 state = !state;
1757 p++;
1758 }
1759 assert(pos <= 2*wh-w-h);
1760 if (pos < 2*wh-w-h)
1761 return "Too little data in edge list";
1762
1763 /*
1764 * Now go through again and allocate region numbers.
1765 */
1766 pos = 0;
1767 for (i = 0; i < wh; i++)
1768 map[i] = -1;
1769 for (i = 0; i < wh; i++) {
1770 k = dsf_canonify(map+wh, i);
1771 if (map[k] < 0)
1772 map[k] = pos++;
1773 map[i] = map[k];
1774 }
1775 if (pos != n)
1776 return "Edge list defines the wrong number of regions";
1777
1778 *desc = p;
1779
1780 return NULL;
1781}
1782
1783static char *validate_desc(game_params *params, char *desc)
1784{
1785 int w = params->w, h = params->h, wh = w*h, n = params->n;
1786 int area;
1787 int *map;
1788 char *ret;
1789
1790 map = snewn(2*wh, int);
1791 ret = parse_edge_list(params, &desc, map);
9a6d429a 1792 sfree(map);
c51c7de6 1793 if (ret)
1794 return ret;
c51c7de6 1795
1796 if (*desc != ',')
1797 return "Expected comma before clue list";
1798 desc++; /* eat comma */
1799
1800 area = 0;
1801 while (*desc) {
1802 if (*desc >= '0' && *desc < '0'+FOUR)
1803 area++;
1804 else if (*desc >= 'a' && *desc <= 'z')
1805 area += *desc - 'a' + 1;
1806 else
1807 return "Unexpected character in clue list";
1808 desc++;
1809 }
1810 if (area < n)
1811 return "Too little data in clue list";
1812 else if (area > n)
1813 return "Too much data in clue list";
1814
1815 return NULL;
1816}
1817
dafd6cf6 1818static game_state *new_game(midend *me, game_params *params, char *desc)
c51c7de6 1819{
1820 int w = params->w, h = params->h, wh = w*h, n = params->n;
1821 int i, pos;
1822 char *p;
1823 game_state *state = snew(game_state);
1824
1825 state->p = *params;
1826 state->colouring = snewn(n, int);
1827 for (i = 0; i < n; i++)
1828 state->colouring[i] = -1;
1cdd1306 1829 state->pencil = snewn(n, int);
1830 for (i = 0; i < n; i++)
1831 state->pencil[i] = 0;
c51c7de6 1832
1833 state->completed = state->cheated = FALSE;
1834
1835 state->map = snew(struct map);
1836 state->map->refcount = 1;
1837 state->map->map = snewn(wh*4, int);
1838 state->map->graph = snewn(n*n, int);
1839 state->map->n = n;
1840 state->map->immutable = snewn(n, int);
1841 for (i = 0; i < n; i++)
1842 state->map->immutable[i] = FALSE;
1843
1844 p = desc;
1845
1846 {
1847 char *ret;
1848 ret = parse_edge_list(params, &p, state->map->map);
1849 assert(!ret);
1850 }
1851
1852 /*
1853 * Set up the other three quadrants in `map'.
1854 */
1855 for (i = wh; i < 4*wh; i++)
1856 state->map->map[i] = state->map->map[i % wh];
1857
1858 assert(*p == ',');
1859 p++;
1860
1861 /*
1862 * Now process the clue list.
1863 */
1864 pos = 0;
1865 while (*p) {
1866 if (*p >= '0' && *p < '0'+FOUR) {
1867 state->colouring[pos] = *p - '0';
1868 state->map->immutable[pos] = TRUE;
1869 pos++;
1870 } else {
1871 assert(*p >= 'a' && *p <= 'z');
1872 pos += *p - 'a' + 1;
1873 }
1874 p++;
1875 }
1876 assert(pos == n);
1877
1878 state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
1879
1880 /*
1881 * Attempt to smooth out some of the more jagged region
1882 * outlines by the judicious use of diagonally divided squares.
1883 */
1884 {
1fbb0680 1885 random_state *rs = random_new(desc, strlen(desc));
c51c7de6 1886 int *squares = snewn(wh, int);
1887 int done_something;
1888
1889 for (i = 0; i < wh; i++)
1890 squares[i] = i;
1891 shuffle(squares, wh, sizeof(*squares), rs);
1892
1893 do {
1894 done_something = FALSE;
1895 for (i = 0; i < wh; i++) {
1896 int y = squares[i] / w, x = squares[i] % w;
1897 int c = state->map->map[y*w+x];
1898 int tc, bc, lc, rc;
1899
1900 if (x == 0 || x == w-1 || y == 0 || y == h-1)
1901 continue;
1902
1903 if (state->map->map[TE * wh + y*w+x] !=
1904 state->map->map[BE * wh + y*w+x])
1905 continue;
1906
1907 tc = state->map->map[BE * wh + (y-1)*w+x];
1908 bc = state->map->map[TE * wh + (y+1)*w+x];
1909 lc = state->map->map[RE * wh + y*w+(x-1)];
1910 rc = state->map->map[LE * wh + y*w+(x+1)];
1911
1912 /*
1913 * If this square is adjacent on two sides to one
1914 * region and on the other two sides to the other
1915 * region, and is itself one of the two regions, we can
1916 * adjust it so that it's a diagonal.
1917 */
1918 if (tc != bc && (tc == c || bc == c)) {
1919 if ((lc == tc && rc == bc) ||
1920 (lc == bc && rc == tc)) {
1921 state->map->map[TE * wh + y*w+x] = tc;
1922 state->map->map[BE * wh + y*w+x] = bc;
1923 state->map->map[LE * wh + y*w+x] = lc;
1924 state->map->map[RE * wh + y*w+x] = rc;
1925 done_something = TRUE;
1926 }
1927 }
1928 }
1929 } while (done_something);
1930 sfree(squares);
1931 random_free(rs);
1932 }
1933
756a9f15 1934 /*
1935 * Analyse the map to find a canonical line segment
e857e161 1936 * corresponding to each edge, and a canonical point
1937 * corresponding to each region. The former are where we'll
1938 * eventually put error markers; the latter are where we'll put
1939 * per-region flags such as numbers (when in diagnostic mode).
756a9f15 1940 */
1941 {
1942 int *bestx, *besty, *an, pass;
1943 float *ax, *ay, *best;
1944
e857e161 1945 ax = snewn(state->map->ngraph + n, float);
1946 ay = snewn(state->map->ngraph + n, float);
1947 an = snewn(state->map->ngraph + n, int);
1948 bestx = snewn(state->map->ngraph + n, int);
1949 besty = snewn(state->map->ngraph + n, int);
1950 best = snewn(state->map->ngraph + n, float);
756a9f15 1951
e857e161 1952 for (i = 0; i < state->map->ngraph + n; i++) {
756a9f15 1953 bestx[i] = besty[i] = -1;
90ee6a20 1954 best[i] = (float)(2*(w+h)+1);
756a9f15 1955 ax[i] = ay[i] = 0.0F;
1956 an[i] = 0;
1957 }
1958
1959 /*
1960 * We make two passes over the map, finding all the line
e857e161 1961 * segments separating regions and all the suitable points
1962 * within regions. In the first pass, we compute the
1963 * _average_ x and y coordinate of all the points in a
1964 * given class; in the second pass, for each such average
1965 * point, we find the candidate closest to it and call that
1966 * canonical.
756a9f15 1967 *
1968 * Line segments are considered to have coordinates in
1969 * their centre. Thus, at least one coordinate for any line
1970 * segment is always something-and-a-half; so we store our
1971 * coordinates as twice their normal value.
1972 */
1973 for (pass = 0; pass < 2; pass++) {
1974 int x, y;
1975
1976 for (y = 0; y < h; y++)
1977 for (x = 0; x < w; x++) {
e6a5b1b7 1978 int ex[4], ey[4], ea[4], eb[4], en = 0;
756a9f15 1979
1980 /*
1981 * Look for an edge to the right of this
1982 * square, an edge below it, and an edge in the
e6a5b1b7 1983 * middle of it. Also look to see if the point
1984 * at the bottom right of this square is on an
1985 * edge (and isn't a place where more than two
1986 * regions meet).
756a9f15 1987 */
1988 if (x+1 < w) {
1989 /* right edge */
1990 ea[en] = state->map->map[RE * wh + y*w+x];
1991 eb[en] = state->map->map[LE * wh + y*w+(x+1)];
e857e161 1992 ex[en] = (x+1)*2;
1993 ey[en] = y*2+1;
1994 en++;
756a9f15 1995 }
1996 if (y+1 < h) {
1997 /* bottom edge */
1998 ea[en] = state->map->map[BE * wh + y*w+x];
1999 eb[en] = state->map->map[TE * wh + (y+1)*w+x];
e857e161 2000 ex[en] = x*2+1;
2001 ey[en] = (y+1)*2;
2002 en++;
756a9f15 2003 }
2004 /* diagonal edge */
2005 ea[en] = state->map->map[TE * wh + y*w+x];
2006 eb[en] = state->map->map[BE * wh + y*w+x];
e857e161 2007 ex[en] = x*2+1;
2008 ey[en] = y*2+1;
2009 en++;
2010
e6a5b1b7 2011 if (x+1 < w && y+1 < h) {
2012 /* bottom right corner */
2013 int oct[8], othercol, nchanges;
2014 oct[0] = state->map->map[RE * wh + y*w+x];
2015 oct[1] = state->map->map[LE * wh + y*w+(x+1)];
2016 oct[2] = state->map->map[BE * wh + y*w+(x+1)];
2017 oct[3] = state->map->map[TE * wh + (y+1)*w+(x+1)];
2018 oct[4] = state->map->map[LE * wh + (y+1)*w+(x+1)];
2019 oct[5] = state->map->map[RE * wh + (y+1)*w+x];
2020 oct[6] = state->map->map[TE * wh + (y+1)*w+x];
2021 oct[7] = state->map->map[BE * wh + y*w+x];
2022
2023 othercol = -1;
2024 nchanges = 0;
2025 for (i = 0; i < 8; i++) {
2026 if (oct[i] != oct[0]) {
2027 if (othercol < 0)
2028 othercol = oct[i];
2029 else if (othercol != oct[i])
2030 break; /* three colours at this point */
2031 }
2032 if (oct[i] != oct[(i+1) & 7])
2033 nchanges++;
2034 }
2035
2036 /*
2037 * Now if there are exactly two regions at
2038 * this point (not one, and not three or
2039 * more), and only two changes around the
2040 * loop, then this is a valid place to put
2041 * an error marker.
2042 */
2043 if (i == 8 && othercol >= 0 && nchanges == 2) {
2044 ea[en] = oct[0];
2045 eb[en] = othercol;
2046 ex[en] = (x+1)*2;
2047 ey[en] = (y+1)*2;
2048 en++;
2049 }
e857e161 2050
2051 /*
2052 * If there's exactly _one_ region at this
2053 * point, on the other hand, it's a valid
2054 * place to put a region centre.
2055 */
2056 if (othercol < 0) {
2057 ea[en] = eb[en] = oct[0];
2058 ex[en] = (x+1)*2;
2059 ey[en] = (y+1)*2;
2060 en++;
2061 }
e6a5b1b7 2062 }
756a9f15 2063
2064 /*
e857e161 2065 * Now process the points we've found, one by
756a9f15 2066 * one.
2067 */
2068 for (i = 0; i < en; i++) {
2069 int emin = min(ea[i], eb[i]);
2070 int emax = max(ea[i], eb[i]);
e857e161 2071 int gindex;
2072
2073 if (emin != emax) {
2074 /* Graph edge */
2075 gindex =
2076 graph_edge_index(state->map->graph, n,
2077 state->map->ngraph, emin,
2078 emax);
2079 } else {
2080 /* Region number */
2081 gindex = state->map->ngraph + emin;
2082 }
756a9f15 2083
2084 assert(gindex >= 0);
2085
2086 if (pass == 0) {
2087 /*
2088 * In pass 0, accumulate the values
2089 * we'll use to compute the average
2090 * positions.
2091 */
2092 ax[gindex] += ex[i];
2093 ay[gindex] += ey[i];
90ee6a20 2094 an[gindex] += 1;
756a9f15 2095 } else {
2096 /*
2097 * In pass 1, work out whether this
2098 * point is closer to the average than
2099 * the last one we've seen.
2100 */
2101 float dx, dy, d;
2102
2103 assert(an[gindex] > 0);
2104 dx = ex[i] - ax[gindex];
2105 dy = ey[i] - ay[gindex];
90ee6a20 2106 d = (float)sqrt(dx*dx + dy*dy);
756a9f15 2107 if (d < best[gindex]) {
2108 best[gindex] = d;
2109 bestx[gindex] = ex[i];
2110 besty[gindex] = ey[i];
2111 }
2112 }
2113 }
2114 }
2115
2116 if (pass == 0) {
e857e161 2117 for (i = 0; i < state->map->ngraph + n; i++)
756a9f15 2118 if (an[i] > 0) {
2119 ax[i] /= an[i];
2120 ay[i] /= an[i];
2121 }
2122 }
2123 }
2124
e857e161 2125 state->map->edgex = snewn(state->map->ngraph, int);
2126 state->map->edgey = snewn(state->map->ngraph, int);
2127 memcpy(state->map->edgex, bestx, state->map->ngraph * sizeof(int));
2128 memcpy(state->map->edgey, besty, state->map->ngraph * sizeof(int));
2129
2130 state->map->regionx = snewn(n, int);
2131 state->map->regiony = snewn(n, int);
2132 memcpy(state->map->regionx, bestx + state->map->ngraph, n*sizeof(int));
2133 memcpy(state->map->regiony, besty + state->map->ngraph, n*sizeof(int));
756a9f15 2134
2135 for (i = 0; i < state->map->ngraph; i++)
2136 if (state->map->edgex[i] < 0) {
2137 /* Find the other representation of this edge. */
2138 int e = state->map->graph[i];
2139 int iprime = graph_edge_index(state->map->graph, n,
2140 state->map->ngraph, e%n, e/n);
2141 assert(state->map->edgex[iprime] >= 0);
2142 state->map->edgex[i] = state->map->edgex[iprime];
2143 state->map->edgey[i] = state->map->edgey[iprime];
2144 }
2145
2146 sfree(ax);
2147 sfree(ay);
2148 sfree(an);
2149 sfree(best);
e857e161 2150 sfree(bestx);
2151 sfree(besty);
756a9f15 2152 }
2153
c51c7de6 2154 return state;
2155}
2156
2157static game_state *dup_game(game_state *state)
2158{
2159 game_state *ret = snew(game_state);
2160
2161 ret->p = state->p;
2162 ret->colouring = snewn(state->p.n, int);
2163 memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
1cdd1306 2164 ret->pencil = snewn(state->p.n, int);
2165 memcpy(ret->pencil, state->pencil, state->p.n * sizeof(int));
c51c7de6 2166 ret->map = state->map;
2167 ret->map->refcount++;
2168 ret->completed = state->completed;
2169 ret->cheated = state->cheated;
2170
2171 return ret;
2172}
2173
2174static void free_game(game_state *state)
2175{
2176 if (--state->map->refcount <= 0) {
2177 sfree(state->map->map);
2178 sfree(state->map->graph);
2179 sfree(state->map->immutable);
756a9f15 2180 sfree(state->map->edgex);
2181 sfree(state->map->edgey);
e857e161 2182 sfree(state->map->regionx);
2183 sfree(state->map->regiony);
c51c7de6 2184 sfree(state->map);
2185 }
9392987a 2186 sfree(state->pencil);
c51c7de6 2187 sfree(state->colouring);
2188 sfree(state);
2189}
2190
2191static char *solve_game(game_state *state, game_state *currstate,
2192 char *aux, char **error)
2193{
2194 if (!aux) {
2195 /*
2196 * Use the solver.
2197 */
2198 int *colouring;
2199 struct solver_scratch *sc;
2200 int sret;
2201 int i;
2202 char *ret, buf[80];
2203 int retlen, retsize;
2204
2205 colouring = snewn(state->map->n, int);
2206 memcpy(colouring, state->colouring, state->map->n * sizeof(int));
2207
2208 sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
2209 sret = map_solver(sc, state->map->graph, state->map->n,
2210 state->map->ngraph, colouring, DIFFCOUNT-1);
2211 free_scratch(sc);
2212
2213 if (sret != 1) {
2214 sfree(colouring);
2215 if (sret == 0)
2216 *error = "Puzzle is inconsistent";
2217 else
2218 *error = "Unable to find a unique solution for this puzzle";
2219 return NULL;
2220 }
2221
c2d02b5a 2222 retsize = 64;
2223 ret = snewn(retsize, char);
2224 strcpy(ret, "S");
2225 retlen = 1;
c51c7de6 2226
2227 for (i = 0; i < state->map->n; i++) {
2228 int len;
2229
2230 assert(colouring[i] >= 0);
2231 if (colouring[i] == currstate->colouring[i])
2232 continue;
2233 assert(!state->map->immutable[i]);
2234
c2d02b5a 2235 len = sprintf(buf, ";%d:%d", colouring[i], i);
c51c7de6 2236 if (retlen + len >= retsize) {
2237 retsize = retlen + len + 256;
2238 ret = sresize(ret, retsize, char);
2239 }
2240 strcpy(ret + retlen, buf);
2241 retlen += len;
2242 }
2243
2244 sfree(colouring);
2245
2246 return ret;
2247 }
2248 return dupstr(aux);
2249}
2250
fa3abef5 2251static int game_can_format_as_text_now(game_params *params)
2252{
2253 return TRUE;
2254}
2255
c51c7de6 2256static char *game_text_format(game_state *state)
2257{
2258 return NULL;
2259}
2260
2261struct game_ui {
0d336b11 2262 /*
2263 * drag_colour:
2264 *
2265 * - -2 means no drag currently active.
2266 * - >=0 means we're dragging a solid colour.
2267 * - -1 means we're dragging a blank space, and drag_pencil
2268 * might or might not add some pencil-mark stipples to that.
2269 */
2270 int drag_colour;
f7c5453a 2271 int drag_pencil;
c51c7de6 2272 int dragx, dragy;
e857e161 2273 int show_numbers;
90ee6a20 2274
2275 int cur_x, cur_y, cur_visible, cur_moved, cur_lastmove;
c51c7de6 2276};
2277
2278static game_ui *new_ui(game_state *state)
2279{
2280 game_ui *ui = snew(game_ui);
2281 ui->dragx = ui->dragy = -1;
2282 ui->drag_colour = -2;
90ee6a20 2283 ui->drag_pencil = 0;
e857e161 2284 ui->show_numbers = FALSE;
90ee6a20 2285 ui->cur_x = ui->cur_y = ui->cur_visible = ui->cur_moved = 0;
2286 ui->cur_lastmove = 0;
c51c7de6 2287 return ui;
2288}
2289
2290static void free_ui(game_ui *ui)
2291{
2292 sfree(ui);
2293}
2294
2295static char *encode_ui(game_ui *ui)
2296{
2297 return NULL;
2298}
2299
2300static void decode_ui(game_ui *ui, char *encoding)
2301{
2302}
2303
2304static void game_changed_state(game_ui *ui, game_state *oldstate,
2305 game_state *newstate)
2306{
2307}
2308
2309struct game_drawstate {
2310 int tilesize;
1cdd1306 2311 unsigned long *drawn, *todraw;
c51c7de6 2312 int started;
2313 int dragx, dragy, drag_visible;
2314 blitter *bl;
2315};
2316
756a9f15 2317/* Flags in `drawn'. */
e857e161 2318#define ERR_BASE 0x00800000L
2319#define ERR_MASK 0xFF800000L
1cdd1306 2320#define PENCIL_T_BASE 0x00080000L
2321#define PENCIL_T_MASK 0x00780000L
2322#define PENCIL_B_BASE 0x00008000L
2323#define PENCIL_B_MASK 0x00078000L
2324#define PENCIL_MASK 0x007F8000L
e857e161 2325#define SHOW_NUMBERS 0x00004000L
756a9f15 2326
c51c7de6 2327#define TILESIZE (ds->tilesize)
2328#define BORDER (TILESIZE)
2329#define COORD(x) ( (x) * TILESIZE + BORDER )
2330#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
2331
90ee6a20 2332 /*
2333 * EPSILON_FOO are epsilons added to absolute cursor position by
2334 * cursor movement, such that in pathological cases (e.g. a very
2335 * small diamond-shaped area) it's relatively easy to select the
2336 * region you wanted.
2337 */
2338
2339#define EPSILON_X(button) (((button) == CURSOR_RIGHT) ? +1 : \
2340 ((button) == CURSOR_LEFT) ? -1 : 0)
2341#define EPSILON_Y(button) (((button) == CURSOR_DOWN) ? +1 : \
2342 ((button) == CURSOR_UP) ? -1 : 0)
2343
2344
e1f3c707 2345static int region_from_coords(game_state *state, const game_drawstate *ds,
c51c7de6 2346 int x, int y)
2347{
2348 int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
2349 int tx = FROMCOORD(x), ty = FROMCOORD(y);
2350 int dx = x - COORD(tx), dy = y - COORD(ty);
2351 int quadrant;
2352
2353 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
2354 return -1; /* border */
2355
2356 quadrant = 2 * (dx > dy) + (TILESIZE - dx > dy);
2357 quadrant = (quadrant == 0 ? BE :
2358 quadrant == 1 ? LE :
2359 quadrant == 2 ? RE : TE);
2360
2361 return state->map->map[quadrant * wh + ty*w+tx];
2362}
2363
e1f3c707 2364static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
c51c7de6 2365 int x, int y, int button)
2366{
f7c5453a 2367 char *bufp, buf[256];
90ee6a20 2368 int alt_button;
c51c7de6 2369
e857e161 2370 /*
2371 * Enable or disable numeric labels on regions.
2372 */
2373 if (button == 'l' || button == 'L') {
2374 ui->show_numbers = !ui->show_numbers;
2375 return "";
2376 }
2377
90ee6a20 2378 if (IS_CURSOR_MOVE(button)) {
2379 move_cursor(button, &ui->cur_x, &ui->cur_y, state->p.w, state->p.h, 0);
2380 ui->cur_visible = 1;
2381 ui->cur_moved = 1;
2382 ui->cur_lastmove = button;
2383 ui->dragx = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(button);
2384 ui->dragy = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(button);
2385 return "";
2386 }
2387 if (IS_CURSOR_SELECT(button)) {
2388 if (!ui->cur_visible) {
2389 ui->dragx = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(ui->cur_lastmove);
2390 ui->dragy = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(ui->cur_lastmove);
2391 ui->cur_visible = 1;
2392 return "";
2393 }
2394 if (ui->drag_colour == -2) { /* not currently cursor-dragging, start. */
2395 int r = region_from_coords(state, ds, ui->dragx, ui->dragy);
2396 if (r >= 0) {
2397 ui->drag_colour = state->colouring[r];
2398 ui->drag_pencil = (ui->drag_colour >= 0) ? 0 : state->pencil[r];
2399 } else {
2400 ui->drag_colour = -1;
2401 ui->drag_pencil = 0;
2402 }
2403 ui->cur_moved = 0;
2404 return "";
2405 } else { /* currently cursor-dragging; drop the colour in the new region. */
2406 x = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(ui->cur_lastmove);
2407 y = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(ui->cur_lastmove);
2408 alt_button = (button == CURSOR_SELECT2) ? 1 : 0;
2409 /* Double-select removes current colour. */
2410 if (!ui->cur_moved) ui->drag_colour = -1;
2411 goto drag_dropped;
2412 }
2413 }
2414
c51c7de6 2415 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2416 int r = region_from_coords(state, ds, x, y);
2417
f7c5453a 2418 if (r >= 0) {
c51c7de6 2419 ui->drag_colour = state->colouring[r];
f7c5453a 2420 ui->drag_pencil = state->pencil[r];
2421 if (ui->drag_colour >= 0)
2422 ui->drag_pencil = 0; /* should be already, but double-check */
2423 } else {
c51c7de6 2424 ui->drag_colour = -1;
f7c5453a 2425 ui->drag_pencil = 0;
2426 }
c51c7de6 2427 ui->dragx = x;
2428 ui->dragy = y;
90ee6a20 2429 ui->cur_visible = 0;
c51c7de6 2430 return "";
2431 }
2432
2433 if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
2434 ui->drag_colour > -2) {
2435 ui->dragx = x;
2436 ui->dragy = y;
2437 return "";
2438 }
2439
2440 if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
2441 ui->drag_colour > -2) {
90ee6a20 2442 alt_button = (button == RIGHT_RELEASE) ? 1 : 0;
2443 goto drag_dropped;
2444 }
2445
2446 return NULL;
2447
2448drag_dropped:
2449 {
c51c7de6 2450 int r = region_from_coords(state, ds, x, y);
2451 int c = ui->drag_colour;
f7c5453a 2452 int p = ui->drag_pencil;
2453 int oldp;
c51c7de6 2454
2455 /*
2456 * Cancel the drag, whatever happens.
2457 */
2458 ui->drag_colour = -2;
c51c7de6 2459
2460 if (r < 0)
2461 return ""; /* drag into border; do nothing else */
2462
2463 if (state->map->immutable[r])
2464 return ""; /* can't change this region */
2465
f7c5453a 2466 if (state->colouring[r] == c && state->pencil[r] == p)
c51c7de6 2467 return ""; /* don't _need_ to change this region */
2468
90ee6a20 2469 if (alt_button) {
f7c5453a 2470 if (state->colouring[r] >= 0) {
2471 /* Can't pencil on a coloured region */
2472 return "";
2473 } else if (c >= 0) {
2474 /* Right-dragging from colour to blank toggles one pencil */
2475 p = state->pencil[r] ^ (1 << c);
2476 c = -1;
2477 }
2478 /* Otherwise, right-dragging from blank to blank is equivalent
2479 * to left-dragging. */
2480 }
2481
2482 bufp = buf;
2483 oldp = state->pencil[r];
2484 if (c != state->colouring[r]) {
2485 bufp += sprintf(bufp, ";%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
2486 if (c >= 0)
2487 oldp = 0;
2488 }
2489 if (p != oldp) {
2490 int i;
2491 for (i = 0; i < FOUR; i++)
2492 if ((oldp ^ p) & (1 << i))
2493 bufp += sprintf(bufp, ";p%c:%d", (int)('0' + i), r);
2494 }
1cdd1306 2495
f7c5453a 2496 return dupstr(buf+1); /* ignore first semicolon */
c51c7de6 2497 }
c51c7de6 2498}
2499
2500static game_state *execute_move(game_state *state, char *move)
2501{
2502 int n = state->p.n;
2503 game_state *ret = dup_game(state);
2504 int c, k, adv, i;
2505
2506 while (*move) {
1cdd1306 2507 int pencil = FALSE;
2508
c51c7de6 2509 c = *move;
1cdd1306 2510 if (c == 'p') {
2511 pencil = TRUE;
2512 c = *++move;
2513 }
c51c7de6 2514 if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
2515 sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
2516 k >= 0 && k < state->p.n) {
2517 move += 1 + adv;
1cdd1306 2518 if (pencil) {
2519 if (ret->colouring[k] >= 0) {
2520 free_game(ret);
2521 return NULL;
2522 }
2523 if (c == 'C')
2524 ret->pencil[k] = 0;
2525 else
2526 ret->pencil[k] ^= 1 << (c - '0');
2527 } else {
2528 ret->colouring[k] = (c == 'C' ? -1 : c - '0');
2529 ret->pencil[k] = 0;
2530 }
c51c7de6 2531 } else if (*move == 'S') {
2532 move++;
2533 ret->cheated = TRUE;
2534 } else {
2535 free_game(ret);
2536 return NULL;
2537 }
2538
2539 if (*move && *move != ';') {
2540 free_game(ret);
2541 return NULL;
2542 }
2543 if (*move)
2544 move++;
2545 }
2546
2547 /*
2548 * Check for completion.
2549 */
2550 if (!ret->completed) {
2551 int ok = TRUE;
2552
2553 for (i = 0; i < n; i++)
2554 if (ret->colouring[i] < 0) {
2555 ok = FALSE;
2556 break;
2557 }
2558
2559 if (ok) {
2560 for (i = 0; i < ret->map->ngraph; i++) {
2561 int j = ret->map->graph[i] / n;
2562 int k = ret->map->graph[i] % n;
2563 if (ret->colouring[j] == ret->colouring[k]) {
2564 ok = FALSE;
2565 break;
2566 }
2567 }
2568 }
2569
2570 if (ok)
2571 ret->completed = TRUE;
2572 }
2573
2574 return ret;
2575}
2576
2577/* ----------------------------------------------------------------------
2578 * Drawing routines.
2579 */
2580
2581static void game_compute_size(game_params *params, int tilesize,
2582 int *x, int *y)
2583{
2584 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2585 struct { int tilesize; } ads, *ds = &ads;
2586 ads.tilesize = tilesize;
2587
2588 *x = params->w * TILESIZE + 2 * BORDER + 1;
2589 *y = params->h * TILESIZE + 2 * BORDER + 1;
2590}
2591
dafd6cf6 2592static void game_set_size(drawing *dr, game_drawstate *ds,
2593 game_params *params, int tilesize)
c51c7de6 2594{
2595 ds->tilesize = tilesize;
2596
05e50a96 2597 assert(!ds->bl); /* set_size is never called twice */
dafd6cf6 2598 ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3);
c51c7de6 2599}
2600
dafd6cf6 2601const float map_colours[FOUR][3] = {
cb0c7d4a 2602#ifdef VIVID_COLOURS
242a7d91 2603 /* Use more vivid colours (e.g. on the Pocket PC) */
cb0c7d4a 2604 {0.75F, 0.25F, 0.25F},
2605 {0.3F, 0.7F, 0.3F},
2606 {0.3F, 0.3F, 0.7F},
2607 {0.85F, 0.85F, 0.1F},
2608#else
dafd6cf6 2609 {0.7F, 0.5F, 0.4F},
2610 {0.8F, 0.7F, 0.4F},
2611 {0.5F, 0.6F, 0.4F},
2612 {0.55F, 0.45F, 0.35F},
cb0c7d4a 2613#endif
dafd6cf6 2614};
2615const int map_hatching[FOUR] = {
2616 HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH
2617};
2618
8266f3fc 2619static float *game_colours(frontend *fe, int *ncolours)
c51c7de6 2620{
2621 float *ret = snewn(3 * NCOLOURS, float);
2622
2623 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2624
2625 ret[COL_GRID * 3 + 0] = 0.0F;
2626 ret[COL_GRID * 3 + 1] = 0.0F;
2627 ret[COL_GRID * 3 + 2] = 0.0F;
2628
dafd6cf6 2629 memcpy(ret + COL_0 * 3, map_colours[0], 3 * sizeof(float));
2630 memcpy(ret + COL_1 * 3, map_colours[1], 3 * sizeof(float));
2631 memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float));
2632 memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float));
c51c7de6 2633
756a9f15 2634 ret[COL_ERROR * 3 + 0] = 1.0F;
2635 ret[COL_ERROR * 3 + 1] = 0.0F;
2636 ret[COL_ERROR * 3 + 2] = 0.0F;
2637
2638 ret[COL_ERRTEXT * 3 + 0] = 1.0F;
2639 ret[COL_ERRTEXT * 3 + 1] = 1.0F;
2640 ret[COL_ERRTEXT * 3 + 2] = 1.0F;
2641
c51c7de6 2642 *ncolours = NCOLOURS;
2643 return ret;
2644}
2645
dafd6cf6 2646static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
c51c7de6 2647{
2648 struct game_drawstate *ds = snew(struct game_drawstate);
756a9f15 2649 int i;
c51c7de6 2650
2651 ds->tilesize = 0;
1cdd1306 2652 ds->drawn = snewn(state->p.w * state->p.h, unsigned long);
756a9f15 2653 for (i = 0; i < state->p.w * state->p.h; i++)
1cdd1306 2654 ds->drawn[i] = 0xFFFFL;
2655 ds->todraw = snewn(state->p.w * state->p.h, unsigned long);
c51c7de6 2656 ds->started = FALSE;
2657 ds->bl = NULL;
2658 ds->drag_visible = FALSE;
2659 ds->dragx = ds->dragy = -1;
2660
2661 return ds;
2662}
2663
dafd6cf6 2664static void game_free_drawstate(drawing *dr, game_drawstate *ds)
c51c7de6 2665{
e5de700f 2666 sfree(ds->drawn);
756a9f15 2667 sfree(ds->todraw);
c51c7de6 2668 if (ds->bl)
dafd6cf6 2669 blitter_free(dr, ds->bl);
c51c7de6 2670 sfree(ds);
2671}
2672
756a9f15 2673static void draw_error(drawing *dr, game_drawstate *ds, int x, int y)
2674{
2675 int coords[8];
2676 int yext, xext;
2677
2678 /*
2679 * Draw a diamond.
2680 */
2681 coords[0] = x - TILESIZE*2/5;
2682 coords[1] = y;
2683 coords[2] = x;
2684 coords[3] = y - TILESIZE*2/5;
2685 coords[4] = x + TILESIZE*2/5;
2686 coords[5] = y;
2687 coords[6] = x;
2688 coords[7] = y + TILESIZE*2/5;
2689 draw_polygon(dr, coords, 4, COL_ERROR, COL_GRID);
2690
2691 /*
2692 * Draw an exclamation mark in the diamond. This turns out to
2693 * look unpleasantly off-centre if done via draw_text, so I do
2694 * it by hand on the basis that exclamation marks aren't that
2695 * difficult to draw...
2696 */
2697 xext = TILESIZE/16;
2698 yext = TILESIZE*2/5 - (xext*2+2);
e6a5b1b7 2699 draw_rect(dr, x-xext, y-yext, xext*2+1, yext*2+1 - (xext*3),
756a9f15 2700 COL_ERRTEXT);
e6a5b1b7 2701 draw_rect(dr, x-xext, y+yext-xext*2+1, xext*2+1, xext*2, COL_ERRTEXT);
756a9f15 2702}
2703
dafd6cf6 2704static void draw_square(drawing *dr, game_drawstate *ds,
c51c7de6 2705 game_params *params, struct map *map,
9392987a 2706 int x, int y, unsigned long v)
c51c7de6 2707{
2708 int w = params->w, h = params->h, wh = w*h;
9392987a 2709 int tv, bv, xo, yo, i, j, oldj;
2710 unsigned long errs, pencil, show_numbers;
756a9f15 2711
2712 errs = v & ERR_MASK;
2713 v &= ~ERR_MASK;
1cdd1306 2714 pencil = v & PENCIL_MASK;
2715 v &= ~PENCIL_MASK;
e857e161 2716 show_numbers = v & SHOW_NUMBERS;
2717 v &= ~SHOW_NUMBERS;
756a9f15 2718 tv = v / FIVE;
2719 bv = v % FIVE;
c51c7de6 2720
dafd6cf6 2721 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
c51c7de6 2722
2723 /*
2724 * Draw the region colour.
2725 */
dafd6cf6 2726 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
c51c7de6 2727 (tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
2728 /*
2729 * Draw the second region colour, if this is a diagonally
2730 * divided square.
2731 */
2732 if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
2733 int coords[6];
2734 coords[0] = COORD(x)-1;
2735 coords[1] = COORD(y+1)+1;
2736 if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
2737 coords[2] = COORD(x+1)+1;
2738 else
2739 coords[2] = COORD(x)-1;
2740 coords[3] = COORD(y)-1;
2741 coords[4] = COORD(x+1)+1;
2742 coords[5] = COORD(y+1)+1;
dafd6cf6 2743 draw_polygon(dr, coords, 3,
c51c7de6 2744 (bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
2745 }
2746
2747 /*
1cdd1306 2748 * Draw `pencil marks'. Currently we arrange these in a square
2749 * formation, which means we may be in trouble if the value of
2750 * FOUR changes later...
2751 */
2752 assert(FOUR == 4);
2753 for (yo = 0; yo < 4; yo++)
2754 for (xo = 0; xo < 4; xo++) {
2755 int te = map->map[TE * wh + y*w+x];
2756 int e, ee, c;
2757
2758 e = (yo < xo && yo < 3-xo ? TE :
2759 yo > xo && yo > 3-xo ? BE :
2760 xo < 2 ? LE : RE);
2761 ee = map->map[e * wh + y*w+x];
2762
b4202284 2763 if (xo != (yo * 2 + 1) % 5)
2764 continue;
2765 c = yo;
1cdd1306 2766
2767 if (!(pencil & ((ee == te ? PENCIL_T_BASE : PENCIL_B_BASE) << c)))
2768 continue;
2769
2770 if (yo == xo &&
2771 (map->map[TE * wh + y*w+x] != map->map[LE * wh + y*w+x]))
2772 continue; /* avoid TL-BR diagonal line */
2773 if (yo == 3-xo &&
2774 (map->map[TE * wh + y*w+x] != map->map[RE * wh + y*w+x]))
2775 continue; /* avoid BL-TR diagonal line */
2776
b4202284 2777 draw_circle(dr, COORD(x) + (xo+1)*TILESIZE/5,
2778 COORD(y) + (yo+1)*TILESIZE/5,
9392987a 2779 TILESIZE/7, COL_0 + c, COL_0 + c);
1cdd1306 2780 }
2781
2782 /*
c51c7de6 2783 * Draw the grid lines, if required.
2784 */
2785 if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
dafd6cf6 2786 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
c51c7de6 2787 if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
dafd6cf6 2788 draw_rect(dr, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
c51c7de6 2789 if (x <= 0 || y <= 0 ||
2790 map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
2791 map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
dafd6cf6 2792 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
c51c7de6 2793
756a9f15 2794 /*
2795 * Draw error markers.
2796 */
e6a5b1b7 2797 for (yo = 0; yo < 3; yo++)
2798 for (xo = 0; xo < 3; xo++)
2799 if (errs & (ERR_BASE << (yo*3+xo)))
2800 draw_error(dr, ds,
2801 (COORD(x)*2+TILESIZE*xo)/2,
2802 (COORD(y)*2+TILESIZE*yo)/2);
756a9f15 2803
e857e161 2804 /*
2805 * Draw region numbers, if desired.
2806 */
2807 if (show_numbers) {
2808 oldj = -1;
2809 for (i = 0; i < 2; i++) {
2810 j = map->map[(i?BE:TE)*wh+y*w+x];
2811 if (oldj == j)
2812 continue;
2813 oldj = j;
2814
2815 xo = map->regionx[j] - 2*x;
2816 yo = map->regiony[j] - 2*y;
2817 if (xo >= 0 && xo <= 2 && yo >= 0 && yo <= 2) {
2818 char buf[80];
2819 sprintf(buf, "%d", j);
2820 draw_text(dr, (COORD(x)*2+TILESIZE*xo)/2,
2821 (COORD(y)*2+TILESIZE*yo)/2,
2822 FONT_VARIABLE, 3*TILESIZE/5,
2823 ALIGN_HCENTRE|ALIGN_VCENTRE,
2824 COL_GRID, buf);
2825 }
2826 }
2827 }
2828
dafd6cf6 2829 unclip(dr);
756a9f15 2830
dafd6cf6 2831 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
c51c7de6 2832}
2833
dafd6cf6 2834static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
c51c7de6 2835 game_state *state, int dir, game_ui *ui,
2836 float animtime, float flashtime)
2837{
756a9f15 2838 int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
2839 int x, y, i;
c51c7de6 2840 int flash;
2841
2842 if (ds->drag_visible) {
dafd6cf6 2843 blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
2844 draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
c51c7de6 2845 ds->drag_visible = FALSE;
2846 }
2847
2848 /*
2849 * The initial contents of the window are not guaranteed and
2850 * can vary with front ends. To be on the safe side, all games
2851 * should start by drawing a big background-colour rectangle
2852 * covering the whole window.
2853 */
2854 if (!ds->started) {
2855 int ww, wh;
2856
2857 game_compute_size(&state->p, TILESIZE, &ww, &wh);
dafd6cf6 2858 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
2859 draw_rect(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
c51c7de6 2860 COL_GRID);
2861
dafd6cf6 2862 draw_update(dr, 0, 0, ww, wh);
c51c7de6 2863 ds->started = TRUE;
2864 }
2865
2866 if (flashtime) {
2867 if (flash_type == 1)
2868 flash = (int)(flashtime * FOUR / flash_length);
2869 else
2870 flash = 1 + (int)(flashtime * THREE / flash_length);
2871 } else
2872 flash = -1;
2873
756a9f15 2874 /*
2875 * Set up the `todraw' array.
2876 */
c51c7de6 2877 for (y = 0; y < h; y++)
2878 for (x = 0; x < w; x++) {
2879 int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
2880 int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
9392987a 2881 unsigned long v;
c51c7de6 2882
2883 if (tv < 0)
2884 tv = FOUR;
2885 if (bv < 0)
2886 bv = FOUR;
2887
2888 if (flash >= 0) {
2889 if (flash_type == 1) {
2890 if (tv == flash)
2891 tv = FOUR;
2892 if (bv == flash)
2893 bv = FOUR;
2894 } else if (flash_type == 2) {
2895 if (flash % 2)
2896 tv = bv = FOUR;
2897 } else {
2898 if (tv != FOUR)
2899 tv = (tv + flash) % FOUR;
2900 if (bv != FOUR)
2901 bv = (bv + flash) % FOUR;
2902 }
2903 }
2904
2905 v = tv * FIVE + bv;
2906
1cdd1306 2907 /*
2908 * Add pencil marks.
2909 */
2910 for (i = 0; i < FOUR; i++) {
2911 if (state->colouring[state->map->map[TE * wh + y*w+x]] < 0 &&
2912 (state->pencil[state->map->map[TE * wh + y*w+x]] & (1<<i)))
2913 v |= PENCIL_T_BASE << i;
2914 if (state->colouring[state->map->map[BE * wh + y*w+x]] < 0 &&
2915 (state->pencil[state->map->map[BE * wh + y*w+x]] & (1<<i)))
2916 v |= PENCIL_B_BASE << i;
2917 }
2918
e857e161 2919 if (ui->show_numbers)
2920 v |= SHOW_NUMBERS;
2921
756a9f15 2922 ds->todraw[y*w+x] = v;
2923 }
2924
2925 /*
2926 * Add error markers to the `todraw' array.
2927 */
2928 for (i = 0; i < state->map->ngraph; i++) {
2929 int v1 = state->map->graph[i] / n;
2930 int v2 = state->map->graph[i] % n;
e6a5b1b7 2931 int xo, yo;
756a9f15 2932
2933 if (state->colouring[v1] < 0 || state->colouring[v2] < 0)
2934 continue;
2935 if (state->colouring[v1] != state->colouring[v2])
2936 continue;
2937
2938 x = state->map->edgex[i];
2939 y = state->map->edgey[i];
2940
e6a5b1b7 2941 xo = x % 2; x /= 2;
2942 yo = y % 2; y /= 2;
2943
2944 ds->todraw[y*w+x] |= ERR_BASE << (yo*3+xo);
2945 if (xo == 0) {
2946 assert(x > 0);
2947 ds->todraw[y*w+(x-1)] |= ERR_BASE << (yo*3+2);
2948 }
2949 if (yo == 0) {
2950 assert(y > 0);
2951 ds->todraw[(y-1)*w+x] |= ERR_BASE << (2*3+xo);
2952 }
2953 if (xo == 0 && yo == 0) {
2954 assert(x > 0 && y > 0);
2955 ds->todraw[(y-1)*w+(x-1)] |= ERR_BASE << (2*3+2);
756a9f15 2956 }
2957 }
2958
2959 /*
2960 * Now actually draw everything.
2961 */
2962 for (y = 0; y < h; y++)
2963 for (x = 0; x < w; x++) {
9392987a 2964 unsigned long v = ds->todraw[y*w+x];
c51c7de6 2965 if (ds->drawn[y*w+x] != v) {
dafd6cf6 2966 draw_square(dr, ds, &state->p, state->map, x, y, v);
c51c7de6 2967 ds->drawn[y*w+x] = v;
2968 }
2969 }
2970
2971 /*
2972 * Draw the dragged colour blob if any.
2973 */
90ee6a20 2974 if ((ui->drag_colour > -2) || ui->cur_visible) {
2975 int bg, iscur = 0;
2976 if (ui->drag_colour >= 0)
2977 bg = COL_0 + ui->drag_colour;
2978 else if (ui->drag_colour == -1) {
2979 bg = COL_BACKGROUND;
2980 } else {
2981 int r = region_from_coords(state, ds, ui->dragx, ui->dragy);
2982 int c = (r < 0) ? -1 : state->colouring[r];
2983 assert(ui->cur_visible);
2984 /*bg = COL_GRID;*/
2985 bg = (c < 0) ? COL_BACKGROUND : COL_0 + c;
2986 iscur = 1;
2987 }
2988
c51c7de6 2989 ds->dragx = ui->dragx - TILESIZE/2 - 2;
2990 ds->dragy = ui->dragy - TILESIZE/2 - 2;
dafd6cf6 2991 blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
90ee6a20 2992 draw_circle(dr, ui->dragx, ui->dragy,
2993 iscur ? TILESIZE/4 : TILESIZE/2, bg, COL_GRID);
f7c5453a 2994 for (i = 0; i < FOUR; i++)
2995 if (ui->drag_pencil & (1 << i))
2996 draw_circle(dr, ui->dragx + ((i*4+2)%10-3) * TILESIZE/10,
2997 ui->dragy + (i*2-3) * TILESIZE/10,
2998 TILESIZE/8, COL_0 + i, COL_0 + i);
dafd6cf6 2999 draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
c51c7de6 3000 ds->drag_visible = TRUE;
3001 }
3002}
3003
3004static float game_anim_length(game_state *oldstate, game_state *newstate,
3005 int dir, game_ui *ui)
3006{
3007 return 0.0F;
3008}
3009
3010static float game_flash_length(game_state *oldstate, game_state *newstate,
3011 int dir, game_ui *ui)
3012{
3013 if (!oldstate->completed && newstate->completed &&
3014 !oldstate->cheated && !newstate->cheated) {
3015 if (flash_type < 0) {
3016 char *env = getenv("MAP_ALTERNATIVE_FLASH");
3017 if (env)
3018 flash_type = atoi(env);
3019 else
3020 flash_type = 0;
90ee6a20 3021 flash_length = (flash_type == 1 ? 0.50F : 0.30F);
c51c7de6 3022 }
3023 return flash_length;
3024 } else
3025 return 0.0F;
3026}
3027
1cea529f 3028static int game_status(game_state *state)
4496362f 3029{
1cea529f 3030 return state->completed ? +1 : 0;
4496362f 3031}
3032
c51c7de6 3033static int game_timing_state(game_state *state, game_ui *ui)
3034{
3035 return TRUE;
3036}
3037
dafd6cf6 3038static void game_print_size(game_params *params, float *x, float *y)
3039{
3040 int pw, ph;
3041
3042 /*
3043 * I'll use 4mm squares by default, I think. Simplest way to
3044 * compute this size is to compute the pixel puzzle size at a
3045 * given tile size and then scale.
3046 */
3047 game_compute_size(params, 400, &pw, &ph);
90ee6a20 3048 *x = pw / 100.0F;
3049 *y = ph / 100.0F;
dafd6cf6 3050}
3051
3052static void game_print(drawing *dr, game_state *state, int tilesize)
3053{
3054 int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
3055 int ink, c[FOUR], i;
3056 int x, y, r;
3057 int *coords, ncoords, coordsize;
3058
3059 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
3060 struct { int tilesize; } ads, *ds = &ads;
4413ef0f 3061 /* We can't call game_set_size() here because we don't want a blitter */
dafd6cf6 3062 ads.tilesize = tilesize;
3063
3064 ink = print_mono_colour(dr, 0);
3065 for (i = 0; i < FOUR; i++)
60aa1c74 3066 c[i] = print_rgb_hatched_colour(dr, map_colours[i][0],
3067 map_colours[i][1], map_colours[i][2],
3068 map_hatching[i]);
dafd6cf6 3069
3070 coordsize = 0;
3071 coords = NULL;
3072
3073 print_line_width(dr, TILESIZE / 16);
3074
3075 /*
3076 * Draw a single filled polygon around each region.
3077 */
3078 for (r = 0; r < n; r++) {
3079 int octants[8], lastdir, d1, d2, ox, oy;
3080
3081 /*
3082 * Start by finding a point on the region boundary. Any
3083 * point will do. To do this, we'll search for a square
3084 * containing the region and then decide which corner of it
3085 * to use.
3086 */
3087 x = w;
3088 for (y = 0; y < h; y++) {
3089 for (x = 0; x < w; x++) {
3090 if (state->map->map[wh*0+y*w+x] == r ||
3091 state->map->map[wh*1+y*w+x] == r ||
3092 state->map->map[wh*2+y*w+x] == r ||
3093 state->map->map[wh*3+y*w+x] == r)
3094 break;
3095 }
3096 if (x < w)
3097 break;
3098 }
3099 assert(y < h && x < w); /* we must have found one somewhere */
3100 /*
3101 * This is the first square in lexicographic order which
3102 * contains part of this region. Therefore, one of the top
3103 * two corners of the square must be what we're after. The
3104 * only case in which it isn't the top left one is if the
3105 * square is diagonally divided and the region is in the
3106 * bottom right half.
3107 */
3108 if (state->map->map[wh*TE+y*w+x] != r &&
3109 state->map->map[wh*LE+y*w+x] != r)
3110 x++; /* could just as well have done y++ */
3111
3112 /*
3113 * Now we have a point on the region boundary. Trace around
3114 * the region until we come back to this point,
3115 * accumulating coordinates for a polygon draw operation as
3116 * we go.
3117 */
3118 lastdir = -1;
3119 ox = x;
3120 oy = y;
3121 ncoords = 0;
3122
3123 do {
3124 /*
3125 * There are eight possible directions we could head in
3126 * from here. We identify them by octant numbers, and
3127 * we also use octant numbers to identify the spaces
3128 * between them:
3129 *
3130 * 6 7 0
3131 * \ 7|0 /
3132 * \ | /
3133 * 6 \|/ 1
3134 * 5-----+-----1
3135 * 5 /|\ 2
3136 * / | \
3137 * / 4|3 \
3138 * 4 3 2
3139 */
3140 octants[0] = x<w && y>0 ? state->map->map[wh*LE+(y-1)*w+x] : -1;
3141 octants[1] = x<w && y>0 ? state->map->map[wh*BE+(y-1)*w+x] : -1;
3142 octants[2] = x<w && y<h ? state->map->map[wh*TE+y*w+x] : -1;
3143 octants[3] = x<w && y<h ? state->map->map[wh*LE+y*w+x] : -1;
3144 octants[4] = x>0 && y<h ? state->map->map[wh*RE+y*w+(x-1)] : -1;
3145 octants[5] = x>0 && y<h ? state->map->map[wh*TE+y*w+(x-1)] : -1;
3146 octants[6] = x>0 && y>0 ? state->map->map[wh*BE+(y-1)*w+(x-1)] :-1;
3147 octants[7] = x>0 && y>0 ? state->map->map[wh*RE+(y-1)*w+(x-1)] :-1;
3148
3149 d1 = d2 = -1;
3150 for (i = 0; i < 8; i++)
3151 if ((octants[i] == r) ^ (octants[(i+1)%8] == r)) {
3152 assert(d2 == -1);
3153 if (d1 == -1)
3154 d1 = i;
3155 else
3156 d2 = i;
3157 }
e857e161 3158
dafd6cf6 3159 assert(d1 != -1 && d2 != -1);
3160 if (d1 == lastdir)
3161 d1 = d2;
3162
3163 /*
3164 * Now we're heading in direction d1. Save the current
3165 * coordinates.
3166 */
3167 if (ncoords + 2 > coordsize) {
3168 coordsize += 128;
3169 coords = sresize(coords, coordsize, int);
3170 }
3171 coords[ncoords++] = COORD(x);
3172 coords[ncoords++] = COORD(y);
3173
3174 /*
3175 * Compute the new coordinates.
3176 */
3177 x += (d1 % 4 == 3 ? 0 : d1 < 4 ? +1 : -1);
3178 y += (d1 % 4 == 1 ? 0 : d1 > 1 && d1 < 5 ? +1 : -1);
3179 assert(x >= 0 && x <= w && y >= 0 && y <= h);
3180
3181 lastdir = d1 ^ 4;
3182 } while (x != ox || y != oy);
3183
3184 draw_polygon(dr, coords, ncoords/2,
3185 state->colouring[r] >= 0 ?
3186 c[state->colouring[r]] : -1, ink);
3187 }
3188 sfree(coords);
3189}
3190
c51c7de6 3191#ifdef COMBINED
3192#define thegame map
3193#endif
3194
3195const struct game thegame = {
750037d7 3196 "Map", "games.map", "map",
c51c7de6 3197 default_params,
3198 game_fetch_preset,
3199 decode_params,
3200 encode_params,
3201 free_params,
3202 dup_params,
3203 TRUE, game_configure, custom_params,
3204 validate_params,
3205 new_game_desc,
3206 validate_desc,
3207 new_game,
3208 dup_game,
3209 free_game,
3210 TRUE, solve_game,
fa3abef5 3211 FALSE, game_can_format_as_text_now, game_text_format,
c51c7de6 3212 new_ui,
3213 free_ui,
3214 encode_ui,
3215 decode_ui,
3216 game_changed_state,
3217 interpret_move,
3218 execute_move,
3219 20, game_compute_size, game_set_size,
3220 game_colours,
3221 game_new_drawstate,
3222 game_free_drawstate,
3223 game_redraw,
3224 game_anim_length,
3225 game_flash_length,
1cea529f 3226 game_status,
dafd6cf6 3227 TRUE, TRUE, game_print_size, game_print,
ac9f41c4 3228 FALSE, /* wants_statusbar */
c51c7de6 3229 FALSE, game_timing_state,
2705d374 3230 0, /* flags */
c51c7de6 3231};
e857e161 3232
3233#ifdef STANDALONE_SOLVER
3234
e857e161 3235int main(int argc, char **argv)
3236{
3237 game_params *p;
3238 game_state *s;
3239 char *id = NULL, *desc, *err;
3240 int grade = FALSE;
3241 int ret, diff, really_verbose = FALSE;
3242 struct solver_scratch *sc;
3243 int i;
3244
3245 while (--argc > 0) {
3246 char *p = *++argv;
3247 if (!strcmp(p, "-v")) {
3248 really_verbose = TRUE;
3249 } else if (!strcmp(p, "-g")) {
3250 grade = TRUE;
3251 } else if (*p == '-') {
3252 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3253 return 1;
3254 } else {
3255 id = p;
3256 }
3257 }
3258
3259 if (!id) {
3260 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3261 return 1;
3262 }
3263
3264 desc = strchr(id, ':');
3265 if (!desc) {
3266 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3267 return 1;
3268 }
3269 *desc++ = '\0';
3270
3271 p = default_params();
3272 decode_params(p, id);
3273 err = validate_desc(p, desc);
3274 if (err) {
3275 fprintf(stderr, "%s: %s\n", argv[0], err);
3276 return 1;
3277 }
3278 s = new_game(NULL, p, desc);
3279
3280 sc = new_scratch(s->map->graph, s->map->n, s->map->ngraph);
3281
3282 /*
3283 * When solving an Easy puzzle, we don't want to bother the
3284 * user with Hard-level deductions. For this reason, we grade
3285 * the puzzle internally before doing anything else.
3286 */
3287 ret = -1; /* placate optimiser */
3288 for (diff = 0; diff < DIFFCOUNT; diff++) {
3289 for (i = 0; i < s->map->n; i++)
3290 if (!s->map->immutable[i])
3291 s->colouring[i] = -1;
3292 ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
3293 s->colouring, diff);
3294 if (ret < 2)
3295 break;
3296 }
3297
3298 if (diff == DIFFCOUNT) {
3299 if (grade)
3300 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3301 else
3302 printf("Unable to find a unique solution\n");
3303 } else {
3304 if (grade) {
3305 if (ret == 0)
3306 printf("Difficulty rating: impossible (no solution exists)\n");
3307 else if (ret == 1)
3308 printf("Difficulty rating: %s\n", map_diffnames[diff]);
3309 } else {
3310 verbose = really_verbose;
3311 for (i = 0; i < s->map->n; i++)
3312 if (!s->map->immutable[i])
3313 s->colouring[i] = -1;
3314 ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
3315 s->colouring, diff);
3316 if (ret == 0)
3317 printf("Puzzle is inconsistent\n");
3318 else {
3319 int col = 0;
3320
3321 for (i = 0; i < s->map->n; i++) {
3322 printf("%5d <- %c%c", i, colnames[s->colouring[i]],
3323 (col < 6 && i+1 < s->map->n ? ' ' : '\n'));
3324 if (++col == 7)
3325 col = 0;
3326 }
3327 }
3328 }
3329 }
3330
3331 return 0;
3332}
3333
3334#endif
90ee6a20 3335
3336/* vim: set shiftwidth=4 tabstop=8: */