r6384 didn't go quite far enough. In fact, a grid square which
[sgt/puzzles] / tree234.c
CommitLineData
720a8fb7 1/*
2 * tree234.c: reasonably generic counted 2-3-4 tree routines.
3 *
4 * This file is copyright 1999-2001 Simon Tatham.
5 *
6 * Permission is hereby granted, free of charge, to any person
7 * obtaining a copy of this software and associated documentation
8 * files (the "Software"), to deal in the Software without
9 * restriction, including without limitation the rights to use,
10 * copy, modify, merge, publish, distribute, sublicense, and/or
11 * sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following
13 * conditions:
14 *
15 * The above copyright notice and this permission notice shall be
16 * included in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
20 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21 * NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
23 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * SOFTWARE.
26 */
27
28#include <stdio.h>
29#include <stdlib.h>
30#include <assert.h>
31
32#include "tree234.h"
33
34#define smalloc malloc
35#define sfree free
36
37#define mknew(typ) ( (typ *) smalloc (sizeof (typ)) )
38
39#ifdef TEST
40#define LOG(x) (printf x)
41#else
42#define LOG(x)
43#endif
44
45typedef struct node234_Tag node234;
46
47struct tree234_Tag {
48 node234 *root;
49 cmpfn234 cmp;
50};
51
52struct node234_Tag {
53 node234 *parent;
54 node234 *kids[4];
55 int counts[4];
56 void *elems[3];
57};
58
59/*
60 * Create a 2-3-4 tree.
61 */
62tree234 *newtree234(cmpfn234 cmp) {
63 tree234 *ret = mknew(tree234);
64 LOG(("created tree %p\n", ret));
65 ret->root = NULL;
66 ret->cmp = cmp;
67 return ret;
68}
69
70/*
71 * Free a 2-3-4 tree (not including freeing the elements).
72 */
73static void freenode234(node234 *n) {
74 if (!n)
75 return;
76 freenode234(n->kids[0]);
77 freenode234(n->kids[1]);
78 freenode234(n->kids[2]);
79 freenode234(n->kids[3]);
80 sfree(n);
81}
82void freetree234(tree234 *t) {
83 freenode234(t->root);
84 sfree(t);
85}
86
87/*
88 * Internal function to count a node.
89 */
90static int countnode234(node234 *n) {
91 int count = 0;
92 int i;
93 if (!n)
94 return 0;
95 for (i = 0; i < 4; i++)
96 count += n->counts[i];
97 for (i = 0; i < 3; i++)
98 if (n->elems[i])
99 count++;
100 return count;
101}
102
103/*
104 * Count the elements in a tree.
105 */
106int count234(tree234 *t) {
107 if (t->root)
108 return countnode234(t->root);
109 else
110 return 0;
111}
112
113/*
114 * Propagate a node overflow up a tree until it stops. Returns 0 or
115 * 1, depending on whether the root had to be split or not.
116 */
117static int add234_insert(node234 *left, void *e, node234 *right,
118 node234 **root, node234 *n, int ki) {
119 int lcount, rcount;
120 /*
121 * We need to insert the new left/element/right set in n at
122 * child position ki.
123 */
124 lcount = countnode234(left);
125 rcount = countnode234(right);
126 while (n) {
127 LOG((" at %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
128 n,
129 n->kids[0], n->counts[0], n->elems[0],
130 n->kids[1], n->counts[1], n->elems[1],
131 n->kids[2], n->counts[2], n->elems[2],
132 n->kids[3], n->counts[3]));
133 LOG((" need to insert %p/%d \"%s\" %p/%d at position %d\n",
134 left, lcount, e, right, rcount, ki));
135 if (n->elems[1] == NULL) {
136 /*
137 * Insert in a 2-node; simple.
138 */
139 if (ki == 0) {
140 LOG((" inserting on left of 2-node\n"));
141 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
142 n->elems[1] = n->elems[0];
143 n->kids[1] = right; n->counts[1] = rcount;
144 n->elems[0] = e;
145 n->kids[0] = left; n->counts[0] = lcount;
146 } else { /* ki == 1 */
147 LOG((" inserting on right of 2-node\n"));
148 n->kids[2] = right; n->counts[2] = rcount;
149 n->elems[1] = e;
150 n->kids[1] = left; n->counts[1] = lcount;
151 }
152 if (n->kids[0]) n->kids[0]->parent = n;
153 if (n->kids[1]) n->kids[1]->parent = n;
154 if (n->kids[2]) n->kids[2]->parent = n;
155 LOG((" done\n"));
156 break;
157 } else if (n->elems[2] == NULL) {
158 /*
159 * Insert in a 3-node; simple.
160 */
161 if (ki == 0) {
162 LOG((" inserting on left of 3-node\n"));
163 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
164 n->elems[2] = n->elems[1];
165 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
166 n->elems[1] = n->elems[0];
167 n->kids[1] = right; n->counts[1] = rcount;
168 n->elems[0] = e;
169 n->kids[0] = left; n->counts[0] = lcount;
170 } else if (ki == 1) {
171 LOG((" inserting in middle of 3-node\n"));
172 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
173 n->elems[2] = n->elems[1];
174 n->kids[2] = right; n->counts[2] = rcount;
175 n->elems[1] = e;
176 n->kids[1] = left; n->counts[1] = lcount;
177 } else { /* ki == 2 */
178 LOG((" inserting on right of 3-node\n"));
179 n->kids[3] = right; n->counts[3] = rcount;
180 n->elems[2] = e;
181 n->kids[2] = left; n->counts[2] = lcount;
182 }
183 if (n->kids[0]) n->kids[0]->parent = n;
184 if (n->kids[1]) n->kids[1]->parent = n;
185 if (n->kids[2]) n->kids[2]->parent = n;
186 if (n->kids[3]) n->kids[3]->parent = n;
187 LOG((" done\n"));
188 break;
189 } else {
190 node234 *m = mknew(node234);
191 m->parent = n->parent;
192 LOG((" splitting a 4-node; created new node %p\n", m));
193 /*
194 * Insert in a 4-node; split into a 2-node and a
195 * 3-node, and move focus up a level.
196 *
197 * I don't think it matters which way round we put the
198 * 2 and the 3. For simplicity, we'll put the 3 first
199 * always.
200 */
201 if (ki == 0) {
202 m->kids[0] = left; m->counts[0] = lcount;
203 m->elems[0] = e;
204 m->kids[1] = right; m->counts[1] = rcount;
205 m->elems[1] = n->elems[0];
206 m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1];
207 e = n->elems[1];
208 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
209 n->elems[0] = n->elems[2];
210 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
211 } else if (ki == 1) {
212 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
213 m->elems[0] = n->elems[0];
214 m->kids[1] = left; m->counts[1] = lcount;
215 m->elems[1] = e;
216 m->kids[2] = right; m->counts[2] = rcount;
217 e = n->elems[1];
218 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
219 n->elems[0] = n->elems[2];
220 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
221 } else if (ki == 2) {
222 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
223 m->elems[0] = n->elems[0];
224 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
225 m->elems[1] = n->elems[1];
226 m->kids[2] = left; m->counts[2] = lcount;
227 /* e = e; */
228 n->kids[0] = right; n->counts[0] = rcount;
229 n->elems[0] = n->elems[2];
230 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
231 } else { /* ki == 3 */
232 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
233 m->elems[0] = n->elems[0];
234 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
235 m->elems[1] = n->elems[1];
236 m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2];
237 n->kids[0] = left; n->counts[0] = lcount;
238 n->elems[0] = e;
239 n->kids[1] = right; n->counts[1] = rcount;
240 e = n->elems[2];
241 }
242 m->kids[3] = n->kids[3] = n->kids[2] = NULL;
243 m->counts[3] = n->counts[3] = n->counts[2] = 0;
244 m->elems[2] = n->elems[2] = n->elems[1] = NULL;
245 if (m->kids[0]) m->kids[0]->parent = m;
246 if (m->kids[1]) m->kids[1]->parent = m;
247 if (m->kids[2]) m->kids[2]->parent = m;
248 if (n->kids[0]) n->kids[0]->parent = n;
249 if (n->kids[1]) n->kids[1]->parent = n;
250 LOG((" left (%p): %p/%d \"%s\" %p/%d \"%s\" %p/%d\n", m,
251 m->kids[0], m->counts[0], m->elems[0],
252 m->kids[1], m->counts[1], m->elems[1],
253 m->kids[2], m->counts[2]));
254 LOG((" right (%p): %p/%d \"%s\" %p/%d\n", n,
255 n->kids[0], n->counts[0], n->elems[0],
256 n->kids[1], n->counts[1]));
257 left = m; lcount = countnode234(left);
258 right = n; rcount = countnode234(right);
259 }
260 if (n->parent)
261 ki = (n->parent->kids[0] == n ? 0 :
262 n->parent->kids[1] == n ? 1 :
263 n->parent->kids[2] == n ? 2 : 3);
264 n = n->parent;
265 }
266
267 /*
268 * If we've come out of here by `break', n will still be
269 * non-NULL and all we need to do is go back up the tree
270 * updating counts. If we've come here because n is NULL, we
271 * need to create a new root for the tree because the old one
272 * has just split into two. */
273 if (n) {
274 while (n->parent) {
275 int count = countnode234(n);
276 int childnum;
277 childnum = (n->parent->kids[0] == n ? 0 :
278 n->parent->kids[1] == n ? 1 :
279 n->parent->kids[2] == n ? 2 : 3);
280 n->parent->counts[childnum] = count;
281 n = n->parent;
282 }
283 return 0; /* root unchanged */
284 } else {
285 LOG((" root is overloaded, split into two\n"));
286 (*root) = mknew(node234);
287 (*root)->kids[0] = left; (*root)->counts[0] = lcount;
288 (*root)->elems[0] = e;
289 (*root)->kids[1] = right; (*root)->counts[1] = rcount;
290 (*root)->elems[1] = NULL;
291 (*root)->kids[2] = NULL; (*root)->counts[2] = 0;
292 (*root)->elems[2] = NULL;
293 (*root)->kids[3] = NULL; (*root)->counts[3] = 0;
294 (*root)->parent = NULL;
295 if ((*root)->kids[0]) (*root)->kids[0]->parent = (*root);
296 if ((*root)->kids[1]) (*root)->kids[1]->parent = (*root);
297 LOG((" new root is %p/%d \"%s\" %p/%d\n",
298 (*root)->kids[0], (*root)->counts[0],
299 (*root)->elems[0],
300 (*root)->kids[1], (*root)->counts[1]));
301 return 1; /* root moved */
302 }
303}
304
305/*
306 * Add an element e to a 2-3-4 tree t. Returns e on success, or if
307 * an existing element compares equal, returns that.
308 */
309static void *add234_internal(tree234 *t, void *e, int index) {
310 node234 *n;
311 int ki;
312 void *orig_e = e;
313 int c;
314
315 LOG(("adding element \"%s\" to tree %p\n", e, t));
316 if (t->root == NULL) {
317 t->root = mknew(node234);
318 t->root->elems[1] = t->root->elems[2] = NULL;
319 t->root->kids[0] = t->root->kids[1] = NULL;
320 t->root->kids[2] = t->root->kids[3] = NULL;
321 t->root->counts[0] = t->root->counts[1] = 0;
322 t->root->counts[2] = t->root->counts[3] = 0;
323 t->root->parent = NULL;
324 t->root->elems[0] = e;
325 LOG((" created root %p\n", t->root));
326 return orig_e;
327 }
328
329 n = t->root;
330 while (n) {
331 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
332 n,
333 n->kids[0], n->counts[0], n->elems[0],
334 n->kids[1], n->counts[1], n->elems[1],
335 n->kids[2], n->counts[2], n->elems[2],
336 n->kids[3], n->counts[3]));
337 if (index >= 0) {
338 if (!n->kids[0]) {
339 /*
340 * Leaf node. We want to insert at kid position
341 * equal to the index:
342 *
343 * 0 A 1 B 2 C 3
344 */
345 ki = index;
346 } else {
347 /*
348 * Internal node. We always descend through it (add
349 * always starts at the bottom, never in the
350 * middle).
351 */
352 if (index <= n->counts[0]) {
353 ki = 0;
354 } else if (index -= n->counts[0] + 1, index <= n->counts[1]) {
355 ki = 1;
356 } else if (index -= n->counts[1] + 1, index <= n->counts[2]) {
357 ki = 2;
358 } else if (index -= n->counts[2] + 1, index <= n->counts[3]) {
359 ki = 3;
360 } else
361 return NULL; /* error: index out of range */
362 }
363 } else {
364 if ((c = t->cmp(e, n->elems[0])) < 0)
365 ki = 0;
366 else if (c == 0)
367 return n->elems[0]; /* already exists */
368 else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
369 ki = 1;
370 else if (c == 0)
371 return n->elems[1]; /* already exists */
372 else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
373 ki = 2;
374 else if (c == 0)
375 return n->elems[2]; /* already exists */
376 else
377 ki = 3;
378 }
379 LOG((" moving to child %d (%p)\n", ki, n->kids[ki]));
380 if (!n->kids[ki])
381 break;
382 n = n->kids[ki];
383 }
384
385 add234_insert(NULL, e, NULL, &t->root, n, ki);
386
387 return orig_e;
388}
389
390void *add234(tree234 *t, void *e) {
391 if (!t->cmp) /* tree is unsorted */
392 return NULL;
393
394 return add234_internal(t, e, -1);
395}
396void *addpos234(tree234 *t, void *e, int index) {
397 if (index < 0 || /* index out of range */
398 t->cmp) /* tree is sorted */
399 return NULL; /* return failure */
400
401 return add234_internal(t, e, index); /* this checks the upper bound */
402}
403
404/*
405 * Look up the element at a given numeric index in a 2-3-4 tree.
406 * Returns NULL if the index is out of range.
407 */
408void *index234(tree234 *t, int index) {
409 node234 *n;
410
411 if (!t->root)
412 return NULL; /* tree is empty */
413
414 if (index < 0 || index >= countnode234(t->root))
415 return NULL; /* out of range */
416
417 n = t->root;
418
419 while (n) {
420 if (index < n->counts[0])
421 n = n->kids[0];
422 else if (index -= n->counts[0] + 1, index < 0)
423 return n->elems[0];
424 else if (index < n->counts[1])
425 n = n->kids[1];
426 else if (index -= n->counts[1] + 1, index < 0)
427 return n->elems[1];
428 else if (index < n->counts[2])
429 n = n->kids[2];
430 else if (index -= n->counts[2] + 1, index < 0)
431 return n->elems[2];
432 else
433 n = n->kids[3];
434 }
435
436 /* We shouldn't ever get here. I wonder how we did. */
437 return NULL;
438}
439
440/*
441 * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
442 * found. e is always passed as the first argument to cmp, so cmp
443 * can be an asymmetric function if desired. cmp can also be passed
444 * as NULL, in which case the compare function from the tree proper
445 * will be used.
446 */
447void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,
448 int relation, int *index) {
449 node234 *n;
450 void *ret;
451 int c;
452 int idx, ecount, kcount, cmpret;
453
454 if (t->root == NULL)
455 return NULL;
456
457 if (cmp == NULL)
458 cmp = t->cmp;
459
460 n = t->root;
461 /*
462 * Attempt to find the element itself.
463 */
464 idx = 0;
465 ecount = -1;
466 /*
467 * Prepare a fake `cmp' result if e is NULL.
468 */
469 cmpret = 0;
470 if (e == NULL) {
471 assert(relation == REL234_LT || relation == REL234_GT);
472 if (relation == REL234_LT)
473 cmpret = +1; /* e is a max: always greater */
474 else if (relation == REL234_GT)
475 cmpret = -1; /* e is a min: always smaller */
476 }
477 while (1) {
478 for (kcount = 0; kcount < 4; kcount++) {
479 if (kcount >= 3 || n->elems[kcount] == NULL ||
480 (c = cmpret ? cmpret : cmp(e, n->elems[kcount])) < 0) {
481 break;
482 }
483 if (n->kids[kcount]) idx += n->counts[kcount];
484 if (c == 0) {
485 ecount = kcount;
486 break;
487 }
488 idx++;
489 }
490 if (ecount >= 0)
491 break;
492 if (n->kids[kcount])
493 n = n->kids[kcount];
494 else
495 break;
496 }
497
498 if (ecount >= 0) {
499 /*
500 * We have found the element we're looking for. It's
501 * n->elems[ecount], at tree index idx. If our search
502 * relation is EQ, LE or GE we can now go home.
503 */
504 if (relation != REL234_LT && relation != REL234_GT) {
505 if (index) *index = idx;
506 return n->elems[ecount];
507 }
508
509 /*
510 * Otherwise, we'll do an indexed lookup for the previous
511 * or next element. (It would be perfectly possible to
512 * implement these search types in a non-counted tree by
513 * going back up from where we are, but far more fiddly.)
514 */
515 if (relation == REL234_LT)
516 idx--;
517 else
518 idx++;
519 } else {
520 /*
521 * We've found our way to the bottom of the tree and we
522 * know where we would insert this node if we wanted to:
523 * we'd put it in in place of the (empty) subtree
524 * n->kids[kcount], and it would have index idx
525 *
526 * But the actual element isn't there. So if our search
527 * relation is EQ, we're doomed.
528 */
529 if (relation == REL234_EQ)
530 return NULL;
531
532 /*
533 * Otherwise, we must do an index lookup for index idx-1
534 * (if we're going left - LE or LT) or index idx (if we're
535 * going right - GE or GT).
536 */
537 if (relation == REL234_LT || relation == REL234_LE) {
538 idx--;
539 }
540 }
541
542 /*
543 * We know the index of the element we want; just call index234
544 * to do the rest. This will return NULL if the index is out of
545 * bounds, which is exactly what we want.
546 */
547 ret = index234(t, idx);
548 if (ret && index) *index = idx;
549 return ret;
550}
551void *find234(tree234 *t, void *e, cmpfn234 cmp) {
552 return findrelpos234(t, e, cmp, REL234_EQ, NULL);
553}
554void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation) {
555 return findrelpos234(t, e, cmp, relation, NULL);
556}
557void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index) {
558 return findrelpos234(t, e, cmp, REL234_EQ, index);
559}
560
561/*
562 * Tree transformation used in delete and split: move a subtree
563 * right, from child ki of a node to the next child. Update k and
564 * index so that they still point to the same place in the
565 * transformed tree. Assumes the destination child is not full, and
566 * that the source child does have a subtree to spare. Can cope if
567 * the destination child is undersized.
568 *
569 * . C . . B .
570 * / \ -> / \
571 * [more] a A b B c d D e [more] a A b c C d D e
572 *
573 * . C . . B .
574 * / \ -> / \
575 * [more] a A b B c d [more] a A b c C d
576 */
577static void trans234_subtree_right(node234 *n, int ki, int *k, int *index) {
578 node234 *src, *dest;
579 int i, srclen, adjust;
580
581 src = n->kids[ki];
582 dest = n->kids[ki+1];
583
584 LOG((" trans234_subtree_right(%p, %d):\n", n, ki));
585 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
586 n,
587 n->kids[0], n->counts[0], n->elems[0],
588 n->kids[1], n->counts[1], n->elems[1],
589 n->kids[2], n->counts[2], n->elems[2],
590 n->kids[3], n->counts[3]));
591 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
592 src,
593 src->kids[0], src->counts[0], src->elems[0],
594 src->kids[1], src->counts[1], src->elems[1],
595 src->kids[2], src->counts[2], src->elems[2],
596 src->kids[3], src->counts[3]));
597 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
598 dest,
599 dest->kids[0], dest->counts[0], dest->elems[0],
600 dest->kids[1], dest->counts[1], dest->elems[1],
601 dest->kids[2], dest->counts[2], dest->elems[2],
602 dest->kids[3], dest->counts[3]));
603 /*
604 * Move over the rest of the destination node to make space.
605 */
606 dest->kids[3] = dest->kids[2]; dest->counts[3] = dest->counts[2];
607 dest->elems[2] = dest->elems[1];
608 dest->kids[2] = dest->kids[1]; dest->counts[2] = dest->counts[1];
609 dest->elems[1] = dest->elems[0];
610 dest->kids[1] = dest->kids[0]; dest->counts[1] = dest->counts[0];
611
612 /* which element to move over */
613 i = (src->elems[2] ? 2 : src->elems[1] ? 1 : 0);
614
615 dest->elems[0] = n->elems[ki];
616 n->elems[ki] = src->elems[i];
617 src->elems[i] = NULL;
618
619 dest->kids[0] = src->kids[i+1]; dest->counts[0] = src->counts[i+1];
620 src->kids[i+1] = NULL; src->counts[i+1] = 0;
621
622 if (dest->kids[0]) dest->kids[0]->parent = dest;
623
624 adjust = dest->counts[0] + 1;
625
626 n->counts[ki] -= adjust;
627 n->counts[ki+1] += adjust;
628
629 srclen = n->counts[ki];
630
631 if (k) {
632 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
633 if ((*k) == ki && (*index) > srclen) {
634 (*index) -= srclen + 1;
635 (*k)++;
636 } else if ((*k) == ki+1) {
637 (*index) += adjust;
638 }
639 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
640 }
641
642 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
643 n,
644 n->kids[0], n->counts[0], n->elems[0],
645 n->kids[1], n->counts[1], n->elems[1],
646 n->kids[2], n->counts[2], n->elems[2],
647 n->kids[3], n->counts[3]));
648 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
649 src,
650 src->kids[0], src->counts[0], src->elems[0],
651 src->kids[1], src->counts[1], src->elems[1],
652 src->kids[2], src->counts[2], src->elems[2],
653 src->kids[3], src->counts[3]));
654 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
655 dest,
656 dest->kids[0], dest->counts[0], dest->elems[0],
657 dest->kids[1], dest->counts[1], dest->elems[1],
658 dest->kids[2], dest->counts[2], dest->elems[2],
659 dest->kids[3], dest->counts[3]));
660}
661
662/*
663 * Tree transformation used in delete and split: move a subtree
664 * left, from child ki of a node to the previous child. Update k
665 * and index so that they still point to the same place in the
666 * transformed tree. Assumes the destination child is not full, and
667 * that the source child does have a subtree to spare. Can cope if
668 * the destination child is undersized.
669 *
670 * . B . . C .
671 * / \ -> / \
672 * a A b c C d D e [more] a A b B c d D e [more]
673 *
674 * . A . . B .
675 * / \ -> / \
676 * a b B c C d [more] a A b c C d [more]
677 */
678static void trans234_subtree_left(node234 *n, int ki, int *k, int *index) {
679 node234 *src, *dest;
680 int i, adjust;
681
682 src = n->kids[ki];
683 dest = n->kids[ki-1];
684
685 LOG((" trans234_subtree_left(%p, %d):\n", n, ki));
686 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
687 n,
688 n->kids[0], n->counts[0], n->elems[0],
689 n->kids[1], n->counts[1], n->elems[1],
690 n->kids[2], n->counts[2], n->elems[2],
691 n->kids[3], n->counts[3]));
692 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
693 dest,
694 dest->kids[0], dest->counts[0], dest->elems[0],
695 dest->kids[1], dest->counts[1], dest->elems[1],
696 dest->kids[2], dest->counts[2], dest->elems[2],
697 dest->kids[3], dest->counts[3]));
698 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
699 src,
700 src->kids[0], src->counts[0], src->elems[0],
701 src->kids[1], src->counts[1], src->elems[1],
702 src->kids[2], src->counts[2], src->elems[2],
703 src->kids[3], src->counts[3]));
704
705 /* where in dest to put it */
706 i = (dest->elems[1] ? 2 : dest->elems[0] ? 1 : 0);
707 dest->elems[i] = n->elems[ki-1];
708 n->elems[ki-1] = src->elems[0];
709
710 dest->kids[i+1] = src->kids[0]; dest->counts[i+1] = src->counts[0];
711
712 if (dest->kids[i+1]) dest->kids[i+1]->parent = dest;
713
714 /*
715 * Move over the rest of the source node.
716 */
717 src->kids[0] = src->kids[1]; src->counts[0] = src->counts[1];
718 src->elems[0] = src->elems[1];
719 src->kids[1] = src->kids[2]; src->counts[1] = src->counts[2];
720 src->elems[1] = src->elems[2];
721 src->kids[2] = src->kids[3]; src->counts[2] = src->counts[3];
722 src->elems[2] = NULL;
723 src->kids[3] = NULL; src->counts[3] = 0;
724
725 adjust = dest->counts[i+1] + 1;
726
727 n->counts[ki] -= adjust;
728 n->counts[ki-1] += adjust;
729
730 if (k) {
731 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
732 if ((*k) == ki) {
733 (*index) -= adjust;
734 if ((*index) < 0) {
735 (*index) += n->counts[ki-1] + 1;
736 (*k)--;
737 }
738 }
739 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
740 }
741
742 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
743 n,
744 n->kids[0], n->counts[0], n->elems[0],
745 n->kids[1], n->counts[1], n->elems[1],
746 n->kids[2], n->counts[2], n->elems[2],
747 n->kids[3], n->counts[3]));
748 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
749 dest,
750 dest->kids[0], dest->counts[0], dest->elems[0],
751 dest->kids[1], dest->counts[1], dest->elems[1],
752 dest->kids[2], dest->counts[2], dest->elems[2],
753 dest->kids[3], dest->counts[3]));
754 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
755 src,
756 src->kids[0], src->counts[0], src->elems[0],
757 src->kids[1], src->counts[1], src->elems[1],
758 src->kids[2], src->counts[2], src->elems[2],
759 src->kids[3], src->counts[3]));
760}
761
762/*
763 * Tree transformation used in delete and split: merge child nodes
764 * ki and ki+1 of a node. Update k and index so that they still
765 * point to the same place in the transformed tree. Assumes both
766 * children _are_ sufficiently small.
767 *
768 * . B . .
769 * / \ -> |
770 * a A b c C d a A b B c C d
771 *
772 * This routine can also cope with either child being undersized:
773 *
774 * . A . .
775 * / \ -> |
776 * a b B c a A b B c
777 *
778 * . A . .
779 * / \ -> |
780 * a b B c C d a A b B c C d
781 */
782static void trans234_subtree_merge(node234 *n, int ki, int *k, int *index) {
783 node234 *left, *right;
784 int i, leftlen, rightlen, lsize, rsize;
785
786 left = n->kids[ki]; leftlen = n->counts[ki];
787 right = n->kids[ki+1]; rightlen = n->counts[ki+1];
788
789 LOG((" trans234_subtree_merge(%p, %d):\n", n, ki));
790 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
791 n,
792 n->kids[0], n->counts[0], n->elems[0],
793 n->kids[1], n->counts[1], n->elems[1],
794 n->kids[2], n->counts[2], n->elems[2],
795 n->kids[3], n->counts[3]));
796 LOG((" left %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
797 left,
798 left->kids[0], left->counts[0], left->elems[0],
799 left->kids[1], left->counts[1], left->elems[1],
800 left->kids[2], left->counts[2], left->elems[2],
801 left->kids[3], left->counts[3]));
802 LOG((" right %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
803 right,
804 right->kids[0], right->counts[0], right->elems[0],
805 right->kids[1], right->counts[1], right->elems[1],
806 right->kids[2], right->counts[2], right->elems[2],
807 right->kids[3], right->counts[3]));
808
809 assert(!left->elems[2] && !right->elems[2]); /* neither is large! */
810 lsize = (left->elems[1] ? 2 : left->elems[0] ? 1 : 0);
811 rsize = (right->elems[1] ? 2 : right->elems[0] ? 1 : 0);
812
813 left->elems[lsize] = n->elems[ki];
814
815 for (i = 0; i < rsize+1; i++) {
816 left->kids[lsize+1+i] = right->kids[i];
817 left->counts[lsize+1+i] = right->counts[i];
818 if (left->kids[lsize+1+i])
819 left->kids[lsize+1+i]->parent = left;
820 if (i < rsize)
821 left->elems[lsize+1+i] = right->elems[i];
822 }
823
824 n->counts[ki] += rightlen + 1;
825
826 sfree(right);
827
828 /*
829 * Move the rest of n up by one.
830 */
831 for (i = ki+1; i < 3; i++) {
832 n->kids[i] = n->kids[i+1];
833 n->counts[i] = n->counts[i+1];
834 }
835 for (i = ki; i < 2; i++) {
836 n->elems[i] = n->elems[i+1];
837 }
838 n->kids[3] = NULL;
839 n->counts[3] = 0;
840 n->elems[2] = NULL;
841
842 if (k) {
843 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
844 if ((*k) == ki+1) {
845 (*k)--;
846 (*index) += leftlen + 1;
847 } else if ((*k) > ki+1) {
848 (*k)--;
849 }
850 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
851 }
852
853 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
854 n,
855 n->kids[0], n->counts[0], n->elems[0],
856 n->kids[1], n->counts[1], n->elems[1],
857 n->kids[2], n->counts[2], n->elems[2],
858 n->kids[3], n->counts[3]));
859 LOG((" merged %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
860 left,
861 left->kids[0], left->counts[0], left->elems[0],
862 left->kids[1], left->counts[1], left->elems[1],
863 left->kids[2], left->counts[2], left->elems[2],
864 left->kids[3], left->counts[3]));
865
866}
867
868/*
869 * Delete an element e in a 2-3-4 tree. Does not free the element,
870 * merely removes all links to it from the tree nodes.
871 */
872static void *delpos234_internal(tree234 *t, int index) {
873 node234 *n;
874 void *retval;
875 int ki, i;
876
877 retval = NULL;
878
879 n = t->root; /* by assumption this is non-NULL */
880 LOG(("deleting item %d from tree %p\n", index, t));
881 while (1) {
882 node234 *sub;
883
884 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
885 n,
886 n->kids[0], n->counts[0], n->elems[0],
887 n->kids[1], n->counts[1], n->elems[1],
888 n->kids[2], n->counts[2], n->elems[2],
889 n->kids[3], n->counts[3],
890 index));
891 if (index <= n->counts[0]) {
892 ki = 0;
893 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
894 ki = 1;
895 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
896 ki = 2;
897 } else if (index -= n->counts[2]+1, index <= n->counts[3]) {
898 ki = 3;
899 } else {
900 assert(0); /* can't happen */
901 }
902
903 if (!n->kids[0])
904 break; /* n is a leaf node; we're here! */
905
906 /*
907 * Check to see if we've found our target element. If so,
908 * we must choose a new target (we'll use the old target's
909 * successor, which will be in a leaf), move it into the
910 * place of the old one, continue down to the leaf and
911 * delete the old copy of the new target.
912 */
913 if (index == n->counts[ki]) {
914 node234 *m;
915 LOG((" found element in internal node, index %d\n", ki));
916 assert(n->elems[ki]); /* must be a kid _before_ an element */
917 ki++; index = 0;
918 for (m = n->kids[ki]; m->kids[0]; m = m->kids[0])
919 continue;
920 LOG((" replacing with element \"%s\" from leaf node %p\n",
921 m->elems[0], m));
922 retval = n->elems[ki-1];
923 n->elems[ki-1] = m->elems[0];
924 }
925
926 /*
927 * Recurse down to subtree ki. If it has only one element,
928 * we have to do some transformation to start with.
929 */
930 LOG((" moving to subtree %d\n", ki));
931 sub = n->kids[ki];
932 if (!sub->elems[1]) {
933 LOG((" subtree has only one element!\n"));
934 if (ki > 0 && n->kids[ki-1]->elems[1]) {
935 /*
936 * Child ki has only one element, but child
937 * ki-1 has two or more. So we need to move a
938 * subtree from ki-1 to ki.
939 */
940 trans234_subtree_right(n, ki-1, &ki, &index);
941 } else if (ki < 3 && n->kids[ki+1] &&
942 n->kids[ki+1]->elems[1]) {
943 /*
944 * Child ki has only one element, but ki+1 has
945 * two or more. Move a subtree from ki+1 to ki.
946 */
947 trans234_subtree_left(n, ki+1, &ki, &index);
948 } else {
949 /*
950 * ki is small with only small neighbours. Pick a
951 * neighbour and merge with it.
952 */
953 trans234_subtree_merge(n, ki>0 ? ki-1 : ki, &ki, &index);
954 sub = n->kids[ki];
955
956 if (!n->elems[0]) {
957 /*
958 * The root is empty and needs to be
959 * removed.
960 */
961 LOG((" shifting root!\n"));
962 t->root = sub;
963 sub->parent = NULL;
964 sfree(n);
965 n = NULL;
966 }
967 }
968 }
969
970 if (n)
971 n->counts[ki]--;
972 n = sub;
973 }
974
975 /*
976 * Now n is a leaf node, and ki marks the element number we
977 * want to delete. We've already arranged for the leaf to be
978 * bigger than minimum size, so let's just go to it.
979 */
980 assert(!n->kids[0]);
981 if (!retval)
982 retval = n->elems[ki];
983
984 for (i = ki; i < 2 && n->elems[i+1]; i++)
985 n->elems[i] = n->elems[i+1];
986 n->elems[i] = NULL;
987
988 /*
989 * It's just possible that we have reduced the leaf to zero
990 * size. This can only happen if it was the root - so destroy
991 * it and make the tree empty.
992 */
993 if (!n->elems[0]) {
994 LOG((" removed last element in tree, destroying empty root\n"));
995 assert(n == t->root);
996 sfree(n);
997 t->root = NULL;
998 }
999
1000 return retval; /* finished! */
1001}
1002void *delpos234(tree234 *t, int index) {
1003 if (index < 0 || index >= countnode234(t->root))
1004 return NULL;
1005 return delpos234_internal(t, index);
1006}
1007void *del234(tree234 *t, void *e) {
1008 int index;
1009 if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
1010 return NULL; /* it wasn't in there anyway */
1011 return delpos234_internal(t, index); /* it's there; delete it. */
1012}
1013
1014/*
1015 * Join two subtrees together with a separator element between
1016 * them, given their relative height.
1017 *
1018 * (Height<0 means the left tree is shorter, >0 means the right
1019 * tree is shorter, =0 means (duh) they're equal.)
1020 *
1021 * It is assumed that any checks needed on the ordering criterion
1022 * have _already_ been done.
1023 *
1024 * The value returned in `height' is 0 or 1 depending on whether the
1025 * resulting tree is the same height as the original larger one, or
1026 * one higher.
1027 */
1028static node234 *join234_internal(node234 *left, void *sep,
1029 node234 *right, int *height) {
1030 node234 *root, *node;
1031 int relht = *height;
1032 int ki;
1033
1034 LOG((" join: joining %p \"%s\" %p, relative height is %d\n",
1035 left, sep, right, relht));
1036 if (relht == 0) {
1037 /*
1038 * The trees are the same height. Create a new one-element
1039 * root containing the separator and pointers to the two
1040 * nodes.
1041 */
1042 node234 *newroot;
1043 newroot = mknew(node234);
1044 newroot->kids[0] = left; newroot->counts[0] = countnode234(left);
1045 newroot->elems[0] = sep;
1046 newroot->kids[1] = right; newroot->counts[1] = countnode234(right);
1047 newroot->elems[1] = NULL;
1048 newroot->kids[2] = NULL; newroot->counts[2] = 0;
1049 newroot->elems[2] = NULL;
1050 newroot->kids[3] = NULL; newroot->counts[3] = 0;
1051 newroot->parent = NULL;
1052 if (left) left->parent = newroot;
1053 if (right) right->parent = newroot;
1054 *height = 1;
1055 LOG((" join: same height, brand new root\n"));
1056 return newroot;
1057 }
1058
1059 /*
1060 * This now works like the addition algorithm on the larger
1061 * tree. We're replacing a single kid pointer with two kid
1062 * pointers separated by an element; if that causes the node to
1063 * overload, we split it in two, move a separator element up to
1064 * the next node, and repeat.
1065 */
1066 if (relht < 0) {
1067 /*
1068 * Left tree is shorter. Search down the right tree to find
1069 * the pointer we're inserting at.
1070 */
1071 node = root = right;
1072 while (++relht < 0) {
1073 node = node->kids[0];
1074 }
1075 ki = 0;
1076 right = node->kids[ki];
1077 } else {
1078 /*
1079 * Right tree is shorter; search down the left to find the
1080 * pointer we're inserting at.
1081 */
1082 node = root = left;
1083 while (--relht > 0) {
1084 if (node->elems[2])
1085 node = node->kids[3];
1086 else if (node->elems[1])
1087 node = node->kids[2];
1088 else
1089 node = node->kids[1];
1090 }
1091 if (node->elems[2])
1092 ki = 3;
1093 else if (node->elems[1])
1094 ki = 2;
1095 else
1096 ki = 1;
1097 left = node->kids[ki];
1098 }
1099
1100 /*
1101 * Now proceed as for addition.
1102 */
1103 *height = add234_insert(left, sep, right, &root, node, ki);
1104
1105 return root;
1106}
1107static int height234(tree234 *t) {
1108 int level = 0;
1109 node234 *n = t->root;
1110 while (n) {
1111 level++;
1112 n = n->kids[0];
1113 }
1114 return level;
1115}
1116tree234 *join234(tree234 *t1, tree234 *t2) {
1117 int size2 = countnode234(t2->root);
1118 if (size2 > 0) {
1119 void *element;
1120 int relht;
1121
1122 if (t1->cmp) {
1123 element = index234(t2, 0);
1124 element = findrelpos234(t1, element, NULL, REL234_GE, NULL);
1125 if (element)
1126 return NULL;
1127 }
1128
1129 element = delpos234(t2, 0);
1130 relht = height234(t1) - height234(t2);
1131 t1->root = join234_internal(t1->root, element, t2->root, &relht);
1132 t2->root = NULL;
1133 }
1134 return t1;
1135}
1136tree234 *join234r(tree234 *t1, tree234 *t2) {
1137 int size1 = countnode234(t1->root);
1138 if (size1 > 0) {
1139 void *element;
1140 int relht;
1141
1142 if (t2->cmp) {
1143 element = index234(t1, size1-1);
1144 element = findrelpos234(t2, element, NULL, REL234_LE, NULL);
1145 if (element)
1146 return NULL;
1147 }
1148
1149 element = delpos234(t1, size1-1);
1150 relht = height234(t1) - height234(t2);
1151 t2->root = join234_internal(t1->root, element, t2->root, &relht);
1152 t1->root = NULL;
1153 }
1154 return t2;
1155}
1156
1157/*
1158 * Split out the first <index> elements in a tree and return a
1159 * pointer to the root node. Leave the root node of the remainder
1160 * in t.
1161 */
1162static node234 *split234_internal(tree234 *t, int index) {
1163 node234 *halves[2], *n, *sib, *sub;
1164 node234 *lparent, *rparent;
1165 int ki, pki, i, half, lcount, rcount;
1166
1167 n = t->root;
1168 LOG(("splitting tree %p at point %d\n", t, index));
1169
1170 /*
1171 * Easy special cases. After this we have also dealt completely
1172 * with the empty-tree case and we can assume the root exists.
1173 */
1174 if (index == 0) /* return nothing */
1175 return NULL;
1176 if (index == countnode234(t->root)) { /* return the whole tree */
1177 node234 *ret = t->root;
1178 t->root = NULL;
1179 return ret;
1180 }
1181
1182 /*
1183 * Search down the tree to find the split point.
1184 */
1185 lparent = rparent = NULL;
1186 pki = -1;
1187 while (n) {
1188 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
1189 n,
1190 n->kids[0], n->counts[0], n->elems[0],
1191 n->kids[1], n->counts[1], n->elems[1],
1192 n->kids[2], n->counts[2], n->elems[2],
1193 n->kids[3], n->counts[3],
1194 index));
1195 lcount = index;
1196 rcount = countnode234(n) - lcount;
1197 if (index <= n->counts[0]) {
1198 ki = 0;
1199 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
1200 ki = 1;
1201 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
1202 ki = 2;
1203 } else {
1204 index -= n->counts[2]+1;
1205 ki = 3;
1206 }
1207
1208 LOG((" splitting at subtree %d\n", ki));
1209 sub = n->kids[ki];
1210
1211 LOG((" splitting at child index %d\n", ki));
1212
1213 /*
1214 * Split the node, put halves[0] on the right of the left
1215 * one and halves[1] on the left of the right one, put the
1216 * new node pointers in halves[0] and halves[1], and go up
1217 * a level.
1218 */
1219 sib = mknew(node234);
1220 for (i = 0; i < 3; i++) {
1221 if (i+ki < 3 && n->elems[i+ki]) {
1222 sib->elems[i] = n->elems[i+ki];
1223 sib->kids[i+1] = n->kids[i+ki+1];
1224 if (sib->kids[i+1]) sib->kids[i+1]->parent = sib;
1225 sib->counts[i+1] = n->counts[i+ki+1];
1226 n->elems[i+ki] = NULL;
1227 n->kids[i+ki+1] = NULL;
1228 n->counts[i+ki+1] = 0;
1229 } else {
1230 sib->elems[i] = NULL;
1231 sib->kids[i+1] = NULL;
1232 sib->counts[i+1] = 0;
1233 }
1234 }
1235 if (lparent) {
1236 lparent->kids[pki] = n;
1237 lparent->counts[pki] = lcount;
1238 n->parent = lparent;
1239 rparent->kids[0] = sib;
1240 rparent->counts[0] = rcount;
1241 sib->parent = rparent;
1242 } else {
1243 halves[0] = n;
1244 n->parent = NULL;
1245 halves[1] = sib;
1246 sib->parent = NULL;
1247 }
1248 lparent = n;
1249 rparent = sib;
1250 pki = ki;
1251 LOG((" left node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1252 n,
1253 n->kids[0], n->counts[0], n->elems[0],
1254 n->kids[1], n->counts[1], n->elems[1],
1255 n->kids[2], n->counts[2], n->elems[2],
1256 n->kids[3], n->counts[3]));
1257 LOG((" right node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1258 sib,
1259 sib->kids[0], sib->counts[0], sib->elems[0],
1260 sib->kids[1], sib->counts[1], sib->elems[1],
1261 sib->kids[2], sib->counts[2], sib->elems[2],
1262 sib->kids[3], sib->counts[3]));
1263
1264 n = sub;
1265 }
1266
1267 /*
1268 * We've come off the bottom here, so we've successfully split
1269 * the tree into two equally high subtrees. The only problem is
1270 * that some of the nodes down the fault line will be smaller
1271 * than the minimum permitted size. (Since this is a 2-3-4
1272 * tree, that means they'll be zero-element one-child nodes.)
1273 */
1274 LOG((" fell off bottom, lroot is %p, rroot is %p\n",
1275 halves[0], halves[1]));
1276 lparent->counts[pki] = rparent->counts[0] = 0;
1277 lparent->kids[pki] = rparent->kids[0] = NULL;
1278
1279 /*
1280 * So now we go back down the tree from each of the two roots,
1281 * fixing up undersize nodes.
1282 */
1283 for (half = 0; half < 2; half++) {
1284 /*
1285 * Remove the root if it's undersize (it will contain only
1286 * one child pointer, so just throw it away and replace it
1287 * with its child). This might happen several times.
1288 */
1289 while (halves[half] && !halves[half]->elems[0]) {
1290 LOG((" root %p is undersize, throwing away\n", halves[half]));
1291 halves[half] = halves[half]->kids[0];
1292 sfree(halves[half]->parent);
1293 halves[half]->parent = NULL;
1294 LOG((" new root is %p\n", halves[half]));
1295 }
1296
1297 n = halves[half];
1298 while (n) {
1299 void (*toward)(node234 *n, int ki, int *k, int *index);
1300 int ni, merge;
1301
1302 /*
1303 * Now we have a potentially undersize node on the
1304 * right (if half==0) or left (if half==1). Sort it
1305 * out, by merging with a neighbour or by transferring
1306 * subtrees over. At this time we must also ensure that
1307 * nodes are bigger than minimum, in case we need an
1308 * element to merge two nodes below.
1309 */
1310 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1311 n,
1312 n->kids[0], n->counts[0], n->elems[0],
1313 n->kids[1], n->counts[1], n->elems[1],
1314 n->kids[2], n->counts[2], n->elems[2],
1315 n->kids[3], n->counts[3]));
1316 if (half == 1) {
1317 ki = 0; /* the kid we're interested in */
1318 ni = 1; /* the neighbour */
1319 merge = 0; /* for merge: leftmost of the two */
1320 toward = trans234_subtree_left;
1321 } else {
1322 ki = (n->kids[3] ? 3 : n->kids[2] ? 2 : 1);
1323 ni = ki-1;
1324 merge = ni;
1325 toward = trans234_subtree_right;
1326 }
1327
1328 sub = n->kids[ki];
1329 if (sub && !sub->elems[1]) {
1330 /*
1331 * This node is undersized or minimum-size. If we
1332 * can merge it with its neighbour, we do so;
1333 * otherwise we must be able to transfer subtrees
1334 * over to it until it is greater than minimum
1335 * size.
1336 */
1337 int undersized = (!sub->elems[0]);
1338 LOG((" child %d is %ssize\n", ki,
1339 undersized ? "under" : "minimum-"));
1340 LOG((" neighbour is %s\n",
1341 n->kids[ni]->elems[2] ? "large" :
1342 n->kids[ni]->elems[1] ? "medium" : "small"));
1343 if (!n->kids[ni]->elems[1] ||
1344 (undersized && !n->kids[ni]->elems[2])) {
1345 /*
1346 * Neighbour is small, or possibly neighbour is
1347 * medium and we are undersize.
1348 */
1349 trans234_subtree_merge(n, merge, NULL, NULL);
1350 sub = n->kids[merge];
1351 if (!n->elems[0]) {
1352 /*
1353 * n is empty, and hence must have been the
1354 * root and needs to be removed.
1355 */
1356 assert(!n->parent);
1357 LOG((" shifting root!\n"));
1358 halves[half] = sub;
1359 halves[half]->parent = NULL;
1360 sfree(n);
1361 }
1362 } else {
1363 /* Neighbour is big enough to move trees over. */
1364 toward(n, ni, NULL, NULL);
1365 if (undersized)
1366 toward(n, ni, NULL, NULL);
1367 }
1368 }
1369 n = sub;
1370 }
1371 }
1372
1373 t->root = halves[1];
1374 return halves[0];
1375}
1376tree234 *splitpos234(tree234 *t, int index, int before) {
1377 tree234 *ret;
1378 node234 *n;
1379 int count;
1380
1381 count = countnode234(t->root);
1382 if (index < 0 || index > count)
1383 return NULL; /* error */
1384 ret = newtree234(t->cmp);
1385 n = split234_internal(t, index);
1386 if (before) {
1387 /* We want to return the ones before the index. */
1388 ret->root = n;
1389 } else {
1390 /*
1391 * We want to keep the ones before the index and return the
1392 * ones after.
1393 */
1394 ret->root = t->root;
1395 t->root = n;
1396 }
1397 return ret;
1398}
1399tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel) {
1400 int before;
1401 int index;
1402
1403 assert(rel != REL234_EQ);
1404
1405 if (rel == REL234_GT || rel == REL234_GE) {
1406 before = 1;
1407 rel = (rel == REL234_GT ? REL234_LE : REL234_LT);
1408 } else {
1409 before = 0;
1410 }
1411 if (!findrelpos234(t, e, cmp, rel, &index))
1412 index = 0;
1413
1414 return splitpos234(t, index+1, before);
1415}
1416
1417static node234 *copynode234(node234 *n, copyfn234 copyfn, void *copyfnstate) {
1418 int i;
1419 node234 *n2 = mknew(node234);
1420
1421 for (i = 0; i < 3; i++) {
1422 if (n->elems[i] && copyfn)
1423 n2->elems[i] = copyfn(copyfnstate, n->elems[i]);
1424 else
1425 n2->elems[i] = n->elems[i];
1426 }
1427
1428 for (i = 0; i < 4; i++) {
1429 if (n->kids[i]) {
1430 n2->kids[i] = copynode234(n->kids[i], copyfn, copyfnstate);
1431 n2->kids[i]->parent = n2;
1432 } else {
1433 n2->kids[i] = NULL;
1434 }
1435 n2->counts[i] = n->counts[i];
1436 }
1437
1438 return n2;
1439}
1440tree234 *copytree234(tree234 *t, copyfn234 copyfn, void *copyfnstate) {
1441 tree234 *t2;
1442
1443 t2 = newtree234(t->cmp);
1444 t2->root = copynode234(t->root, copyfn, copyfnstate);
1445 t2->root->parent = NULL;
1446
1447 return t2;
1448}
1449
1450#ifdef TEST
1451
1452/*
1453 * Test code for the 2-3-4 tree. This code maintains an alternative
1454 * representation of the data in the tree, in an array (using the
1455 * obvious and slow insert and delete functions). After each tree
1456 * operation, the verify() function is called, which ensures all
1457 * the tree properties are preserved:
1458 * - node->child->parent always equals node
1459 * - tree->root->parent always equals NULL
1460 * - number of kids == 0 or number of elements + 1;
1461 * - tree has the same depth everywhere
1462 * - every node has at least one element
1463 * - subtree element counts are accurate
1464 * - any NULL kid pointer is accompanied by a zero count
1465 * - in a sorted tree: ordering property between elements of a
1466 * node and elements of its children is preserved
1467 * and also ensures the list represented by the tree is the same
1468 * list it should be. (This last check also doubly verifies the
1469 * ordering properties, because the `same list it should be' is by
1470 * definition correctly ordered. It also ensures all nodes are
1471 * distinct, because the enum functions would get caught in a loop
1472 * if not.)
1473 */
1474
1475#include <stdarg.h>
1476
1477#define srealloc realloc
1478
1479/*
1480 * Error reporting function.
1481 */
1482void error(char *fmt, ...) {
1483 va_list ap;
1484 printf("ERROR: ");
1485 va_start(ap, fmt);
1486 vfprintf(stdout, fmt, ap);
1487 va_end(ap);
1488 printf("\n");
1489}
1490
1491/* The array representation of the data. */
1492void **array;
1493int arraylen, arraysize;
1494cmpfn234 cmp;
1495
1496/* The tree representation of the same data. */
1497tree234 *tree;
1498
1499/*
1500 * Routines to provide a diagnostic printout of a tree. Currently
1501 * relies on every element in the tree being a one-character string
1502 * :-)
1503 */
1504typedef struct {
1505 char **levels;
1506} dispctx;
1507
1508int dispnode(node234 *n, int level, dispctx *ctx) {
1509 if (level == 0) {
1510 int xpos = strlen(ctx->levels[0]);
1511 int len;
1512
1513 if (n->elems[2])
1514 len = sprintf(ctx->levels[0]+xpos, " %s%s%s",
1515 n->elems[0], n->elems[1], n->elems[2]);
1516 else if (n->elems[1])
1517 len = sprintf(ctx->levels[0]+xpos, " %s%s",
1518 n->elems[0], n->elems[1]);
1519 else
1520 len = sprintf(ctx->levels[0]+xpos, " %s",
1521 n->elems[0]);
1522 return xpos + 1 + (len-1) / 2;
1523 } else {
1524 int xpos[4], nkids;
1525 int nodelen, mypos, myleft, x, i;
1526
1527 xpos[0] = dispnode(n->kids[0], level-3, ctx);
1528 xpos[1] = dispnode(n->kids[1], level-3, ctx);
1529 nkids = 2;
1530 if (n->kids[2]) {
1531 xpos[2] = dispnode(n->kids[2], level-3, ctx);
1532 nkids = 3;
1533 }
1534 if (n->kids[3]) {
1535 xpos[3] = dispnode(n->kids[3], level-3, ctx);
1536 nkids = 4;
1537 }
1538
1539 if (nkids == 4)
1540 mypos = (xpos[1] + xpos[2]) / 2;
1541 else if (nkids == 3)
1542 mypos = xpos[1];
1543 else
1544 mypos = (xpos[0] + xpos[1]) / 2;
1545 nodelen = nkids * 2 - 1;
1546 myleft = mypos - ((nodelen-1)/2);
1547 assert(myleft >= xpos[0]);
1548 assert(myleft + nodelen-1 <= xpos[nkids-1]);
1549
1550 x = strlen(ctx->levels[level]);
1551 while (x <= xpos[0] && x < myleft)
1552 ctx->levels[level][x++] = ' ';
1553 while (x < myleft)
1554 ctx->levels[level][x++] = '_';
1555 if (nkids==4)
1556 x += sprintf(ctx->levels[level]+x, ".%s.%s.%s.",
1557 n->elems[0], n->elems[1], n->elems[2]);
1558 else if (nkids==3)
1559 x += sprintf(ctx->levels[level]+x, ".%s.%s.",
1560 n->elems[0], n->elems[1]);
1561 else
1562 x += sprintf(ctx->levels[level]+x, ".%s.",
1563 n->elems[0]);
1564 while (x < xpos[nkids-1])
1565 ctx->levels[level][x++] = '_';
1566 ctx->levels[level][x] = '\0';
1567
1568 x = strlen(ctx->levels[level-1]);
1569 for (i = 0; i < nkids; i++) {
1570 int rpos, pos;
1571 rpos = xpos[i];
1572 if (i > 0 && i < nkids-1)
1573 pos = myleft + 2*i;
1574 else
1575 pos = rpos;
1576 if (rpos < pos)
1577 rpos++;
1578 while (x < pos && x < rpos)
1579 ctx->levels[level-1][x++] = ' ';
1580 if (x == pos)
1581 ctx->levels[level-1][x++] = '|';
1582 while (x < pos || x < rpos)
1583 ctx->levels[level-1][x++] = '_';
1584 if (x == pos)
1585 ctx->levels[level-1][x++] = '|';
1586 }
1587 ctx->levels[level-1][x] = '\0';
1588
1589 x = strlen(ctx->levels[level-2]);
1590 for (i = 0; i < nkids; i++) {
1591 int rpos = xpos[i];
1592
1593 while (x < rpos)
1594 ctx->levels[level-2][x++] = ' ';
1595 ctx->levels[level-2][x++] = '|';
1596 }
1597 ctx->levels[level-2][x] = '\0';
1598
1599 return mypos;
1600 }
1601}
1602
1603void disptree(tree234 *t) {
1604 dispctx ctx;
1605 char *leveldata;
1606 int width = count234(t);
1607 int ht = height234(t) * 3 - 2;
1608 int i;
1609
1610 if (!t->root) {
1611 printf("[empty tree]\n");
1612 }
1613
1614 leveldata = smalloc(ht * (width+2));
1615 ctx.levels = smalloc(ht * sizeof(char *));
1616 for (i = 0; i < ht; i++) {
1617 ctx.levels[i] = leveldata + i * (width+2);
1618 ctx.levels[i][0] = '\0';
1619 }
1620
1621 (void) dispnode(t->root, ht-1, &ctx);
1622
1623 for (i = ht; i-- ;)
1624 printf("%s\n", ctx.levels[i]);
1625
1626 sfree(ctx.levels);
1627 sfree(leveldata);
1628}
1629
1630typedef struct {
1631 int treedepth;
1632 int elemcount;
1633} chkctx;
1634
1635int chknode(chkctx *ctx, int level, node234 *node,
1636 void *lowbound, void *highbound) {
1637 int nkids, nelems;
1638 int i;
1639 int count;
1640
1641 /* Count the non-NULL kids. */
1642 for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
1643 /* Ensure no kids beyond the first NULL are non-NULL. */
1644 for (i = nkids; i < 4; i++)
1645 if (node->kids[i]) {
1646 error("node %p: nkids=%d but kids[%d] non-NULL",
1647 node, nkids, i);
1648 } else if (node->counts[i]) {
1649 error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
1650 node, i, i, node->counts[i]);
1651 }
1652
1653 /* Count the non-NULL elements. */
1654 for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
1655 /* Ensure no elements beyond the first NULL are non-NULL. */
1656 for (i = nelems; i < 3; i++)
1657 if (node->elems[i]) {
1658 error("node %p: nelems=%d but elems[%d] non-NULL",
1659 node, nelems, i);
1660 }
1661
1662 if (nkids == 0) {
1663 /*
1664 * If nkids==0, this is a leaf node; verify that the tree
1665 * depth is the same everywhere.
1666 */
1667 if (ctx->treedepth < 0)
1668 ctx->treedepth = level; /* we didn't know the depth yet */
1669 else if (ctx->treedepth != level)
1670 error("node %p: leaf at depth %d, previously seen depth %d",
1671 node, level, ctx->treedepth);
1672 } else {
1673 /*
1674 * If nkids != 0, then it should be nelems+1, unless nelems
1675 * is 0 in which case nkids should also be 0 (and so we
1676 * shouldn't be in this condition at all).
1677 */
1678 int shouldkids = (nelems ? nelems+1 : 0);
1679 if (nkids != shouldkids) {
1680 error("node %p: %d elems should mean %d kids but has %d",
1681 node, nelems, shouldkids, nkids);
1682 }
1683 }
1684
1685 /*
1686 * nelems should be at least 1.
1687 */
1688 if (nelems == 0) {
1689 error("node %p: no elems", node, nkids);
1690 }
1691
1692 /*
1693 * Add nelems to the running element count of the whole tree.
1694 */
1695 ctx->elemcount += nelems;
1696
1697 /*
1698 * Check ordering property: all elements should be strictly >
1699 * lowbound, strictly < highbound, and strictly < each other in
1700 * sequence. (lowbound and highbound are NULL at edges of tree
1701 * - both NULL at root node - and NULL is considered to be <
1702 * everything and > everything. IYSWIM.)
1703 */
1704 if (cmp) {
1705 for (i = -1; i < nelems; i++) {
1706 void *lower = (i == -1 ? lowbound : node->elems[i]);
1707 void *higher = (i+1 == nelems ? highbound : node->elems[i+1]);
1708 if (lower && higher && cmp(lower, higher) >= 0) {
1709 error("node %p: kid comparison [%d=%s,%d=%s] failed",
1710 node, i, lower, i+1, higher);
1711 }
1712 }
1713 }
1714
1715 /*
1716 * Check parent pointers: all non-NULL kids should have a
1717 * parent pointer coming back to this node.
1718 */
1719 for (i = 0; i < nkids; i++)
1720 if (node->kids[i]->parent != node) {
1721 error("node %p kid %d: parent ptr is %p not %p",
1722 node, i, node->kids[i]->parent, node);
1723 }
1724
1725
1726 /*
1727 * Now (finally!) recurse into subtrees.
1728 */
1729 count = nelems;
1730
1731 for (i = 0; i < nkids; i++) {
1732 void *lower = (i == 0 ? lowbound : node->elems[i-1]);
1733 void *higher = (i >= nelems ? highbound : node->elems[i]);
1734 int subcount = chknode(ctx, level+1, node->kids[i], lower, higher);
1735 if (node->counts[i] != subcount) {
1736 error("node %p kid %d: count says %d, subtree really has %d",
1737 node, i, node->counts[i], subcount);
1738 }
1739 count += subcount;
1740 }
1741
1742 return count;
1743}
1744
1745void verifytree(tree234 *tree, void **array, int arraylen) {
1746 chkctx ctx;
1747 int i;
1748 void *p;
1749
1750 ctx.treedepth = -1; /* depth unknown yet */
1751 ctx.elemcount = 0; /* no elements seen yet */
1752 /*
1753 * Verify validity of tree properties.
1754 */
1755 if (tree->root) {
1756 if (tree->root->parent != NULL)
1757 error("root->parent is %p should be null", tree->root->parent);
1758 chknode(&ctx, 0, tree->root, NULL, NULL);
1759 }
1760 printf("tree depth: %d\n", ctx.treedepth);
1761 /*
1762 * Enumerate the tree and ensure it matches up to the array.
1763 */
1764 for (i = 0; NULL != (p = index234(tree, i)); i++) {
1765 if (i >= arraylen)
1766 error("tree contains more than %d elements", arraylen);
1767 if (array[i] != p)
1768 error("enum at position %d: array says %s, tree says %s",
1769 i, array[i], p);
1770 }
1771 if (ctx.elemcount != i) {
1772 error("tree really contains %d elements, enum gave %d",
1773 ctx.elemcount, i);
1774 }
1775 if (i < arraylen) {
1776 error("enum gave only %d elements, array has %d", i, arraylen);
1777 }
1778 i = count234(tree);
1779 if (ctx.elemcount != i) {
1780 error("tree really contains %d elements, count234 gave %d",
1781 ctx.elemcount, i);
1782 }
1783}
1784void verify(void) { verifytree(tree, array, arraylen); }
1785
1786void internal_addtest(void *elem, int index, void *realret) {
1787 int i, j;
1788 void *retval;
1789
1790 if (arraysize < arraylen+1) {
1791 arraysize = arraylen+1+256;
1792 array = (array == NULL ? smalloc(arraysize*sizeof(*array)) :
1793 srealloc(array, arraysize*sizeof(*array)));
1794 }
1795
1796 i = index;
1797 /* now i points to the first element >= elem */
1798 retval = elem; /* expect elem returned (success) */
1799 for (j = arraylen; j > i; j--)
1800 array[j] = array[j-1];
1801 array[i] = elem; /* add elem to array */
1802 arraylen++;
1803
1804 if (realret != retval) {
1805 error("add: retval was %p expected %p", realret, retval);
1806 }
1807
1808 verify();
1809}
1810
1811void addtest(void *elem) {
1812 int i;
1813 void *realret;
1814
1815 realret = add234(tree, elem);
1816
1817 i = 0;
1818 while (i < arraylen && cmp(elem, array[i]) > 0)
1819 i++;
1820 if (i < arraylen && !cmp(elem, array[i])) {
1821 void *retval = array[i]; /* expect that returned not elem */
1822 if (realret != retval) {
1823 error("add: retval was %p expected %p", realret, retval);
1824 }
1825 } else
1826 internal_addtest(elem, i, realret);
1827}
1828
1829void addpostest(void *elem, int i) {
1830 void *realret;
1831
1832 realret = addpos234(tree, elem, i);
1833
1834 internal_addtest(elem, i, realret);
1835}
1836
1837void delpostest(int i) {
1838 int index = i;
1839 void *elem = array[i], *ret;
1840
1841 /* i points to the right element */
1842 while (i < arraylen-1) {
1843 array[i] = array[i+1];
1844 i++;
1845 }
1846 arraylen--; /* delete elem from array */
1847
1848 if (tree->cmp)
1849 ret = del234(tree, elem);
1850 else
1851 ret = delpos234(tree, index);
1852
1853 if (ret != elem) {
1854 error("del returned %p, expected %p", ret, elem);
1855 }
1856
1857 verify();
1858}
1859
1860void deltest(void *elem) {
1861 int i;
1862
1863 i = 0;
1864 while (i < arraylen && cmp(elem, array[i]) > 0)
1865 i++;
1866 if (i >= arraylen || cmp(elem, array[i]) != 0)
1867 return; /* don't do it! */
1868 delpostest(i);
1869}
1870
1871/* A sample data set and test utility. Designed for pseudo-randomness,
1872 * and yet repeatability. */
1873
1874/*
1875 * This random number generator uses the `portable implementation'
1876 * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
1877 * change it if not.
1878 */
1879int randomnumber(unsigned *seed) {
1880 *seed *= 1103515245;
1881 *seed += 12345;
1882 return ((*seed) / 65536) % 32768;
1883}
1884
1885int mycmp(void *av, void *bv) {
1886 char const *a = (char const *)av;
1887 char const *b = (char const *)bv;
1888 return strcmp(a, b);
1889}
1890
1891#define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
1892
1893char *strings[] = {
1894 "0", "2", "3", "I", "K", "d", "H", "J", "Q", "N", "n", "q", "j", "i",
1895 "7", "G", "F", "D", "b", "x", "g", "B", "e", "v", "V", "T", "f", "E",
1896 "S", "8", "A", "k", "X", "p", "C", "R", "a", "o", "r", "O", "Z", "u",
1897 "6", "1", "w", "L", "P", "M", "c", "U", "h", "9", "t", "5", "W", "Y",
1898 "m", "s", "l", "4",
1899#if 0
1900 "a", "ab", "absque", "coram", "de",
1901 "palam", "clam", "cum", "ex", "e",
1902 "sine", "tenus", "pro", "prae",
1903 "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
1904 "penguin", "blancmange", "pangolin", "whale", "hedgehog",
1905 "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
1906 "murfl", "spoo", "breen", "flarn", "octothorpe",
1907 "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
1908 "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
1909 "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
1910 "wand", "ring", "amulet"
1911#endif
1912};
1913
1914#define NSTR lenof(strings)
1915
1916void findtest(void) {
1917 static const int rels[] = {
1918 REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
1919 };
1920 static const char *const relnames[] = {
1921 "EQ", "GE", "LE", "LT", "GT"
1922 };
1923 int i, j, rel, index;
1924 char *p, *ret, *realret, *realret2;
1925 int lo, hi, mid, c;
1926
1927 for (i = 0; i < (int)NSTR; i++) {
1928 p = strings[i];
1929 for (j = 0; j < (int)(sizeof(rels)/sizeof(*rels)); j++) {
1930 rel = rels[j];
1931
1932 lo = 0; hi = arraylen-1;
1933 while (lo <= hi) {
1934 mid = (lo + hi) / 2;
1935 c = strcmp(p, array[mid]);
1936 if (c < 0)
1937 hi = mid-1;
1938 else if (c > 0)
1939 lo = mid+1;
1940 else
1941 break;
1942 }
1943
1944 if (c == 0) {
1945 if (rel == REL234_LT)
1946 ret = (mid > 0 ? array[--mid] : NULL);
1947 else if (rel == REL234_GT)
1948 ret = (mid < arraylen-1 ? array[++mid] : NULL);
1949 else
1950 ret = array[mid];
1951 } else {
1952 assert(lo == hi+1);
1953 if (rel == REL234_LT || rel == REL234_LE) {
1954 mid = hi;
1955 ret = (hi >= 0 ? array[hi] : NULL);
1956 } else if (rel == REL234_GT || rel == REL234_GE) {
1957 mid = lo;
1958 ret = (lo < arraylen ? array[lo] : NULL);
1959 } else
1960 ret = NULL;
1961 }
1962
1963 realret = findrelpos234(tree, p, NULL, rel, &index);
1964 if (realret != ret) {
1965 error("find(\"%s\",%s) gave %s should be %s",
1966 p, relnames[j], realret, ret);
1967 }
1968 if (realret && index != mid) {
1969 error("find(\"%s\",%s) gave %d should be %d",
1970 p, relnames[j], index, mid);
1971 }
1972 if (realret && rel == REL234_EQ) {
1973 realret2 = index234(tree, index);
1974 if (realret2 != realret) {
1975 error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
1976 p, relnames[j], realret, index, index, realret2);
1977 }
1978 }
1979#if 0
1980 printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
1981 realret, index);
1982#endif
1983 }
1984 }
1985
1986 realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
1987 if (arraylen && (realret != array[0] || index != 0)) {
1988 error("find(NULL,GT) gave %s(%d) should be %s(0)",
1989 realret, index, array[0]);
1990 } else if (!arraylen && (realret != NULL)) {
1991 error("find(NULL,GT) gave %s(%d) should be NULL",
1992 realret, index);
1993 }
1994
1995 realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
1996 if (arraylen && (realret != array[arraylen-1] || index != arraylen-1)) {
1997 error("find(NULL,LT) gave %s(%d) should be %s(0)",
1998 realret, index, array[arraylen-1]);
1999 } else if (!arraylen && (realret != NULL)) {
2000 error("find(NULL,LT) gave %s(%d) should be NULL",
2001 realret, index);
2002 }
2003}
2004
2005void splittest(tree234 *tree, void **array, int arraylen) {
2006 int i;
2007 tree234 *tree3, *tree4;
2008 for (i = 0; i <= arraylen; i++) {
2009 tree3 = copytree234(tree, NULL, NULL);
2010 tree4 = splitpos234(tree3, i, 0);
2011 verifytree(tree3, array, i);
2012 verifytree(tree4, array+i, arraylen-i);
2013 join234(tree3, tree4);
2014 freetree234(tree4); /* left empty by join */
2015 verifytree(tree3, array, arraylen);
2016 freetree234(tree3);
2017 }
2018}
2019
2020int main(void) {
2021 int in[NSTR];
2022 int i, j, k;
2023 int tworoot, tmplen;
2024 unsigned seed = 0;
2025 tree234 *tree2, *tree3, *tree4;
2026 int c;
2027
2028 setvbuf(stdout, NULL, _IOLBF, 0);
2029
2030 for (i = 0; i < (int)NSTR; i++) in[i] = 0;
2031 array = NULL;
2032 arraylen = arraysize = 0;
2033 tree = newtree234(mycmp);
2034 cmp = mycmp;
2035
2036 verify();
2037 for (i = 0; i < 10000; i++) {
2038 j = randomnumber(&seed);
2039 j %= NSTR;
2040 printf("trial: %d\n", i);
2041 if (in[j]) {
2042 printf("deleting %s (%d)\n", strings[j], j);
2043 deltest(strings[j]);
2044 in[j] = 0;
2045 } else {
2046 printf("adding %s (%d)\n", strings[j], j);
2047 addtest(strings[j]);
2048 in[j] = 1;
2049 }
2050 disptree(tree);
2051 findtest();
2052 }
2053
2054 while (arraylen > 0) {
2055 j = randomnumber(&seed);
2056 j %= arraylen;
2057 deltest(array[j]);
2058 }
2059
2060 freetree234(tree);
2061
2062 /*
2063 * Now try an unsorted tree. We don't really need to test
2064 * delpos234 because we know del234 is based on it, so it's
2065 * already been tested in the above sorted-tree code; but for
2066 * completeness we'll use it to tear down our unsorted tree
2067 * once we've built it.
2068 */
2069 tree = newtree234(NULL);
2070 cmp = NULL;
2071 verify();
2072 for (i = 0; i < 1000; i++) {
2073 printf("trial: %d\n", i);
2074 j = randomnumber(&seed);
2075 j %= NSTR;
2076 k = randomnumber(&seed);
2077 k %= count234(tree)+1;
2078 printf("adding string %s at index %d\n", strings[j], k);
2079 addpostest(strings[j], k);
2080 }
2081
2082 /*
2083 * While we have this tree in its full form, we'll take a copy
2084 * of it to use in split and join testing.
2085 */
2086 tree2 = copytree234(tree, NULL, NULL);
2087 verifytree(tree2, array, arraylen);/* check the copy is accurate */
2088 /*
2089 * Split tests. Split the tree at every possible point and
2090 * check the resulting subtrees.
2091 */
2092 tworoot = (!tree2->root->elems[1]);/* see if it has a 2-root */
2093 splittest(tree2, array, arraylen);
2094 /*
2095 * Now do the split test again, but on a tree that has a 2-root
2096 * (if the previous one didn't) or doesn't (if the previous one
2097 * did).
2098 */
2099 tmplen = arraylen;
2100 while ((!tree2->root->elems[1]) == tworoot) {
2101 delpos234(tree2, --tmplen);
2102 }
2103 printf("now trying splits on second tree\n");
2104 splittest(tree2, array, tmplen);
2105 freetree234(tree2);
2106
2107 /*
2108 * Back to the main testing of uncounted trees.
2109 */
2110 while (count234(tree) > 0) {
2111 printf("cleanup: tree size %d\n", count234(tree));
2112 j = randomnumber(&seed);
2113 j %= count234(tree);
2114 printf("deleting string %s from index %d\n", (char *)array[j], j);
2115 delpostest(j);
2116 }
2117 freetree234(tree);
2118
2119 /*
2120 * Finally, do some testing on split/join on _sorted_ trees. At
2121 * the same time, we'll be testing split on very small trees.
2122 */
2123 tree = newtree234(mycmp);
2124 cmp = mycmp;
2125 arraylen = 0;
2126 for (i = 0; i < 16; i++) {
2127 addtest(strings[i]);
2128 tree2 = copytree234(tree, NULL, NULL);
2129 splittest(tree2, array, arraylen);
2130 freetree234(tree2);
2131 }
2132 freetree234(tree);
2133
2134 /*
2135 * Test silly cases of join: join(emptytree, emptytree), and
2136 * also ensure join correctly spots when sorted trees fail the
2137 * ordering constraint.
2138 */
2139 tree = newtree234(mycmp);
2140 tree2 = newtree234(mycmp);
2141 tree3 = newtree234(mycmp);
2142 tree4 = newtree234(mycmp);
2143 assert(mycmp(strings[0], strings[1]) < 0); /* just in case :-) */
2144 add234(tree2, strings[1]);
2145 add234(tree4, strings[0]);
2146 array[0] = strings[0];
2147 array[1] = strings[1];
2148 verifytree(tree, array, 0);
2149 verifytree(tree2, array+1, 1);
2150 verifytree(tree3, array, 0);
2151 verifytree(tree4, array, 1);
2152
2153 /*
2154 * So:
2155 * - join(tree,tree3) should leave both tree and tree3 unchanged.
2156 * - joinr(tree,tree2) should leave both tree and tree2 unchanged.
2157 * - join(tree4,tree3) should leave both tree3 and tree4 unchanged.
2158 * - join(tree, tree2) should move the element from tree2 to tree.
2159 * - joinr(tree4, tree3) should move the element from tree4 to tree3.
2160 * - join(tree,tree3) should return NULL and leave both unchanged.
2161 * - join(tree3,tree) should work and create a bigger tree in tree3.
2162 */
2163 assert(tree == join234(tree, tree3));
2164 verifytree(tree, array, 0);
2165 verifytree(tree3, array, 0);
2166 assert(tree2 == join234r(tree, tree2));
2167 verifytree(tree, array, 0);
2168 verifytree(tree2, array+1, 1);
2169 assert(tree4 == join234(tree4, tree3));
2170 verifytree(tree3, array, 0);
2171 verifytree(tree4, array, 1);
2172 assert(tree == join234(tree, tree2));
2173 verifytree(tree, array+1, 1);
2174 verifytree(tree2, array, 0);
2175 assert(tree3 == join234r(tree4, tree3));
2176 verifytree(tree3, array, 1);
2177 verifytree(tree4, array, 0);
2178 assert(NULL == join234(tree, tree3));
2179 verifytree(tree, array+1, 1);
2180 verifytree(tree3, array, 1);
2181 assert(tree3 == join234(tree3, tree));
2182 verifytree(tree3, array, 2);
2183 verifytree(tree, array, 0);
2184
2185 return 0;
2186}
2187
2188#endif
2189
2190#if 0 /* sorted list of strings might be useful */
2191{
2192 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x",
2193}
2194#endif