Jonas Koelker points out that the backspace key didn't work in GTK
[sgt/puzzles] / dominosa.c
CommitLineData
6c04c334 1/*
2 * dominosa.c: Domino jigsaw puzzle. Aim to place one of every
3 * possible domino within a rectangle in such a way that the number
4 * on each square matches the provided clue.
5 */
6
7/*
8 * TODO:
9 *
10 * - improve solver so as to use more interesting forms of
11 * deduction
8bba8910 12 *
13 * * rule out a domino placement if it would divide an unfilled
14 * region such that at least one resulting region had an odd
15 * area
16 * + use b.f.s. to determine the area of an unfilled region
17 * + a square is unfilled iff it has at least two possible
18 * placements, and two adjacent unfilled squares are part
19 * of the same region iff the domino placement joining
20 * them is possible
21 *
6c04c334 22 * * perhaps set analysis
8bba8910 23 * + look at all unclaimed squares containing a given number
24 * + for each one, find the set of possible numbers that it
25 * can connect to (i.e. each neighbouring tile such that
26 * the placement between it and that neighbour has not yet
27 * been ruled out)
28 * + now proceed similarly to Solo set analysis: try to find
29 * a subset of the squares such that the union of their
30 * possible numbers is the same size as the subset. If so,
31 * rule out those possible numbers for all other squares.
32 * * important wrinkle: the double dominoes complicate
33 * matters. Connecting a number to itself uses up _two_
34 * of the unclaimed squares containing a number. Thus,
35 * when finding the initial subset we must never
36 * include two adjacent squares; and also, when ruling
37 * things out after finding the subset, we must be
38 * careful that we don't rule out precisely the domino
39 * placement that was _included_ in our set!
6c04c334 40 */
41
42#include <stdio.h>
43#include <stdlib.h>
44#include <string.h>
45#include <assert.h>
46#include <ctype.h>
47#include <math.h>
48
49#include "puzzles.h"
50
51/* nth triangular number */
52#define TRI(n) ( (n) * ((n) + 1) / 2 )
53/* number of dominoes for value n */
54#define DCOUNT(n) TRI((n)+1)
55/* map a pair of numbers to a unique domino index from 0 upwards. */
56#define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) )
57
58#define FLASH_TIME 0.13F
59
60enum {
61 COL_BACKGROUND,
62 COL_TEXT,
63 COL_DOMINO,
64 COL_DOMINOCLASH,
65 COL_DOMINOTEXT,
66 COL_EDGE,
67 NCOLOURS
68};
69
70struct game_params {
71 int n;
72 int unique;
73};
74
75struct game_numbers {
76 int refcount;
77 int *numbers; /* h x w */
78};
79
80#define EDGE_L 0x100
81#define EDGE_R 0x200
82#define EDGE_T 0x400
83#define EDGE_B 0x800
84
85struct game_state {
86 game_params params;
87 int w, h;
88 struct game_numbers *numbers;
89 int *grid;
90 unsigned short *edges; /* h x w */
91 int completed, cheated;
92};
93
94static game_params *default_params(void)
95{
96 game_params *ret = snew(game_params);
97
98 ret->n = 6;
99 ret->unique = TRUE;
100
101 return ret;
102}
103
104static int game_fetch_preset(int i, char **name, game_params **params)
105{
106 game_params *ret;
107 int n;
108 char buf[80];
109
110 switch (i) {
111 case 0: n = 3; break;
effa9923 112 case 1: n = 4; break;
113 case 2: n = 5; break;
114 case 3: n = 6; break;
115 case 4: n = 7; break;
116 case 5: n = 8; break;
117 case 6: n = 9; break;
6c04c334 118 default: return FALSE;
119 }
120
121 sprintf(buf, "Up to double-%d", n);
122 *name = dupstr(buf);
123
124 *params = ret = snew(game_params);
125 ret->n = n;
126 ret->unique = TRUE;
127
128 return TRUE;
129}
130
131static void free_params(game_params *params)
132{
133 sfree(params);
134}
135
136static game_params *dup_params(game_params *params)
137{
138 game_params *ret = snew(game_params);
139 *ret = *params; /* structure copy */
140 return ret;
141}
142
143static void decode_params(game_params *params, char const *string)
144{
145 params->n = atoi(string);
146 while (*string && isdigit((unsigned char)*string)) string++;
147 if (*string == 'a')
148 params->unique = FALSE;
149}
150
151static char *encode_params(game_params *params, int full)
152{
153 char buf[80];
154 sprintf(buf, "%d", params->n);
155 if (full && !params->unique)
156 strcat(buf, "a");
157 return dupstr(buf);
158}
159
160static config_item *game_configure(game_params *params)
161{
162 config_item *ret;
163 char buf[80];
164
165 ret = snewn(3, config_item);
166
167 ret[0].name = "Maximum number on dominoes";
168 ret[0].type = C_STRING;
169 sprintf(buf, "%d", params->n);
170 ret[0].sval = dupstr(buf);
171 ret[0].ival = 0;
172
173 ret[1].name = "Ensure unique solution";
174 ret[1].type = C_BOOLEAN;
175 ret[1].sval = NULL;
176 ret[1].ival = params->unique;
177
178 ret[2].name = NULL;
179 ret[2].type = C_END;
180 ret[2].sval = NULL;
181 ret[2].ival = 0;
182
183 return ret;
184}
185
186static game_params *custom_params(config_item *cfg)
187{
188 game_params *ret = snew(game_params);
189
190 ret->n = atoi(cfg[0].sval);
191 ret->unique = cfg[1].ival;
192
193 return ret;
194}
195
196static char *validate_params(game_params *params, int full)
197{
198 if (params->n < 1)
199 return "Maximum face number must be at least one";
200 return NULL;
201}
202
203/* ----------------------------------------------------------------------
204 * Solver.
205 */
206
207static int find_overlaps(int w, int h, int placement, int *set)
208{
209 int x, y, n;
210
211 n = 0; /* number of returned placements */
212
213 x = placement / 2;
214 y = x / w;
215 x %= w;
216
217 if (placement & 1) {
218 /*
219 * Horizontal domino, indexed by its left end.
220 */
221 if (x > 0)
222 set[n++] = placement-2; /* horizontal domino to the left */
223 if (y > 0)
224 set[n++] = placement-2*w-1;/* vertical domino above left side */
225 if (y+1 < h)
226 set[n++] = placement-1; /* vertical domino below left side */
227 if (x+2 < w)
228 set[n++] = placement+2; /* horizontal domino to the right */
229 if (y > 0)
230 set[n++] = placement-2*w+2-1;/* vertical domino above right side */
231 if (y+1 < h)
232 set[n++] = placement+2-1; /* vertical domino below right side */
233 } else {
234 /*
235 * Vertical domino, indexed by its top end.
236 */
237 if (y > 0)
238 set[n++] = placement-2*w; /* vertical domino above */
239 if (x > 0)
240 set[n++] = placement-2+1; /* horizontal domino left of top */
241 if (x+1 < w)
242 set[n++] = placement+1; /* horizontal domino right of top */
243 if (y+2 < h)
244 set[n++] = placement+2*w; /* vertical domino below */
245 if (x > 0)
246 set[n++] = placement-2+2*w+1;/* horizontal domino left of bottom */
247 if (x+1 < w)
248 set[n++] = placement+2*w+1;/* horizontal domino right of bottom */
249 }
250
251 return n;
252}
253
254/*
255 * Returns 0, 1 or 2 for number of solutions. 2 means `any number
256 * more than one', or more accurately `we were unable to prove
257 * there was only one'.
258 *
259 * Outputs in a `placements' array, indexed the same way as the one
260 * within this function (see below); entries in there are <0 for a
261 * placement ruled out, 0 for an uncertain placement, and 1 for a
262 * definite one.
263 */
264static int solver(int w, int h, int n, int *grid, int *output)
265{
266 int wh = w*h, dc = DCOUNT(n);
267 int *placements, *heads;
268 int i, j, x, y, ret;
269
270 /*
271 * This array has one entry for every possible domino
272 * placement. Vertical placements are indexed by their top
273 * half, at (y*w+x)*2; horizontal placements are indexed by
274 * their left half at (y*w+x)*2+1.
275 *
276 * This array is used to link domino placements together into
277 * linked lists, so that we can track all the possible
278 * placements of each different domino. It's also used as a
279 * quick means of looking up an individual placement to see
280 * whether we still think it's possible. Actual values stored
281 * in this array are -2 (placement not possible at all), -1
282 * (end of list), or the array index of the next item.
283 *
284 * Oh, and -3 for `not even valid', used for array indices
285 * which don't even represent a plausible placement.
286 */
287 placements = snewn(2*wh, int);
288 for (i = 0; i < 2*wh; i++)
289 placements[i] = -3; /* not even valid */
290
291 /*
292 * This array has one entry for every domino, and it is an
293 * index into `placements' denoting the head of the placement
294 * list for that domino.
295 */
296 heads = snewn(dc, int);
297 for (i = 0; i < dc; i++)
298 heads[i] = -1;
299
300 /*
301 * Set up the initial possibility lists by scanning the grid.
302 */
303 for (y = 0; y < h-1; y++)
304 for (x = 0; x < w; x++) {
305 int di = DINDEX(grid[y*w+x], grid[(y+1)*w+x]);
306 placements[(y*w+x)*2] = heads[di];
307 heads[di] = (y*w+x)*2;
308 }
309 for (y = 0; y < h; y++)
310 for (x = 0; x < w-1; x++) {
311 int di = DINDEX(grid[y*w+x], grid[y*w+(x+1)]);
312 placements[(y*w+x)*2+1] = heads[di];
313 heads[di] = (y*w+x)*2+1;
314 }
315
316#ifdef SOLVER_DIAGNOSTICS
317 printf("before solver:\n");
318 for (i = 0; i <= n; i++)
319 for (j = 0; j <= i; j++) {
320 int k, m;
321 m = 0;
322 printf("%2d [%d %d]:", DINDEX(i, j), i, j);
323 for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
324 printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
325 printf("\n");
326 }
327#endif
328
329 while (1) {
330 int done_something = FALSE;
331
332 /*
333 * For each domino, look at its possible placements, and
334 * for each placement consider the placements (of any
335 * domino) it overlaps. Any placement overlapped by all
336 * placements of this domino can be ruled out.
337 *
338 * Each domino placement overlaps only six others, so we
339 * need not do serious set theory to work this out.
340 */
341 for (i = 0; i < dc; i++) {
342 int permset[6], permlen = 0, p;
343
344
345 if (heads[i] == -1) { /* no placement for this domino */
346 ret = 0; /* therefore puzzle is impossible */
347 goto done;
348 }
349 for (j = heads[i]; j >= 0; j = placements[j]) {
350 assert(placements[j] != -2);
351
352 if (j == heads[i]) {
353 permlen = find_overlaps(w, h, j, permset);
354 } else {
355 int tempset[6], templen, m, n, k;
356
357 templen = find_overlaps(w, h, j, tempset);
358
359 /*
360 * Pathetically primitive set intersection
361 * algorithm, which I'm only getting away with
362 * because I know my sets are bounded by a very
363 * small size.
364 */
365 for (m = n = 0; m < permlen; m++) {
366 for (k = 0; k < templen; k++)
367 if (tempset[k] == permset[m])
368 break;
369 if (k < templen)
370 permset[n++] = permset[m];
371 }
372 permlen = n;
373 }
374 }
375 for (p = 0; p < permlen; p++) {
376 j = permset[p];
377 if (placements[j] != -2) {
378 int p1, p2, di;
379
380 done_something = TRUE;
381
382 /*
383 * Rule out this placement. First find what
384 * domino it is...
385 */
386 p1 = j / 2;
387 p2 = (j & 1) ? p1 + 1 : p1 + w;
388 di = DINDEX(grid[p1], grid[p2]);
389#ifdef SOLVER_DIAGNOSTICS
390 printf("considering domino %d: ruling out placement %d"
391 " for %d\n", i, j, di);
392#endif
393
394 /*
395 * ... then walk that domino's placement list,
396 * removing this placement when we find it.
397 */
398 if (heads[di] == j)
399 heads[di] = placements[j];
400 else {
401 int k = heads[di];
402 while (placements[k] != -1 && placements[k] != j)
403 k = placements[k];
404 assert(placements[k] == j);
405 placements[k] = placements[j];
406 }
407 placements[j] = -2;
408 }
409 }
410 }
411
412 /*
413 * For each square, look at the available placements
414 * involving that square. If all of them are for the same
415 * domino, then rule out any placements for that domino
416 * _not_ involving this square.
417 */
418 for (i = 0; i < wh; i++) {
419 int list[4], k, n, adi;
420
421 x = i % w;
422 y = i / w;
423
424 j = 0;
425 if (x > 0)
426 list[j++] = 2*(i-1)+1;
427 if (x+1 < w)
428 list[j++] = 2*i+1;
429 if (y > 0)
430 list[j++] = 2*(i-w);
431 if (y+1 < h)
432 list[j++] = 2*i;
433
434 for (n = k = 0; k < j; k++)
435 if (placements[list[k]] >= -1)
436 list[n++] = list[k];
437
438 adi = -1;
439
440 for (j = 0; j < n; j++) {
441 int p1, p2, di;
442 k = list[j];
443
444 p1 = k / 2;
445 p2 = (k & 1) ? p1 + 1 : p1 + w;
446 di = DINDEX(grid[p1], grid[p2]);
447
448 if (adi == -1)
449 adi = di;
450 if (adi != di)
451 break;
452 }
453
454 if (j == n) {
455 int nn;
456
457 assert(adi >= 0);
458 /*
459 * We've found something. All viable placements
460 * involving this square are for domino `adi'. If
461 * the current placement list for that domino is
462 * longer than n, reduce it to precisely this
463 * placement list and we've done something.
464 */
465 nn = 0;
466 for (k = heads[adi]; k >= 0; k = placements[k])
467 nn++;
468 if (nn > n) {
469 done_something = TRUE;
470#ifdef SOLVER_DIAGNOSTICS
471 printf("considering square %d,%d: reducing placements "
472 "of domino %d\n", x, y, adi);
473#endif
474 /*
475 * Set all other placements on the list to
476 * impossible.
477 */
478 k = heads[adi];
479 while (k >= 0) {
480 int tmp = placements[k];
481 placements[k] = -2;
482 k = tmp;
483 }
484 /*
485 * Set up the new list.
486 */
487 heads[adi] = list[0];
488 for (k = 0; k < n; k++)
489 placements[list[k]] = (k+1 == n ? -1 : list[k+1]);
490 }
491 }
492 }
493
494 if (!done_something)
495 break;
496 }
497
498#ifdef SOLVER_DIAGNOSTICS
499 printf("after solver:\n");
500 for (i = 0; i <= n; i++)
501 for (j = 0; j <= i; j++) {
502 int k, m;
503 m = 0;
504 printf("%2d [%d %d]:", DINDEX(i, j), i, j);
505 for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
506 printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
507 printf("\n");
508 }
509#endif
510
511 ret = 1;
512 for (i = 0; i < wh*2; i++) {
513 if (placements[i] == -2) {
514 if (output)
515 output[i] = -1; /* ruled out */
516 } else if (placements[i] != -3) {
517 int p1, p2, di;
518
519 p1 = i / 2;
520 p2 = (i & 1) ? p1 + 1 : p1 + w;
521 di = DINDEX(grid[p1], grid[p2]);
522
523 if (i == heads[di] && placements[i] == -1) {
524 if (output)
525 output[i] = 1; /* certain */
526 } else {
527 if (output)
528 output[i] = 0; /* uncertain */
529 ret = 2;
530 }
531 }
532 }
533
534 done:
535 /*
536 * Free working data.
537 */
538 sfree(placements);
539 sfree(heads);
540
541 return ret;
542}
543
544/* ----------------------------------------------------------------------
545 * End of solver code.
546 */
547
548static char *new_game_desc(game_params *params, random_state *rs,
549 char **aux, int interactive)
550{
551 int n = params->n, w = n+2, h = n+1, wh = w*h;
552 int *grid, *grid2, *list;
4700b849 553 int i, j, k, len;
6c04c334 554 char *ret;
555
556 /*
557 * Allocate space in which to lay the grid out.
558 */
559 grid = snewn(wh, int);
560 grid2 = snewn(wh, int);
561 list = snewn(2*wh, int);
562
8bba8910 563 /*
564 * I haven't been able to think of any particularly clever
565 * techniques for generating instances of Dominosa with a
566 * unique solution. Many of the deductions used in this puzzle
567 * are based on information involving half the grid at a time
568 * (`of all the 6s, exactly one is next to a 3'), so a strategy
569 * of partially solving the grid and then perturbing the place
570 * where the solver got stuck seems particularly likely to
571 * accidentally destroy the information which the solver had
572 * used in getting that far. (Contrast with, say, Mines, in
573 * which most deductions are local so this is an excellent
574 * strategy.)
575 *
576 * Therefore I resort to the basest of brute force methods:
577 * generate a random grid, see if it's solvable, throw it away
578 * and try again if not. My only concession to sophistication
579 * and cleverness is to at least _try_ not to generate obvious
580 * 2x2 ambiguous sections (see comment below in the domino-
581 * flipping section).
582 *
583 * During tests performed on 2005-07-15, I found that the brute
584 * force approach without that tweak had to throw away about 87
585 * grids on average (at the default n=6) before finding a
586 * unique one, or a staggering 379 at n=9; good job the
587 * generator and solver are fast! When I added the
588 * ambiguous-section avoidance, those numbers came down to 19
589 * and 26 respectively, which is a lot more sensible.
590 */
591
6c04c334 592 do {
4700b849 593 domino_layout_prealloc(w, h, rs, grid, grid2, list);
6c04c334 594
595 /*
596 * Now we have a complete layout covering the whole
597 * rectangle with dominoes. So shuffle the actual domino
598 * values and fill the rectangle with numbers.
599 */
600 k = 0;
601 for (i = 0; i <= params->n; i++)
602 for (j = 0; j <= i; j++) {
603 list[k++] = i;
604 list[k++] = j;
605 }
606 shuffle(list, k/2, 2*sizeof(*list), rs);
607 j = 0;
608 for (i = 0; i < wh; i++)
609 if (grid[i] > i) {
610 /* Optionally flip the domino round. */
8bba8910 611 int flip = -1;
612
613 if (params->unique) {
614 int t1, t2;
615 /*
616 * If we're after a unique solution, we can do
617 * something here to improve the chances. If
618 * we're placing a domino so that it forms a
619 * 2x2 rectangle with one we've already placed,
620 * and if that domino and this one share a
621 * number, we can try not to put them so that
622 * the identical numbers are diagonally
623 * separated, because that automatically causes
624 * non-uniqueness:
625 *
626 * +---+ +-+-+
627 * |2 3| |2|3|
628 * +---+ -> | | |
629 * |4 2| |4|2|
630 * +---+ +-+-+
631 */
632 t1 = i;
633 t2 = grid[i];
634 if (t2 == t1 + w) { /* this domino is vertical */
635 if (t1 % w > 0 &&/* and not on the left hand edge */
636 grid[t1-1] == t2-1 &&/* alongside one to left */
637 (grid2[t1-1] == list[j] || /* and has a number */
638 grid2[t1-1] == list[j+1] || /* in common */
639 grid2[t2-1] == list[j] ||
640 grid2[t2-1] == list[j+1])) {
641 if (grid2[t1-1] == list[j] ||
642 grid2[t2-1] == list[j+1])
643 flip = 0;
644 else
645 flip = 1;
646 }
647 } else { /* this domino is horizontal */
648 if (t1 / w > 0 &&/* and not on the top edge */
649 grid[t1-w] == t2-w &&/* alongside one above */
650 (grid2[t1-w] == list[j] || /* and has a number */
651 grid2[t1-w] == list[j+1] || /* in common */
652 grid2[t2-w] == list[j] ||
653 grid2[t2-w] == list[j+1])) {
654 if (grid2[t1-w] == list[j] ||
655 grid2[t2-w] == list[j+1])
656 flip = 0;
657 else
658 flip = 1;
659 }
660 }
661 }
662
663 if (flip < 0)
664 flip = random_upto(rs, 2);
665
6c04c334 666 grid2[i] = list[j + flip];
667 grid2[grid[i]] = list[j + 1 - flip];
668 j += 2;
669 }
670 assert(j == k);
671 } while (params->unique && solver(w, h, n, grid2, NULL) > 1);
672
673#ifdef GENERATION_DIAGNOSTICS
674 for (j = 0; j < h; j++) {
675 for (i = 0; i < w; i++) {
676 putchar('0' + grid2[j*w+i]);
677 }
678 putchar('\n');
679 }
680 putchar('\n');
681#endif
682
683 /*
684 * Encode the resulting game state.
685 *
686 * Our encoding is a string of digits. Any number greater than
687 * 9 is represented by a decimal integer within square
688 * brackets. We know there are n+2 of every number (it's paired
689 * with each number from 0 to n inclusive, and one of those is
690 * itself so that adds another occurrence), so we can work out
691 * the string length in advance.
692 */
693
694 /*
695 * To work out the total length of the decimal encodings of all
696 * the numbers from 0 to n inclusive:
697 * - every number has a units digit; total is n+1.
698 * - all numbers above 9 have a tens digit; total is max(n+1-10,0).
699 * - all numbers above 99 have a hundreds digit; total is max(n+1-100,0).
700 * - and so on.
701 */
702 len = n+1;
703 for (i = 10; i <= n; i *= 10)
704 len += max(n + 1 - i, 0);
705 /* Now add two square brackets for each number above 9. */
706 len += 2 * max(n + 1 - 10, 0);
707 /* And multiply by n+2 for the repeated occurrences of each number. */
708 len *= n+2;
709
710 /*
711 * Now actually encode the string.
712 */
713 ret = snewn(len+1, char);
714 j = 0;
715 for (i = 0; i < wh; i++) {
716 k = grid2[i];
717 if (k < 10)
718 ret[j++] = '0' + k;
719 else
720 j += sprintf(ret+j, "[%d]", k);
721 assert(j <= len);
722 }
723 assert(j == len);
724 ret[j] = '\0';
725
726 /*
727 * Encode the solved state as an aux_info.
728 */
729 {
730 char *auxinfo = snewn(wh+1, char);
731
732 for (i = 0; i < wh; i++) {
733 int v = grid[i];
734 auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' :
735 v == i+w ? 'T' : v == i-w ? 'B' : '.');
736 }
737 auxinfo[wh] = '\0';
738
739 *aux = auxinfo;
740 }
741
742 sfree(list);
743 sfree(grid2);
744 sfree(grid);
745
746 return ret;
747}
748
749static char *validate_desc(game_params *params, char *desc)
750{
751 int n = params->n, w = n+2, h = n+1, wh = w*h;
752 int *occurrences;
753 int i, j;
754 char *ret;
755
756 ret = NULL;
757 occurrences = snewn(n+1, int);
758 for (i = 0; i <= n; i++)
759 occurrences[i] = 0;
760
761 for (i = 0; i < wh; i++) {
762 if (!*desc) {
763 ret = ret ? ret : "Game description is too short";
764 } else {
765 if (*desc >= '0' && *desc <= '9')
766 j = *desc++ - '0';
767 else if (*desc == '[') {
768 desc++;
769 j = atoi(desc);
770 while (*desc && isdigit((unsigned char)*desc)) desc++;
771 if (*desc != ']')
772 ret = ret ? ret : "Missing ']' in game description";
773 else
774 desc++;
775 } else {
776 j = -1;
777 ret = ret ? ret : "Invalid syntax in game description";
778 }
779 if (j < 0 || j > n)
780 ret = ret ? ret : "Number out of range in game description";
781 else
782 occurrences[j]++;
783 }
784 }
785
786 if (*desc)
787 ret = ret ? ret : "Game description is too long";
788
789 if (!ret) {
790 for (i = 0; i <= n; i++)
791 if (occurrences[i] != n+2)
792 ret = "Incorrect number balance in game description";
793 }
794
795 sfree(occurrences);
796
797 return ret;
798}
799
dafd6cf6 800static game_state *new_game(midend *me, game_params *params, char *desc)
6c04c334 801{
802 int n = params->n, w = n+2, h = n+1, wh = w*h;
803 game_state *state = snew(game_state);
804 int i, j;
805
806 state->params = *params;
807 state->w = w;
808 state->h = h;
809
810 state->grid = snewn(wh, int);
811 for (i = 0; i < wh; i++)
812 state->grid[i] = i;
813
814 state->edges = snewn(wh, unsigned short);
815 for (i = 0; i < wh; i++)
816 state->edges[i] = 0;
817
818 state->numbers = snew(struct game_numbers);
819 state->numbers->refcount = 1;
820 state->numbers->numbers = snewn(wh, int);
821
822 for (i = 0; i < wh; i++) {
823 assert(*desc);
824 if (*desc >= '0' && *desc <= '9')
825 j = *desc++ - '0';
826 else {
827 assert(*desc == '[');
828 desc++;
829 j = atoi(desc);
830 while (*desc && isdigit((unsigned char)*desc)) desc++;
831 assert(*desc == ']');
832 desc++;
833 }
834 assert(j >= 0 && j <= n);
835 state->numbers->numbers[i] = j;
836 }
837
838 state->completed = state->cheated = FALSE;
839
840 return state;
841}
842
843static game_state *dup_game(game_state *state)
844{
845 int n = state->params.n, w = n+2, h = n+1, wh = w*h;
846 game_state *ret = snew(game_state);
847
848 ret->params = state->params;
849 ret->w = state->w;
850 ret->h = state->h;
851 ret->grid = snewn(wh, int);
852 memcpy(ret->grid, state->grid, wh * sizeof(int));
853 ret->edges = snewn(wh, unsigned short);
854 memcpy(ret->edges, state->edges, wh * sizeof(unsigned short));
855 ret->numbers = state->numbers;
856 ret->numbers->refcount++;
857 ret->completed = state->completed;
858 ret->cheated = state->cheated;
859
860 return ret;
861}
862
863static void free_game(game_state *state)
864{
865 sfree(state->grid);
963efbc8 866 sfree(state->edges);
6c04c334 867 if (--state->numbers->refcount <= 0) {
868 sfree(state->numbers->numbers);
869 sfree(state->numbers);
870 }
871 sfree(state);
872}
873
874static char *solve_game(game_state *state, game_state *currstate,
875 char *aux, char **error)
876{
877 int n = state->params.n, w = n+2, h = n+1, wh = w*h;
878 int *placements;
879 char *ret;
880 int retlen, retsize;
881 int i, v;
882 char buf[80];
883 int extra;
884
885 if (aux) {
886 retsize = 256;
887 ret = snewn(retsize, char);
888 retlen = sprintf(ret, "S");
889
890 for (i = 0; i < wh; i++) {
891 if (aux[i] == 'L')
892 extra = sprintf(buf, ";D%d,%d", i, i+1);
893 else if (aux[i] == 'T')
894 extra = sprintf(buf, ";D%d,%d", i, i+w);
895 else
896 continue;
897
898 if (retlen + extra + 1 >= retsize) {
899 retsize = retlen + extra + 256;
900 ret = sresize(ret, retsize, char);
901 }
902 strcpy(ret + retlen, buf);
903 retlen += extra;
904 }
905
906 } else {
907
908 placements = snewn(wh*2, int);
909 for (i = 0; i < wh*2; i++)
910 placements[i] = -3;
911 solver(w, h, n, state->numbers->numbers, placements);
912
913 /*
914 * First make a pass putting in edges for -1, then make a pass
915 * putting in dominoes for +1.
916 */
917 retsize = 256;
918 ret = snewn(retsize, char);
919 retlen = sprintf(ret, "S");
920
921 for (v = -1; v <= +1; v += 2)
922 for (i = 0; i < wh*2; i++)
923 if (placements[i] == v) {
924 int p1 = i / 2;
925 int p2 = (i & 1) ? p1+1 : p1+w;
926
927 extra = sprintf(buf, ";%c%d,%d",
963efbc8 928 (int)(v==-1 ? 'E' : 'D'), p1, p2);
6c04c334 929
930 if (retlen + extra + 1 >= retsize) {
931 retsize = retlen + extra + 256;
932 ret = sresize(ret, retsize, char);
933 }
934 strcpy(ret + retlen, buf);
935 retlen += extra;
936 }
937
938 sfree(placements);
939 }
940
941 return ret;
942}
943
fa3abef5 944static int game_can_format_as_text_now(game_params *params)
945{
946 return TRUE;
947}
948
6c04c334 949static char *game_text_format(game_state *state)
950{
951 return NULL;
952}
953
954static game_ui *new_ui(game_state *state)
955{
956 return NULL;
957}
958
959static void free_ui(game_ui *ui)
960{
961}
962
963static char *encode_ui(game_ui *ui)
964{
965 return NULL;
966}
967
968static void decode_ui(game_ui *ui, char *encoding)
969{
970}
971
972static void game_changed_state(game_ui *ui, game_state *oldstate,
973 game_state *newstate)
974{
975}
976
977#define PREFERRED_TILESIZE 32
978#define TILESIZE (ds->tilesize)
979#define BORDER (TILESIZE * 3 / 4)
980#define DOMINO_GUTTER (TILESIZE / 16)
981#define DOMINO_RADIUS (TILESIZE / 8)
982#define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
983
984#define COORD(x) ( (x) * TILESIZE + BORDER )
985#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
986
987struct game_drawstate {
988 int started;
989 int w, h, tilesize;
990 unsigned long *visible;
991};
992
993static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
994 int x, int y, int button)
995{
996 int w = state->w, h = state->h;
997 char buf[80];
998
999 /*
1000 * A left-click between two numbers toggles a domino covering
1001 * them. A right-click toggles an edge.
1002 */
1003 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1004 int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx;
1005 int dx, dy;
1006 int d1, d2;
1007
1008 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
1009 return NULL;
1010
1011 /*
1012 * Now we know which square the click was in, decide which
1013 * edge of the square it was closest to.
1014 */
1015 dx = 2 * (x - COORD(tx)) - TILESIZE;
1016 dy = 2 * (y - COORD(ty)) - TILESIZE;
1017
1018 if (abs(dx) > abs(dy) && dx < 0 && tx > 0)
1019 d1 = t - 1, d2 = t; /* clicked in right side of domino */
1020 else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w)
1021 d1 = t, d2 = t + 1; /* clicked in left side of domino */
1022 else if (abs(dy) > abs(dx) && dy < 0 && ty > 0)
1023 d1 = t - w, d2 = t; /* clicked in bottom half of domino */
1024 else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h)
1025 d1 = t, d2 = t + w; /* clicked in top half of domino */
1026 else
1027 return NULL;
1028
1029 /*
1030 * We can't mark an edge next to any domino.
1031 */
1032 if (button == RIGHT_BUTTON &&
1033 (state->grid[d1] != d1 || state->grid[d2] != d2))
1034 return NULL;
1035
963efbc8 1036 sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2);
6c04c334 1037 return dupstr(buf);
1038 }
1039
1040 return NULL;
1041}
1042
1043static game_state *execute_move(game_state *state, char *move)
1044{
1045 int n = state->params.n, w = n+2, h = n+1, wh = w*h;
1046 int d1, d2, d3, p;
1047 game_state *ret = dup_game(state);
1048
1049 while (*move) {
1050 if (move[0] == 'S') {
1051 int i;
1052
1053 ret->cheated = TRUE;
1054
1055 /*
1056 * Clear the existing edges and domino placements. We
1057 * expect the S to be followed by other commands.
1058 */
1059 for (i = 0; i < wh; i++) {
1060 ret->grid[i] = i;
1061 ret->edges[i] = 0;
1062 }
1063 move++;
1064 } else if (move[0] == 'D' &&
1065 sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
1066 d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) {
1067
1068 /*
1069 * Toggle domino presence between d1 and d2.
1070 */
1071 if (ret->grid[d1] == d2) {
1072 assert(ret->grid[d2] == d1);
1073 ret->grid[d1] = d1;
1074 ret->grid[d2] = d2;
1075 } else {
1076 /*
1077 * Erase any dominoes that might overlap the new one.
1078 */
1079 d3 = ret->grid[d1];
1080 if (d3 != d1)
1081 ret->grid[d3] = d3;
1082 d3 = ret->grid[d2];
1083 if (d3 != d2)
1084 ret->grid[d3] = d3;
1085 /*
1086 * Place the new one.
1087 */
1088 ret->grid[d1] = d2;
1089 ret->grid[d2] = d1;
1090
1091 /*
1092 * Destroy any edges lurking around it.
1093 */
1094 if (ret->edges[d1] & EDGE_L) {
1095 assert(d1 - 1 >= 0);
1096 ret->edges[d1 - 1] &= ~EDGE_R;
1097 }
1098 if (ret->edges[d1] & EDGE_R) {
1099 assert(d1 + 1 < wh);
1100 ret->edges[d1 + 1] &= ~EDGE_L;
1101 }
1102 if (ret->edges[d1] & EDGE_T) {
1103 assert(d1 - w >= 0);
1104 ret->edges[d1 - w] &= ~EDGE_B;
1105 }
1106 if (ret->edges[d1] & EDGE_B) {
1107 assert(d1 + 1 < wh);
1108 ret->edges[d1 + w] &= ~EDGE_T;
1109 }
1110 ret->edges[d1] = 0;
1111 if (ret->edges[d2] & EDGE_L) {
1112 assert(d2 - 1 >= 0);
1113 ret->edges[d2 - 1] &= ~EDGE_R;
1114 }
1115 if (ret->edges[d2] & EDGE_R) {
1116 assert(d2 + 1 < wh);
1117 ret->edges[d2 + 1] &= ~EDGE_L;
1118 }
1119 if (ret->edges[d2] & EDGE_T) {
1120 assert(d2 - w >= 0);
1121 ret->edges[d2 - w] &= ~EDGE_B;
1122 }
1123 if (ret->edges[d2] & EDGE_B) {
1124 assert(d2 + 1 < wh);
1125 ret->edges[d2 + w] &= ~EDGE_T;
1126 }
1127 ret->edges[d2] = 0;
1128 }
1129
1130 move += p+1;
1131 } else if (move[0] == 'E' &&
1132 sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
1133 d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 &&
1134 ret->grid[d1] == d1 && ret->grid[d2] == d2) {
1135
1136 /*
1137 * Toggle edge presence between d1 and d2.
1138 */
1139 if (d2 == d1 + 1) {
1140 ret->edges[d1] ^= EDGE_R;
1141 ret->edges[d2] ^= EDGE_L;
1142 } else {
1143 ret->edges[d1] ^= EDGE_B;
1144 ret->edges[d2] ^= EDGE_T;
1145 }
1146
1147 move += p+1;
1148 } else {
1149 free_game(ret);
1150 return NULL;
1151 }
1152
1153 if (*move) {
1154 if (*move != ';') {
1155 free_game(ret);
1156 return NULL;
1157 }
1158 move++;
1159 }
1160 }
1161
1162 /*
1163 * After modifying the grid, check completion.
1164 */
1165 if (!ret->completed) {
1166 int i, ok = 0;
1167 unsigned char *used = snewn(TRI(n+1), unsigned char);
1168
1169 memset(used, 0, TRI(n+1));
1170 for (i = 0; i < wh; i++)
1171 if (ret->grid[i] > i) {
1172 int n1, n2, di;
1173
1174 n1 = ret->numbers->numbers[i];
1175 n2 = ret->numbers->numbers[ret->grid[i]];
1176
1177 di = DINDEX(n1, n2);
1178 assert(di >= 0 && di < TRI(n+1));
1179
1180 if (!used[di]) {
1181 used[di] = 1;
1182 ok++;
1183 }
1184 }
1185
1186 sfree(used);
1187 if (ok == DCOUNT(n))
1188 ret->completed = TRUE;
1189 }
1190
1191 return ret;
1192}
1193
1194/* ----------------------------------------------------------------------
1195 * Drawing routines.
1196 */
1197
1198static void game_compute_size(game_params *params, int tilesize,
1199 int *x, int *y)
1200{
1201 int n = params->n, w = n+2, h = n+1;
1202
1203 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1204 struct { int tilesize; } ads, *ds = &ads;
1205 ads.tilesize = tilesize;
1206
1207 *x = w * TILESIZE + 2*BORDER;
1208 *y = h * TILESIZE + 2*BORDER;
1209}
1210
dafd6cf6 1211static void game_set_size(drawing *dr, game_drawstate *ds,
1212 game_params *params, int tilesize)
6c04c334 1213{
1214 ds->tilesize = tilesize;
1215}
1216
8266f3fc 1217static float *game_colours(frontend *fe, int *ncolours)
6c04c334 1218{
1219 float *ret = snewn(3 * NCOLOURS, float);
1220
1221 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1222
1223 ret[COL_TEXT * 3 + 0] = 0.0F;
1224 ret[COL_TEXT * 3 + 1] = 0.0F;
1225 ret[COL_TEXT * 3 + 2] = 0.0F;
1226
1227 ret[COL_DOMINO * 3 + 0] = 0.0F;
1228 ret[COL_DOMINO * 3 + 1] = 0.0F;
1229 ret[COL_DOMINO * 3 + 2] = 0.0F;
1230
1231 ret[COL_DOMINOCLASH * 3 + 0] = 0.5F;
1232 ret[COL_DOMINOCLASH * 3 + 1] = 0.0F;
1233 ret[COL_DOMINOCLASH * 3 + 2] = 0.0F;
1234
1235 ret[COL_DOMINOTEXT * 3 + 0] = 1.0F;
1236 ret[COL_DOMINOTEXT * 3 + 1] = 1.0F;
1237 ret[COL_DOMINOTEXT * 3 + 2] = 1.0F;
1238
1239 ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3;
1240 ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3;
1241 ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3;
1242
1243 *ncolours = NCOLOURS;
1244 return ret;
1245}
1246
dafd6cf6 1247static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
6c04c334 1248{
1249 struct game_drawstate *ds = snew(struct game_drawstate);
1250 int i;
1251
1252 ds->started = FALSE;
1253 ds->w = state->w;
1254 ds->h = state->h;
1255 ds->visible = snewn(ds->w * ds->h, unsigned long);
1256 ds->tilesize = 0; /* not decided yet */
1257 for (i = 0; i < ds->w * ds->h; i++)
1258 ds->visible[i] = 0xFFFF;
1259
1260 return ds;
1261}
1262
dafd6cf6 1263static void game_free_drawstate(drawing *dr, game_drawstate *ds)
6c04c334 1264{
1265 sfree(ds->visible);
1266 sfree(ds);
1267}
1268
1269enum {
1270 TYPE_L,
1271 TYPE_R,
1272 TYPE_T,
1273 TYPE_B,
1274 TYPE_BLANK,
1275 TYPE_MASK = 0x0F
1276};
1277
dafd6cf6 1278static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
6c04c334 1279 int x, int y, int type)
1280{
1281 int w = state->w /*, h = state->h */;
1282 int cx = COORD(x), cy = COORD(y);
1283 int nc;
1284 char str[80];
1285 int flags;
1286
dafd6cf6 1287 draw_rect(dr, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND);
6c04c334 1288
1289 flags = type &~ TYPE_MASK;
1290 type &= TYPE_MASK;
1291
1292 if (type != TYPE_BLANK) {
1293 int i, bg;
1294
1295 /*
1296 * Draw one end of a domino. This is composed of:
1297 *
1298 * - two filled circles (rounded corners)
1299 * - two rectangles
1300 * - a slight shift in the number
1301 */
1302
1303 if (flags & 0x80)
1304 bg = COL_DOMINOCLASH;
1305 else
1306 bg = COL_DOMINO;
1307 nc = COL_DOMINOTEXT;
1308
1309 if (flags & 0x40) {
1310 int tmp = nc;
1311 nc = bg;
1312 bg = tmp;
1313 }
1314
1315 if (type == TYPE_L || type == TYPE_T)
dafd6cf6 1316 draw_circle(dr, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET,
6c04c334 1317 DOMINO_RADIUS, bg, bg);
1318 if (type == TYPE_R || type == TYPE_T)
dafd6cf6 1319 draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET,
6c04c334 1320 DOMINO_RADIUS, bg, bg);
1321 if (type == TYPE_L || type == TYPE_B)
dafd6cf6 1322 draw_circle(dr, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET,
6c04c334 1323 DOMINO_RADIUS, bg, bg);
1324 if (type == TYPE_R || type == TYPE_B)
dafd6cf6 1325 draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET,
6c04c334 1326 cy+TILESIZE-1-DOMINO_COFFSET,
1327 DOMINO_RADIUS, bg, bg);
1328
1329 for (i = 0; i < 2; i++) {
1330 int x1, y1, x2, y2;
1331
1332 x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET);
1333 y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER);
1334 x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET);
1335 y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER);
1336 if (type == TYPE_L)
dafd6cf6 1337 x2 = cx + TILESIZE + TILESIZE/16;
6c04c334 1338 else if (type == TYPE_R)
dafd6cf6 1339 x1 = cx - TILESIZE/16;
6c04c334 1340 else if (type == TYPE_T)
dafd6cf6 1341 y2 = cy + TILESIZE + TILESIZE/16;
6c04c334 1342 else if (type == TYPE_B)
dafd6cf6 1343 y1 = cy - TILESIZE/16;
6c04c334 1344
dafd6cf6 1345 draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
6c04c334 1346 }
1347 } else {
1348 if (flags & EDGE_T)
dafd6cf6 1349 draw_rect(dr, cx+DOMINO_GUTTER, cy,
6c04c334 1350 TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
1351 if (flags & EDGE_B)
dafd6cf6 1352 draw_rect(dr, cx+DOMINO_GUTTER, cy+TILESIZE-1,
6c04c334 1353 TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
1354 if (flags & EDGE_L)
dafd6cf6 1355 draw_rect(dr, cx, cy+DOMINO_GUTTER,
6c04c334 1356 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
1357 if (flags & EDGE_R)
dafd6cf6 1358 draw_rect(dr, cx+TILESIZE-1, cy+DOMINO_GUTTER,
6c04c334 1359 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
1360 nc = COL_TEXT;
1361 }
1362
1363 sprintf(str, "%d", state->numbers->numbers[y*w+x]);
dafd6cf6 1364 draw_text(dr, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2,
6c04c334 1365 ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str);
1366
dafd6cf6 1367 draw_update(dr, cx, cy, TILESIZE, TILESIZE);
6c04c334 1368}
1369
dafd6cf6 1370static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
6c04c334 1371 game_state *state, int dir, game_ui *ui,
1372 float animtime, float flashtime)
1373{
1374 int n = state->params.n, w = state->w, h = state->h, wh = w*h;
1375 int x, y, i;
1376 unsigned char *used;
1377
1378 if (!ds->started) {
1379 int pw, ph;
1380 game_compute_size(&state->params, TILESIZE, &pw, &ph);
dafd6cf6 1381 draw_rect(dr, 0, 0, pw, ph, COL_BACKGROUND);
1382 draw_update(dr, 0, 0, pw, ph);
6c04c334 1383 ds->started = TRUE;
1384 }
1385
1386 /*
1387 * See how many dominoes of each type there are, so we can
1388 * highlight clashes in red.
1389 */
1390 used = snewn(TRI(n+1), unsigned char);
1391 memset(used, 0, TRI(n+1));
1392 for (i = 0; i < wh; i++)
1393 if (state->grid[i] > i) {
1394 int n1, n2, di;
1395
1396 n1 = state->numbers->numbers[i];
1397 n2 = state->numbers->numbers[state->grid[i]];
1398
1399 di = DINDEX(n1, n2);
1400 assert(di >= 0 && di < TRI(n+1));
1401
1402 if (used[di] < 2)
1403 used[di]++;
1404 }
1405
1406 for (y = 0; y < h; y++)
1407 for (x = 0; x < w; x++) {
1408 int n = y*w+x;
1409 int n1, n2, di;
1410 unsigned long c;
1411
1412 if (state->grid[n] == n-1)
1413 c = TYPE_R;
1414 else if (state->grid[n] == n+1)
1415 c = TYPE_L;
1416 else if (state->grid[n] == n-w)
1417 c = TYPE_B;
1418 else if (state->grid[n] == n+w)
1419 c = TYPE_T;
1420 else
1421 c = TYPE_BLANK;
1422
1423 if (c != TYPE_BLANK) {
1424 n1 = state->numbers->numbers[n];
1425 n2 = state->numbers->numbers[state->grid[n]];
1426 di = DINDEX(n1, n2);
1427 if (used[di] > 1)
1428 c |= 0x80; /* highlight a clash */
1429 } else {
1430 c |= state->edges[n];
1431 }
1432
1433 if (flashtime != 0)
1434 c |= 0x40; /* we're flashing */
1435
1436 if (ds->visible[n] != c) {
dafd6cf6 1437 draw_tile(dr, ds, state, x, y, c);
6c04c334 1438 ds->visible[n] = c;
1439 }
1440 }
1441
1442 sfree(used);
1443}
1444
1445static float game_anim_length(game_state *oldstate, game_state *newstate,
1446 int dir, game_ui *ui)
1447{
1448 return 0.0F;
1449}
1450
1451static float game_flash_length(game_state *oldstate, game_state *newstate,
1452 int dir, game_ui *ui)
1453{
1454 if (!oldstate->completed && newstate->completed &&
1455 !oldstate->cheated && !newstate->cheated)
1456 return FLASH_TIME;
1457 return 0.0F;
1458}
1459
6c04c334 1460static int game_timing_state(game_state *state, game_ui *ui)
1461{
1462 return TRUE;
1463}
1464
dafd6cf6 1465static void game_print_size(game_params *params, float *x, float *y)
1466{
1467 int pw, ph;
1468
1469 /*
1470 * I'll use 6mm squares by default.
1471 */
1472 game_compute_size(params, 600, &pw, &ph);
4700b849 1473 *x = pw / 100.0F;
1474 *y = ph / 100.0F;
dafd6cf6 1475}
1476
1477static void game_print(drawing *dr, game_state *state, int tilesize)
1478{
1479 int w = state->w, h = state->h;
1480 int c, x, y;
1481
1482 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1483 game_drawstate ads, *ds = &ads;
4413ef0f 1484 game_set_size(dr, ds, NULL, tilesize);
dafd6cf6 1485
1486 c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
1487 c = print_mono_colour(dr, 0); assert(c == COL_TEXT);
1488 c = print_mono_colour(dr, 0); assert(c == COL_DOMINO);
1489 c = print_mono_colour(dr, 0); assert(c == COL_DOMINOCLASH);
1490 c = print_mono_colour(dr, 1); assert(c == COL_DOMINOTEXT);
1491 c = print_mono_colour(dr, 0); assert(c == COL_EDGE);
1492
1493 for (y = 0; y < h; y++)
1494 for (x = 0; x < w; x++) {
1495 int n = y*w+x;
1496 unsigned long c;
1497
1498 if (state->grid[n] == n-1)
1499 c = TYPE_R;
1500 else if (state->grid[n] == n+1)
1501 c = TYPE_L;
1502 else if (state->grid[n] == n-w)
1503 c = TYPE_B;
1504 else if (state->grid[n] == n+w)
1505 c = TYPE_T;
1506 else
1507 c = TYPE_BLANK;
1508
1509 draw_tile(dr, ds, state, x, y, c);
1510 }
1511}
1512
6c04c334 1513#ifdef COMBINED
1514#define thegame dominosa
1515#endif
1516
1517const struct game thegame = {
750037d7 1518 "Dominosa", "games.dominosa", "dominosa",
6c04c334 1519 default_params,
1520 game_fetch_preset,
1521 decode_params,
1522 encode_params,
1523 free_params,
1524 dup_params,
1525 TRUE, game_configure, custom_params,
1526 validate_params,
1527 new_game_desc,
1528 validate_desc,
1529 new_game,
1530 dup_game,
1531 free_game,
1532 TRUE, solve_game,
fa3abef5 1533 FALSE, game_can_format_as_text_now, game_text_format,
6c04c334 1534 new_ui,
1535 free_ui,
1536 encode_ui,
1537 decode_ui,
1538 game_changed_state,
1539 interpret_move,
1540 execute_move,
1541 PREFERRED_TILESIZE, game_compute_size, game_set_size,
1542 game_colours,
1543 game_new_drawstate,
1544 game_free_drawstate,
1545 game_redraw,
1546 game_anim_length,
1547 game_flash_length,
dafd6cf6 1548 TRUE, FALSE, game_print_size, game_print,
ac9f41c4 1549 FALSE, /* wants_statusbar */
6c04c334 1550 FALSE, game_timing_state,
2705d374 1551 0, /* flags */
6c04c334 1552};
4700b849 1553
1554/* vim: set shiftwidth=4 :set textwidth=80: */
1555