Oh, all right. Put in the implicit zero elements at the ends of the
[sgt/charset] / iso2022.c
CommitLineData
b97e5427 1/*
2 * iso2022.c - support for ISO/IEC 2022 (alias ECMA-35).
3 *
4 * This isn't a complete implementation of ISO/IEC 2022, but it's
53163a60 5 * close. It can decode 8-bit and 7-bit versions, with support for
6 * single-byte and multi-byte character sets, all four containers
7 * (G0, G1, G2, and G3), using both single-shift and locking-shift
8 * sequences.
b97e5427 9 *
10 * The general principle is that any valid ISO/IEC 2022 sequence
11 * should either be correctly decoded or should emit an ERROR. The
12 * only exception to this is that the C0 and C1 sets are fixed as
13 * those of ISO/IEC 6429. Escape sequences for designating control
14 * sets are passed through, so a post-processor could fix them up if
15 * necessary.
16 *
c69732bb 17 * DOCS to UTF-8 works. Other DOCS sequences are ignored, which will
18 * produce surprising results.
b97e5427 19 */
20
21#ifndef ENUM_CHARSETS
22
23#include <assert.h>
35f8c243 24#include <string.h>
b97e5427 25
26#include "charset.h"
27#include "internal.h"
28#include "sbcsdat.h"
29
30#define LS1 (0x0E)
31#define LS0 (0x0F)
32#define ESC (0x1B)
33#define SS2 (0x8E)
34#define SS3 (0x8F)
35
36enum {S4, S6, M4, M6};
37
28b8e668 38static long int emacs_big5_1_to_unicode(int, int);
39static long int emacs_big5_2_to_unicode(int, int);
8536171f 40static int unicode_to_emacs_big5(long int, int *, int *, int *);
113375ca 41static long int cns11643_1_to_unicode(int, int);
42static long int cns11643_2_to_unicode(int, int);
43static long int cns11643_3_to_unicode(int, int);
44static long int cns11643_4_to_unicode(int, int);
45static long int cns11643_5_to_unicode(int, int);
46static long int cns11643_6_to_unicode(int, int);
47static long int cns11643_7_to_unicode(int, int);
b97e5427 48static long int null_dbcs_to_unicode(int, int);
8536171f 49static int unicode_to_null_dbcs(long int, int *, int *);
50
51typedef int (*to_dbcs_t)(long int, int *, int *);
52typedef int (*to_dbcs_planar_t)(long int, int *, int *, int *);
53
35f8c243 54/*
9101e9ef 55 * These macros cast between to_dbcs_planar_t and to_dbcs_t, in
56 * such a way as to cause a compile-time error if the input is not
57 * of the appropriate type.
35f8c243 58 *
9101e9ef 59 * Defining these portably is quite fiddly. My first effort was as
60 * follows:
61 * #define DEPLANARISE(x) ( (x) == (to_dbcs_planar_t)NULL, (to_dbcs_t)(x) )
35f8c243 62 *
9101e9ef 63 * so that the comparison on the left of the comma provokes the
64 * type check error, and the cast on the right is the actual
65 * desired result.
66 *
67 * gcc was entirely happy with this. However, when used in a static
68 * initialiser, MSVC objected - justifiably - that the first half
69 * of the comma expression wasn't constant and thus the expression
70 * as a whole was not a constant expression. We can get round this
71 * by enclosing the comparison in `sizeof', so that it isn't
72 * actually evaluated.
73 *
74 * But then we run into a second problem, which is that C actually
75 * disallows the use of the comma operator within a constant
76 * expression for any purpose at all! Presumably this is on the
77 * basis that its purpose is to have side effects and constant
78 * expressions can't; unfortunately, this specific case is one in
79 * which the desired side effect is a compile-time rather than a
80 * run-time one.
81 *
82 * We are permitted to use ?:, however, and that works quite well
83 * since the actual result of the sizeof expression _is_ evaluable
84 * at compile time. So here's my final answer, with the unfortunate
85 * remaining problem of evaluating its arguments multiple times:
35f8c243 86 */
9101e9ef 87#define TYPECHECK(x,y) ( sizeof((x)) == sizeof((x)) ? (y) : (y) )
88#define DEPLANARISE(x) TYPECHECK((x) == (to_dbcs_planar_t)NULL, (to_dbcs_t)(x))
89#define REPLANARISE(x) TYPECHECK((x) == (to_dbcs_t)NULL, (to_dbcs_planar_t)(x))
35f8c243 90
8536171f 91/*
92 * Values used in the `enable' field. Each of these identifies a
93 * class of character sets; we then have a bitmask indicating which
94 * classes are allowable in a given mode.
95 *
96 * These values are currently only checked on output: for input,
97 * any ISO 2022 we can comprehend at all is considered acceptable.
98 */
99#define CCS 1 /* CTEXT standard */
100#define COS 2 /* other standard */
101#define CPU 3 /* private use */
102#define CDC 4 /* DOCS for CTEXT */
103#define CDU 5 /* DOCS for UTF-8 */
104#define CNU 31 /* never used */
105
106struct iso2022_mode {
107 int enable_mask;
108 char ltype, li, lf, rtype, ri, rf;
109};
b97e5427 110
111const struct iso2022_subcharset {
8536171f 112 char type, i, f, enable;
b97e5427 113 int offset;
114 const sbcs_data *sbcs_base;
8536171f 115 long int (*from_dbcs)(int, int);
116
117 /*
118 * If to_dbcs_plane < 0, then to_dbcs is used as expected.
119 * However, if to_dbcs_plane >= 0, then to_dbcs is expected to
120 * be cast to a to_dbcs_planar_t before use, and the returned
121 * plane value (the first int *) must equal to_dbcs_plane.
122 *
123 * I'd have preferred to do this by means of a union, but you
124 * can't initialise a selected field of a union at compile
125 * time. Function pointer casts are guaranteed to work sensibly
126 * in ISO C (that is, it's undefined what happens if you call a
127 * function via the wrong type of pointer, but if you cast it
128 * back to the right type before calling it then it must work),
129 * so this is safe if ugly.
130 */
131 to_dbcs_t to_dbcs;
132 int to_dbcs_plane; /* use to_dbcs_planar iff >= 0 */
b97e5427 133} iso2022_subcharsets[] = {
8536171f 134 /*
135 * We list these subcharsets in preference order for output.
136 * Since the best-defined use of ISO 2022 output is compound
137 * text, we'll use a preference order which matches that. So we
138 * begin with the charsets defined in the compound text spec.
139 */
2780033c 140 { S4, 0, 'B', CCS, 0x00, &sbcsdata_CS_ASCII, NULL, NULL, 0 },
141 { S6, 0, 'A', CCS, 0x80, &sbcsdata_CS_ISO8859_1, NULL, NULL, 0 },
142 { S6, 0, 'B', CCS, 0x80, &sbcsdata_CS_ISO8859_2, NULL, NULL, 0 },
143 { S6, 0, 'C', CCS, 0x80, &sbcsdata_CS_ISO8859_3, NULL, NULL, 0 },
144 { S6, 0, 'D', CCS, 0x80, &sbcsdata_CS_ISO8859_4, NULL, NULL, 0 },
145 { S6, 0, 'F', CCS, 0x80, &sbcsdata_CS_ISO8859_7, NULL, NULL, 0 },
146 { S6, 0, 'G', CCS, 0x80, &sbcsdata_CS_ISO8859_6, NULL, NULL, 0 },
147 { S6, 0, 'H', CCS, 0x80, &sbcsdata_CS_ISO8859_8, NULL, NULL, 0 },
148 { S6, 0, 'L', CCS, 0x80, &sbcsdata_CS_ISO8859_5, NULL, NULL, 0 },
149 { S6, 0, 'M', CCS, 0x80, &sbcsdata_CS_ISO8859_9, NULL, NULL, 0 },
150 { S4, 0, 'I', CCS, 0x80, &sbcsdata_CS_JISX0201, NULL, NULL, 0 },
151 { S4, 0, 'J', CCS, 0x00, &sbcsdata_CS_JISX0201, NULL, NULL, 0 },
8536171f 152 { M4, 0, 'A', CCS, -0x21, 0, &gb2312_to_unicode, &unicode_to_gb2312, -1 },
153 { M4, 0, 'B', CCS, -0x21, 0, &jisx0208_to_unicode, &unicode_to_jisx0208, -1 },
154 { M4, 0, 'C', CCS, -0x21, 0, &ksx1001_to_unicode, &unicode_to_ksx1001, -1 },
155 { M4, 0, 'D', CCS, -0x21, 0, &jisx0212_to_unicode, &unicode_to_jisx0212, -1 },
156
157 /*
158 * Next, other reasonably standard things: the rest of the ISO
159 * 8859 sets, UK-ASCII, and CNS 11643.
160 */
2780033c 161 { S6, 0, 'T', COS, 0x80, &sbcsdata_CS_ISO8859_11, NULL, NULL, 0 },
162 { S6, 0, 'V', COS, 0x80, &sbcsdata_CS_ISO8859_10, NULL, NULL, 0 },
163 { S6, 0, 'Y', COS, 0x80, &sbcsdata_CS_ISO8859_13, NULL, NULL, 0 },
164 { S6, 0, '_', COS, 0x80, &sbcsdata_CS_ISO8859_14, NULL, NULL, 0 },
165 { S6, 0, 'b', COS, 0x80, &sbcsdata_CS_ISO8859_15, NULL, NULL, 0 },
166 { S6, 0, 'f', COS, 0x80, &sbcsdata_CS_ISO8859_16, NULL, NULL, 0 },
167 { S4, 0, 'A', COS, 0x00, &sbcsdata_CS_BS4730, NULL, NULL, 0 },
8536171f 168 { M4, 0, 'G', COS, -0x21, 0, &cns11643_1_to_unicode, DEPLANARISE(&unicode_to_cns11643), 0 },
169 { M4, 0, 'H', COS, -0x21, 0, &cns11643_2_to_unicode, DEPLANARISE(&unicode_to_cns11643), 1 },
170 { M4, 0, 'I', COS, -0x21, 0, &cns11643_3_to_unicode, DEPLANARISE(&unicode_to_cns11643), 2 },
171 { M4, 0, 'J', COS, -0x21, 0, &cns11643_4_to_unicode, DEPLANARISE(&unicode_to_cns11643), 3 },
172 { M4, 0, 'K', COS, -0x21, 0, &cns11643_5_to_unicode, DEPLANARISE(&unicode_to_cns11643), 4 },
173 { M4, 0, 'L', COS, -0x21, 0, &cns11643_6_to_unicode, DEPLANARISE(&unicode_to_cns11643), 5 },
174 { M4, 0, 'M', COS, -0x21, 0, &cns11643_7_to_unicode, DEPLANARISE(&unicode_to_cns11643), 6 },
175
176 /*
177 * Private-use designations: DEC private sets and Emacs's Big5
178 * abomination.
179 */
2780033c 180 { S4, 0, '0', CPU, 0x00, &sbcsdata_CS_DEC_GRAPHICS, NULL, NULL, 0 },
181 { S4, 0, '<', CPU, 0x80, &sbcsdata_CS_DEC_MCS, NULL, NULL, 0 },
8536171f 182 { M4, 0, '0', CPU, -0x21, 0, &emacs_big5_1_to_unicode, DEPLANARISE(&unicode_to_emacs_big5), 1 },
183 { M4, 0, '1', CPU, -0x21, 0, &emacs_big5_2_to_unicode, DEPLANARISE(&unicode_to_emacs_big5), 2 },
184
185 /*
186 * Ben left this conditioned out without explanation,
187 * presumably on the grounds that we don't have a translation
188 * table for it.
189 */
b97e5427 190#if 0
8536171f 191 { M4, 0, '@', CNU }, /* JIS C 6226-1978 */
b97e5427 192#endif
8536171f 193
194 /*
195 * Finally, fallback entries for null character sets.
196 */
2780033c 197 { S4, 0, '~', CNU, 0, NULL, NULL, NULL, 0 },
198 { S6, 0, '~', CNU, 0, NULL, NULL, NULL, 0 }, /* empty 96-set */
8536171f 199 { M4, 0, '~', CNU, 0, 0, &null_dbcs_to_unicode, &unicode_to_null_dbcs, -1 }, /* empty 94^n-set */
200 { M6, 0, '~', CNU, 0, 0, &null_dbcs_to_unicode, &unicode_to_null_dbcs, -1 }, /* empty 96^n-set */
b97e5427 201};
202
203static long int null_dbcs_to_unicode(int r, int c)
204{
35f8c243 205 UNUSEDARG(r);
206 UNUSEDARG(c);
b97e5427 207 return ERROR;
208}
8536171f 209static int unicode_to_null_dbcs(long int unicode, int *r, int *c)
210{
35f8c243 211 UNUSEDARG(unicode);
212 UNUSEDARG(r);
213 UNUSEDARG(c);
8536171f 214 return 0; /* failed to convert anything */
215}
b97e5427 216
28b8e668 217/*
218 * Emacs encodes Big5 in COMPOUND_TEXT as two 94x94 character sets.
219 * We treat Big5 as a 94x191 character set with a bunch of undefined
220 * columns in the middle, so we have to mess around a bit to make
221 * things fit.
222 */
223
224static long int emacs_big5_1_to_unicode(int r, int c)
225{
226 unsigned long s;
227 s = r * 94 + c;
228 r = s / 157;
229 c = s % 157;
230 if (c >= 64) c += 34; /* Skip over the gap */
231 return big5_to_unicode(r, c);
232}
233
234static long int emacs_big5_2_to_unicode(int r, int c)
235{
236 unsigned long s;
237 s = r * 94 + c;
238 r = s / 157 + 40;
239 c = s % 157;
240 if (c >= 64) c += 34; /* Skip over the gap */
241 return big5_to_unicode(r, c);
242}
243
8536171f 244static int unicode_to_emacs_big5(long int unicode, int *p, int *r, int *c)
245{
246 int rr, cc, s;
247 if (!unicode_to_big5(unicode, &rr, &cc))
248 return 0;
249 if (cc >= 64) {
250 cc -= 34;
251 assert(cc >= 64);
252 }
253 s = rr * 157 + cc;
254 if (s >= 40*157) {
255 *p = 2;
256 s -= 40*157;
257 } else {
258 *p = 1;
259 }
260 *r = s / 94;
261 *c = s % 94;
262 return 1;
263}
264
113375ca 265/* Wrappers for cns11643_to_unicode() */
266static long int cns11643_1_to_unicode(int r, int c)
267{
268 return cns11643_to_unicode(0, r, c);
269}
270static long int cns11643_2_to_unicode(int r, int c)
271{
272 return cns11643_to_unicode(1, r, c);
273}
274static long int cns11643_3_to_unicode(int r, int c)
275{
276 return cns11643_to_unicode(2, r, c);
277}
278static long int cns11643_4_to_unicode(int r, int c)
279{
280 return cns11643_to_unicode(3, r, c);
281}
282static long int cns11643_5_to_unicode(int r, int c)
283{
284 return cns11643_to_unicode(4, r, c);
285}
286static long int cns11643_6_to_unicode(int r, int c)
287{
288 return cns11643_to_unicode(5, r, c);
289}
290static long int cns11643_7_to_unicode(int r, int c)
291{
292 return cns11643_to_unicode(6, r, c);
293}
28b8e668 294
b97e5427 295/* States, or "what we're currently accumulating". */
296enum {
297 IDLE, /* None of the below */
298 SS2CHAR, /* Accumulating a character after SS2 */
299 SS3CHAR, /* Accumulating a character after SS3 */
300 ESCSEQ, /* Accumulating an escape sequence */
301 ESCDROP, /* Discarding an escape sequence */
a89fe3cf 302 ESCPASS, /* Passing through an escape sequence */
c6cef4fa 303 DOCSUTF8, /* DOCSed into UTF-8 */
304 DOCSCTEXT /* DOCSed into a COMPOUND_TEXT extended segment */
b97e5427 305};
306
a2c43a72 307#if 0
b97e5427 308#include <stdio.h>
309static void dump_state(charset_state *s)
310{
311 unsigned s0 = s->s0, s1 = s->s1;
312 char const * const modes[] = { "IDLE", "SS2CHAR", "SS3CHAR",
a89fe3cf 313 "ESCSEQ", "ESCDROP", "ESCPASS",
314 "DOCSUTF8" };
b97e5427 315
316 fprintf(stderr, "s0: %s", modes[s0 >> 29]);
317 fprintf(stderr, " %02x %02x %02x ", (s0 >> 16) & 0xff, (s0 >> 8) & 0xff,
318 s0 & 0xff);
319 fprintf(stderr, "s1: LS%d LS%dR", (s1 >> 30) & 3, (s1 >> 28) & 3);
320 fprintf(stderr, " %d %d %d %d\n", s1 & 0x7f, (s1 >> 7) & 0x7f,
321 (s1 >> 14) & 0x7f, (s1 >> 21) & 0x7f);
322}
323#endif
324
325static void designate(charset_state *state, int container,
326 int type, int ibyte, int fbyte)
327{
328 unsigned long i;
329
330 assert(container >= 0 && container <= 3);
331 assert(type == S4 || type == S6 || type == M4 || type == M6);
332
daff3650 333 for (i = 0; i < lenof(iso2022_subcharsets); i++) {
b97e5427 334 if (iso2022_subcharsets[i].type == type &&
335 iso2022_subcharsets[i].i == ibyte &&
336 iso2022_subcharsets[i].f == fbyte) {
337 state->s1 &= ~(0x7fL << (container * 7));
338 state->s1 |= (i << (container * 7));
339 return;
340 }
341 }
342 /*
343 * If we don't find the charset, invoke the empty one, so we
344 * output ERROR rather than garbage.
345 */
346 designate(state, container, type, 0, '~');
347}
348
a89fe3cf 349static void do_utf8(long int input_chr,
350 charset_state *state,
351 void (*emit)(void *ctx, long int output),
352 void *emitctx)
353{
354 charset_state ustate;
a89fe3cf 355
356 ustate.s1 = 0;
357 ustate.s0 = state->s0 & 0x03ffffffL;
7a7dc0a7 358 read_utf8(NULL, input_chr, &ustate, emit, emitctx);
a89fe3cf 359 state->s0 = (state->s0 & ~0x03ffffffL) | (ustate.s0 & 0x03ffffffL);
360}
361
362static void docs_utf8(long int input_chr,
363 charset_state *state,
364 void (*emit)(void *ctx, long int output),
365 void *emitctx)
366{
367 int retstate;
368
369 /*
370 * Bits [25:0] of s0 are reserved for read_utf8().
371 * Bits [27:26] are a tiny state machine to recognise ESC % @.
372 */
373 retstate = (state->s0 & 0x0c000000L) >> 26;
374 if (retstate == 1 && input_chr == '%')
375 retstate = 2;
376 else if (retstate == 2 && input_chr == '@') {
377 /* If we've got a partial UTF-8 sequence, complain. */
378 if (state->s0 & 0x03ffffffL)
379 emit(emitctx, ERROR);
380 state->s0 = 0;
381 return;
382 } else {
383 if (retstate >= 1) do_utf8(ESC, state, emit, emitctx);
384 if (retstate >= 2) do_utf8('%', state, emit, emitctx);
385 retstate = 0;
386 if (input_chr == ESC)
387 retstate = 1;
388 else {
389 do_utf8(input_chr, state, emit, emitctx);
390 }
391 }
392 state->s0 = (state->s0 & ~0x0c000000L) | (retstate << 26);
393}
394
c6cef4fa 395struct ctext_encoding {
396 char const *name;
8536171f 397 char octets_per_char, enable;
c6cef4fa 398 charset_spec const *subcs;
399};
400
401/*
40724963 402 * In theory, this list is in <ftp://ftp.x.org/pub/DOCS/registry>,
c6cef4fa 403 * but XLib appears to have its own ideas, and encodes these three
404 * (as of X11R6.8.2)
405 */
406
407extern charset_spec const charset_CS_ISO8859_14;
408extern charset_spec const charset_CS_ISO8859_15;
409extern charset_spec const charset_CS_BIG5;
410
411static struct ctext_encoding const ctext_encodings[] = {
8536171f 412 { "big5-0\2", 0 /* variable */, CDC, &charset_CS_BIG5 },
413 { "iso8859-14\2", 1, CDC, &charset_CS_ISO8859_14 },
414 { "iso8859-15\2", 1, CDC, &charset_CS_ISO8859_15 }
c6cef4fa 415};
416
417static void docs_ctext(long int input_chr,
418 charset_state *state,
419 void (*emit)(void *ctx, long int output),
420 void *emitctx)
421{
422 /*
423 * s0[27:26] = first entry in ctext_encodings that matches
424 * s0[25:22] = number of characters successfully matched, 0xf if all
425 * s0[21:8] count the number of octets left in the segment
426 * s0[7:0] are for sub-charset use
427 */
428 int n = (state->s0 >> 22) & 0xf, i = (state->s0 >> 26) & 3, oi = i, j;
429 int length = (state->s0 >> 8) & 0x3fff;
430
8536171f 431 /*
432 * Note that we do not bother checking the octets-per-character
433 * byte against the selected charset when reading. It's
434 * extremely unlikely that this code will ever have to deal
435 * with two charset identifiers with the same name and
436 * different octets-per-character values! If it ever happens,
437 * we'll have to edit this file anyway so we can modify the
438 * code then...
439 */
440
c6cef4fa 441 if (!length) {
442 /* Haven't read length yet */
443 if ((state->s0 & 0xff) == 0)
444 /* ... or even the first byte */
445 state->s0 |= input_chr;
446 else {
447 length = (state->s0 & 0x7f) * 0x80 + (input_chr & 0x7f);
448 if (length == 0)
449 state->s0 = 0;
450 else
451 state->s0 = (state->s0 & 0xf0000000) | (length << 8);
452 }
453 return;
454 }
455
456 j = i;
457 if (n == 0xe) {
458 /* Skipping unknown encoding. Look out for STX. */
459 if (input_chr == 2)
460 state->s0 = (state->s0 & 0xf0000000) | (i << 26) | (0xf << 22);
461 } else if (n != 0xf) {
35f8c243 462 while ((unsigned)j < lenof(ctext_encodings) &&
c6cef4fa 463 !memcmp(ctext_encodings[j].name,
464 ctext_encodings[oi].name, n)) {
465 if (ctext_encodings[j].name[n] < input_chr)
466 i = ++j;
467 else
468 break;
469 }
35f8c243 470 if ((unsigned)i >= lenof(ctext_encodings) ||
c6cef4fa 471 memcmp(ctext_encodings[i].name,
472 ctext_encodings[oi].name, n) ||
473 ctext_encodings[i].name[n] != input_chr) {
474 /* Doom! We haven't heard of this encoding */
475 i = lenof(ctext_encodings);
476 n = 0xe;
477 } else {
478 /*
479 * Otherwise, we have found an additional character in our
480 * encoding name. See if we have reached the _end_ of our
481 * name.
482 */
483 n++;
484 if (!ctext_encodings[i].name[n])
485 n = 0xf;
486 }
487 /*
488 * Failing _that_, we simply update our encoding-name-
489 * tracking state.
490 */
491 assert(i < 4 && n < 16);
492 state->s0 = (state->s0 & 0xf0000000) | (i << 26) | (n << 22);
493 } else {
35f8c243 494 if ((unsigned)i >= lenof(ctext_encodings))
c6cef4fa 495 emit(emitctx, ERROR);
496 else {
497 charset_state substate;
498 charset_spec const *subcs = ctext_encodings[i].subcs;
499 substate.s1 = 0;
500 substate.s0 = state->s0 & 0xff;
501 subcs->read(subcs, input_chr, &substate, emit, emitctx);
502 state->s0 = (state->s0 & ~0xff) | (substate.s0 & 0xff);
503 }
504 }
505 if (!--length)
506 state->s0 = 0;
507 else
508 state->s0 = (state->s0 &~0x003fff00) | (length << 8);
509}
a89fe3cf 510
b97e5427 511static void read_iso2022(charset_spec const *charset, long int input_chr,
8536171f 512 charset_state *state,
513 void (*emit)(void *ctx, long int output),
514 void *emitctx)
b97e5427 515{
8536171f 516 struct iso2022_mode const *mode = (struct iso2022_mode *)charset->data;
b97e5427 517
a89fe3cf 518 /* dump_state(state); */
b97e5427 519 /*
04c24cbb 520 * We have to make fairly efficient use of the 64 bits of state
0fab6a2b 521 * available to us. Long-term state goes in s1, and consists of
04c24cbb 522 * the identities of the character sets designated as G0/G1/G2/G3
523 * and the locking-shift states for GL and GR. Short-term state
0fab6a2b 524 * goes in s0: The bottom half of s0 accumulates characters for an
04c24cbb 525 * escape sequence or a multi-byte character, while the top three
526 * bits indicate what they're being accumulated for. After DOCS,
527 * the bottom 29 bits of state are available for the DOCS function
528 * to use -- the UTF-8 one uses the bottom 26 for UTF-8 decoding
529 * and the top two to recognised ESC % @.
b97e5427 530 *
531 * s0[31:29] = state enum
532 * s0[24:0] = accumulated bytes
533 * s1[31:30] = GL locking-shift state
534 * s1[29:28] = GR locking-shift state
535 * s1[27:21] = G3 charset
536 * s1[20:14] = G2 charset
537 * s1[13:7] = G1 charset
538 * s1[6:0] = G0 charset
539 */
540
541#define LEFT 30
542#define RIGHT 28
543#define LOCKING_SHIFT(n,side) \
9101e9ef 544 (state->s1 = (state->s1 & ~(3UL<<(side))) | ((n ## UL)<<(side)))
545#define MODE ((state->s0 & 0xe0000000UL) >> 29)
546#define ENTER_MODE(m) (state->s0 = (state->s0 & ~0xe0000000UL) | ((unsigned long)(m)<<29))
b97e5427 547#define SINGLE_SHIFT(n) ENTER_MODE(SS2CHAR - 2 + (n))
548#define ASSERT_IDLE do { \
549 if (state->s0 != 0) emit(emitctx, ERROR); \
550 state->s0 = 0; \
551} while (0)
552
553 if (state->s1 == 0) {
554 /*
555 * Since there's no LS0R, this means we must just have started.
556 * Set up a sane initial state (LS0, LS1R, ASCII in G0/G1/G2/G3).
557 */
558 LOCKING_SHIFT(0, LEFT);
559 LOCKING_SHIFT(1, RIGHT);
8536171f 560 designate(state, 0, mode->ltype, mode->li, mode->lf);
561 designate(state, 1, mode->rtype, mode->ri, mode->rf);
b97e5427 562 designate(state, 2, S4, 0, 'B');
563 designate(state, 3, S4, 0, 'B');
564 }
565
a89fe3cf 566 if (MODE == DOCSUTF8) {
567 docs_utf8(input_chr, state, emit, emitctx);
568 return;
569 }
c6cef4fa 570 if (MODE == DOCSCTEXT) {
571 docs_ctext(input_chr, state, emit, emitctx);
572 return;
573 }
a89fe3cf 574
b97e5427 575 if ((input_chr & 0x60) == 0x00) {
576 /* C0 or C1 control */
577 ASSERT_IDLE;
578 switch (input_chr) {
579 case ESC:
580 ENTER_MODE(ESCSEQ);
581 break;
582 case LS0:
583 LOCKING_SHIFT(0, LEFT);
584 break;
585 case LS1:
586 LOCKING_SHIFT(1, LEFT);
587 break;
588 case SS2:
589 SINGLE_SHIFT(2);
590 break;
591 case SS3:
592 SINGLE_SHIFT(3);
593 break;
594 default:
595 emit(emitctx, input_chr);
596 break;
597 }
598 } else if ((input_chr & 0x80) || MODE < ESCSEQ) {
599 int is_gl = 0;
600 struct iso2022_subcharset const *subcs;
601 unsigned container;
602 long input_7bit;
603 /*
604 * Actual data.
605 * Force idle state if we're in mid escape sequence, or in a
606 * multi-byte character with a different top bit.
607 */
608 if (MODE >= ESCSEQ ||
609 ((state->s0 & 0x00ff0000L) != 0 &&
610 (((state->s0 >> 16) ^ input_chr) & 0x80)))
611 ASSERT_IDLE;
612 if (MODE == SS2CHAR || MODE == SS3CHAR) /* Single-shift */
613 container = MODE - SS2CHAR + 2;
614 else if (input_chr >= 0x80) /* GR */
615 container = (state->s1 >> 28) & 3;
616 else { /* GL */
617 container = state->s1 >> 30;
618 is_gl = 1;
619 }
620 input_7bit = input_chr & ~0x80;
621 subcs = &iso2022_subcharsets[(state->s1 >> (container * 7)) & 0x7f];
622 if ((subcs->type == S4 || subcs->type == M4) &&
623 (input_7bit == 0x20 || input_7bit == 0x7f)) {
624 /* characters not in 94-char set */
625 if (is_gl) emit(emitctx, input_7bit);
626 else emit(emitctx, ERROR);
627 } else if (subcs->type == M4 || subcs->type == M6) {
628 if ((state->s0 & 0x00ff0000L) == 0) {
629 state->s0 |= input_chr << 16;
630 return;
631 } else {
632 emit(emitctx,
8536171f 633 subcs->from_dbcs(((state->s0 >> 16) & 0x7f) +
634 subcs->offset,
635 input_7bit + subcs->offset));
b97e5427 636 }
637 } else {
638 if ((state->s0 & 0x00ff0000L) != 0)
639 emit(emitctx, ERROR);
640 emit(emitctx, subcs->sbcs_base ?
641 sbcs_to_unicode(subcs->sbcs_base, input_7bit + subcs->offset):
642 ERROR);
643 }
644 state->s0 = 0;
645 } else {
646 unsigned i1, i2;
647 if (MODE == ESCPASS) {
648 emit(emitctx, input_chr);
649 if ((input_chr & 0xf0) != 0x20)
650 ENTER_MODE(IDLE);
651 return;
652 }
653
654 /*
655 * Intermediate bytes shall be any of the 16 positions of
656 * column 02 of the code table; they are denoted by the symbol
657 * I.
658 */
659 if ((input_chr & 0xf0) == 0x20) {
660 if (((state->s0 >> 16) & 0xff) == 0)
661 state->s0 |= input_chr << 16;
662 else if (((state->s0 >> 8) & 0xff) == 0)
663 state->s0 |= input_chr << 8;
664 else {
665 /* Long escape sequence. Switch to ESCPASS or ESCDROP. */
666 i1 = (state->s0 >> 16) & 0xff;
667 i2 = (state->s0 >> 8) & 0xff;
668 switch (i1) {
669 case '(': case ')': case '*': case '+':
670 case '-': case '.': case '/':
671 case '$':
672 ENTER_MODE(ESCDROP);
673 break;
674 default:
675 emit(emitctx, ESC);
676 emit(emitctx, i1);
677 emit(emitctx, i2);
678 emit(emitctx, input_chr);
679 state->s0 = 0;
680 ENTER_MODE(ESCPASS);
681 break;
682 }
683 }
684 return;
685 }
686
687 /*
688 * Final bytes shall be any of the 79 positions of columns 03
689 * to 07 of the code table excluding position 07/15; they are
690 * denoted by the symbol F.
691 */
692 i1 = (state->s0 >> 16) & 0xff;
693 i2 = (state->s0 >> 8) & 0xff;
694 if (MODE == ESCDROP)
695 input_chr = 0; /* Make sure it won't match. */
696 state->s0 = 0;
697 switch (i1) {
698 case 0: /* No intermediate bytes */
699 switch (input_chr) {
700 case 'N': /* SS2 */
701 SINGLE_SHIFT(2);
702 break;
703 case 'O': /* SS3 */
704 SINGLE_SHIFT(3);
705 break;
706 case 'n': /* LS2 */
707 LOCKING_SHIFT(2, LEFT);
708 break;
709 case 'o': /* LS3 */
710 LOCKING_SHIFT(3, LEFT);
711 break;
712 case '|': /* LS3R */
713 LOCKING_SHIFT(3, RIGHT);
714 break;
715 case '}': /* LS2R */
716 LOCKING_SHIFT(2, RIGHT);
717 break;
718 case '~': /* LS1R */
719 LOCKING_SHIFT(1, RIGHT);
720 break;
721 default:
722 /* Unsupported escape sequence. Spit it back out. */
723 emit(emitctx, ESC);
724 emit(emitctx, input_chr);
725 }
726 break;
727 case ' ': /* ACS */
728 /*
729 * Various coding structure facilities specify that designating
730 * a code element also invokes it. As far as I can see, invoking
731 * it now will have the same practical effect, since those
732 * facilities also ban the use of locking shifts.
733 */
734 switch (input_chr) {
735 case 'A': /* G0 element used and invoked into GL */
736 LOCKING_SHIFT(0, LEFT);
737 break;
738 case 'C': /* G0 in GL, G1 in GR */
739 case 'D': /* Ditto, at least for 8-bit codes */
740 case 'L': /* ISO 4873 (ECMA-43) level 1 */
741 case 'M': /* ISO 4873 (ECMA-43) level 2 */
742 LOCKING_SHIFT(0, LEFT);
743 LOCKING_SHIFT(1, RIGHT);
744 break;
745 }
746 break;
747 case '&': /* IRR */
748 /*
749 * IRR (Identify Revised Registration) is ignored here,
750 * since any revised registration must be
751 * upward-compatible with the old one, so either we'll
752 * support the new one or we'll emit ERROR when we run
753 * into a new character. In either case, there's nothing
754 * to be done here.
755 */
756 break;
757 case '(': /* GZD4 */ case ')': /* G1D4 */
758 case '*': /* G2D4 */ case '+': /* G3D4 */
759 designate(state, i1 - '(', S4, i2, input_chr);
760 break;
761 case '-': /* G1D6 */ case '.': /* G2D6 */ case '/': /* G3D6 */
762 designate(state, i1 - ',', S6, i2, input_chr);
763 break;
764 case '$': /* G?DM? */
765 switch (i2) {
766 case 0: /* Obsolete version of GZDM4 */
767 i2 = '(';
768 case '(': /* GZDM4 */ case ')': /* G1DM4 */
769 case '*': /* G2DM4 */ case '+': /* G3DM4 */
770 designate(state, i2 - '(', M4, 0, input_chr);
771 break;
772 case '-': /* G1DM6 */
773 case '.': /* G2DM6 */ case '/': /* G3DM6 */
774 designate(state, i2 - ',', M6, 0, input_chr);
775 break;
776 default:
777 emit(emitctx, ERROR);
778 break;
779 }
780 case '%': /* DOCS */
a89fe3cf 781 /* XXX What's a reasonable way to handle an unrecognised DOCS? */
782 switch (i2) {
783 case 0:
784 switch (input_chr) {
785 case 'G':
786 ENTER_MODE(DOCSUTF8);
787 break;
788 }
789 break;
c6cef4fa 790 case '/':
791 switch (input_chr) {
792 case '1': case '2':
793 ENTER_MODE(DOCSCTEXT);
794 break;
795 }
796 break;
a89fe3cf 797 }
b97e5427 798 break;
799 default:
800 /* Unsupported nF escape sequence. Re-emit it. */
801 emit(emitctx, ESC);
802 emit(emitctx, i1);
803 if (i2) emit(emitctx, i2);
804 emit(emitctx, input_chr);
805 break;
806 }
807 }
808}
809
8536171f 810static void oselect(charset_state *state, int i, int right,
811 void (*emit)(void *ctx, long int output),
812 void *emitctx)
813{
814 int shift = (right ? 31-7 : 31-7-7);
815 struct iso2022_subcharset const *subcs = &iso2022_subcharsets[i];
816
35f8c243 817 if (((state->s1 >> shift) & 0x7F) != (unsigned)i) {
8536171f 818 state->s1 &= ~(0x7FL << shift);
819 state->s1 |= (i << shift);
820
821 if (emit) {
822 emit(emitctx, ESC);
823 if (subcs->type == M4 || subcs->type == M6)
824 emit(emitctx, '$');
825 if (subcs->type == S6 || subcs->type == M6) {
826 assert(right);
827 emit(emitctx, '-');
828 } else if (right) {
829 emit(emitctx, ')');
830 } else {
831 emit(emitctx, '(');
832 }
833 if (subcs->i)
834 emit(emitctx, subcs->i);
835 emit(emitctx, subcs->f);
836 }
837 }
838}
839
840static void docs_char(charset_state *state,
841 void (*emit)(void *ctx, long int output),
842 void *emitctx, int cset, char *data, int datalen)
843{
844 int curr_cset, currlen, i;
845
846 /*
847 * cset is the index into ctext_encodings[]. It can also be -1
848 * to mean DOCS UTF-8, or -2 to mean no DOCS (ordinary 2022).
849 * In the latter case, `chr' is ignored.
850 */
851
852 /*
853 * First, terminate a DOCS segment if necessary. We always have
854 * to terminate a DOCS segment if one is active and we're about
855 * to switch to a different one; we might also have to
856 * terminate a length-encoded DOCS segment if we've run out of
857 * storage space to accumulate characters in it.
858 */
859 curr_cset = ((state->s1 >> 14) & 7) - 2;
860 currlen = ((state->s1 >> 11) & 7);
861 if ((curr_cset != -2 && curr_cset != cset) ||
862 (curr_cset >= 0 && currlen + datalen > 5)) {
863 if (curr_cset == -1) {
864 /*
865 * Terminating DOCS UTF-8 is easy.
866 */
867 emit(emitctx, ESC);
868 emit(emitctx, '%');
869 emit(emitctx, '@');
870 } else {
871 int len;
872
873 /*
874 * To terminate a length-encoded DOCS segment we must
875 * actually output the whole thing.
876 */
877 emit(emitctx, ESC);
878 emit(emitctx, '%');
879 emit(emitctx, '/');
880 emit(emitctx, '0' + ctext_encodings[curr_cset].octets_per_char);
881 len = currlen + datalen +
882 strlen(ctext_encodings[curr_cset].name);
883 assert(len < (1 << 14));
884 emit(emitctx, 0x80 | ((len >> 7) & 0x7F));
885 emit(emitctx, 0x80 | ((len ) & 0x7F));
886 /* The name stored in ctext_encodings[] includes the trailing \2 */
887 for (i = 0; ctext_encodings[curr_cset].name[i]; i++)
888 emit(emitctx, ctext_encodings[curr_cset].name[i]);
889 for (i = 0; i < currlen; i++)
890 emit(emitctx,
891 (i == 0 ? state->s1 : state->s0 >> (8*(4-i))) & 0xFF);
892 for (i = 0; i < datalen; i++)
893 emit(emitctx, data[i]);
894
895 /*
896 * We've now dealt with the input data, so clear it so
897 * we don't try to do so again below.
898 */
899 datalen = 0;
900 }
901 curr_cset = -2;
902 }
903
904 /*
905 * Now, start a DOCS segment if necessary.
906 */
907 if (curr_cset != cset) {
908 assert(cset != -2);
909 if (cset == -1) {
910 /*
911 * Start DOCS UTF-8.
912 */
913 emit(emitctx, ESC);
914 emit(emitctx, '%');
915 emit(emitctx, 'G');
916 } else {
917 /*
918 * Starting a length-encoded DOCS segment is simply a
919 * matter of setting our stored length counter to zero.
920 */
921 currlen = 0;
922 state->s1 &= ~(7 << 11);
923 state->s1 &= ~0xFF;
924 state->s0 = 0;
925 }
926 }
927 state->s1 &= ~(7 << 14);
928 assert((cset+2) >= 0 && (cset+2) < 8);
929 state->s1 |= ((cset+2) << 14);
930
931 /*
932 * Now we're in the right DOCS state. Actually deal with the
933 * input data, if we haven't already done so above.
934 */
935 if (datalen > 0) {
936 assert(cset != 2);
937 if (cset == -1) {
938 /*
939 * In DOCS UTF-8, we output data as soon as we get it.
940 */
941 for (i = 0; i < datalen; i++)
942 emit(emitctx, data[i]);
943 } else {
944 /*
945 * In length-encoded DOCS, we just store our data and
946 * bide our time. It'll all be output when we fill up
947 * or switch to another character set.
948 */
949 assert(currlen + datalen <= 5); /* overflow handled already */
950 for (i = 0; i < datalen; i++) {
951 if (currlen + i == 0)
952 state->s1 |= data[i] & 0xFF;
953 else
954 state->s0 |= (data[i] & 0xFF) << (8*(4-(currlen+i)));
955 }
956 currlen += datalen;
957 assert(currlen >= 0 && currlen < 8);
958 state->s1 &= ~(7 << 11);
959 state->s1 |= (currlen << 11);
960 }
961 }
962}
963
964static void write_to_pointer(void *ctx, long int output)
965{
966 char **ptr = (char **)ctx;
967 *(*ptr)++ = output;
968}
969
970/*
971 * Writing full ISO-2022 is not useful in very many circumstances.
972 * One of the few situations in which it _is_ useful is generating
973 * X11 COMPOUND_TEXT; therefore, this writing function will obey
974 * the compound text restrictions and hence output the subset of
975 * ISO-2022 that's usable in that context.
976 *
977 * The subset in question is roughly that we use GL/GR for G0/G1
978 * always, and that the _only_ escape sequences we output (other
979 * than the occasional DOCS) are those which designate different
980 * subcharsets into G0 and G1. There are additional constraints
981 * about which things go in which container; see below.
982 *
983 * FIXME: this wants some decent tests to be written, and also the
984 * exact output policy for compound text wants thinking about more
985 * carefully.
986 */
04c24cbb 987static int write_iso2022(charset_spec const *charset, long int input_chr,
988 charset_state *state,
989 void (*emit)(void *ctx, long int output),
990 void *emitctx)
991{
8536171f 992 int i;
993 struct iso2022_subcharset const *subcs;
994 struct iso2022_mode const *mode = (struct iso2022_mode *)charset->data;
995 to_dbcs_planar_t last_planar_dbcs = NULL;
996 int last_p, last_r, last_c;
997 long int c1, c2;
998
999 /*
1000 * For output, I allocate the state variables as follows:
1001 *
1002 * s1[31] == 1 if output state has been initialised
1003 * s1[30:24] == G1 charset (always in GR)
1004 * s1[23:17] == G0 charset (always in GL)
1005 * s1[16:14] == DOCS index plus 2 (because -1 and -2 are special)
1006 * s1[13:11] == number of DOCS accumulated characters (up to five)
1007 * s1[7:0] + s0[31:0] == DOCS collected characters
1008 */
1009
1010 if (!state->s1) {
1011 state->s0 = 0x00000000UL;
1012 state->s1 = 0x80000000UL;
1013 /*
1014 * Start with US-ASCII in GL and also in GR.
1015 */
35f8c243 1016 for (i = 0; (unsigned)i < lenof(iso2022_subcharsets); i++) {
8536171f 1017 subcs = &iso2022_subcharsets[i];
1018 if (subcs->type == mode->ltype &&
1019 subcs->i == mode->li &&
1020 subcs->f == mode->lf)
1021 oselect(state, i, FALSE, NULL, NULL);
1022 if (subcs->type == mode->rtype &&
1023 subcs->i == mode->ri &&
1024 subcs->f == mode->rf)
1025 oselect(state, i, TRUE, NULL, NULL);
1026 }
1027 }
1028
1029 if (input_chr == -1) {
1030 /*
1031 * Special case: reset encoding state.
1032 */
1033 docs_char(state, emit, emitctx, -2, NULL, 0); /* leave DOCS */
1034
35f8c243 1035 for (i = 0; (unsigned)i < lenof(iso2022_subcharsets); i++) {
8536171f 1036 subcs = &iso2022_subcharsets[i];
1037 if (subcs->type == mode->ltype &&
1038 subcs->i == mode->li &&
1039 subcs->f == mode->lf)
1040 oselect(state, i, FALSE, emit, emitctx);
1041 if (subcs->type == mode->rtype &&
1042 subcs->i == mode->ri &&
1043 subcs->f == mode->rf)
1044 oselect(state, i, TRUE, emit, emitctx);
1045 }
1046 return TRUE;
1047 }
1048
1049 /*
1050 * Special-case characters: Space, Delete, and anything in C0
1051 * or C1 are output unchanged.
1052 */
1053 if (input_chr <= 0x20 || (input_chr >= 0x7F && input_chr < 0xA0)) {
1054 emit(emitctx, input_chr);
1055 return TRUE;
1056 }
1057
1058 /*
1059 * Analyse the input character and work out which subcharset it
1060 * belongs to.
1061 */
35f8c243 1062 for (i = 0; (unsigned)i < lenof(iso2022_subcharsets); i++) {
8536171f 1063 subcs = &iso2022_subcharsets[i];
1064 if (!(mode->enable_mask & (1 << subcs->enable)))
1065 continue; /* this charset is disabled */
1066 if (subcs->sbcs_base) {
1067 c1 = sbcs_from_unicode(subcs->sbcs_base, input_chr);
1068 c1 -= subcs->offset;
1069 if (c1 >= 0x20 && c1 <= 0x7f) {
1070 c2 = 0;
1071 break;
1072 }
1073 } else if (subcs->to_dbcs) {
1074 if (subcs->to_dbcs_plane >= 0) {
1075 /*
1076 * Since multiplanar DBCSes almost by definition
1077 * involve several entries in iso2022_subcharsets
1078 * with the same to_dbcs function and different
1079 * plane values, we remember the last such function
1080 * we called and what its result was, so that we
1081 * don't (for example) have to call
1082 * unicode_to_cns11643 seven times.
1083 */
1084 if (last_planar_dbcs != REPLANARISE(subcs->to_dbcs)) {
1085 last_planar_dbcs = REPLANARISE(subcs->to_dbcs);
1086 if (!last_planar_dbcs(input_chr,
1087 &last_p, &last_r, &last_c))
1088 last_p = -1;
1089 }
1090 } else {
1091 last_p = subcs->to_dbcs_plane;
1092 if (!subcs->to_dbcs(input_chr, &last_r, &last_c))
1093 last_p = 0; /* cannot match since to_dbcs_plane<0 */
1094 }
1095
1096 if (last_p == subcs->to_dbcs_plane) {
1097 c1 = last_r - subcs->offset;
1098 c2 = last_c - subcs->offset;
1099 assert(c1 >= 0x20 && c1 <= 0x7f);
1100 assert(c2 >= 0x20 && c2 <= 0x7f);
1101 break;
1102 }
1103 }
1104 }
1105
35f8c243 1106 if ((unsigned)i < lenof(iso2022_subcharsets)) {
8536171f 1107 int right;
1108
1109 /*
1110 * Our character is represented by c1 (and possibly also
1111 * c2) in subcharset `subcs'. So now we must decide whether
1112 * to designate that character set into G0/GL or G1/GR.
1113 *
1114 * Any S6 or M6 subcharset has to go in GR because it won't
1115 * fit in GL. In addition, the compound text rules state
1116 * that any single-byte subcharset defined as the
1117 * right-hand half of some SBCS must go in GR.
1118 *
1119 * M4 subcharsets can go in either half according to the
1120 * rules. I choose to put them in GR always because it's a
1121 * simple policy with reasonable behaviour (facilitates
1122 * switching between them and ASCII).
1123 */
1124 right = (subcs->type == S6 || subcs->type == M6 || subcs->type == M4 ||
1125 (subcs->sbcs_base && subcs->offset == 0x80));
1126
1127 /*
1128 * If we're in a DOCS mode, leave it.
1129 */
1130 docs_char(state, emit, emitctx, -2, NULL, 0);
1131
1132 /*
1133 * If this subcharset is not already selected in that
1134 * container, select it.
1135 */
1136 oselect(state, i, right, emit, emitctx);
1137
1138 /*
1139 * Now emit the actual characters.
1140 */
1141 if (right) {
1142 assert(c1 >= 0x20 && c1 <= 0x7f);
1143 emit(emitctx, c1 | 0x80);
1144 if (c2) {
1145 assert(c2 >= 0x20 && c2 <= 0x7f);
1146 emit(emitctx, c2 | 0x80);
1147 }
1148 } else {
1149 assert(c1 > 0x20 && c1 < 0x7f);
1150 emit(emitctx, c1);
1151 if (c2) {
1152 assert(c2 > 0x20 && c2 < 0x7f);
1153 emit(emitctx, c2);
1154 }
1155 }
1156
1157 return TRUE;
1158 }
1159
1160 /*
1161 * Fall back to DOCS.
1162 */
1163 {
1164 char data[10];
1165 char *p = data;
1166 int i, cs;
1167
1168 cs = -2; /* means failure */
1169
35f8c243 1170 for (i = 0; (unsigned)i <= lenof(ctext_encodings); i++) {
8536171f 1171 charset_state substate;
1172 charset_spec const *subcs = ctext_encodings[i].subcs;
1173
1174 /*
1175 * We assume that all character sets dealt with by DOCS
1176 * are stateless for output purposes.
1177 */
1178 substate.s1 = substate.s0 = 0;
1179 p = data;
1180
35f8c243 1181 if ((unsigned)i < lenof(ctext_encodings)) {
8536171f 1182 if ((mode->enable_mask & (1 << ctext_encodings[i].enable)) &&
1183 subcs->write(subcs, input_chr, &substate,
1184 write_to_pointer, &p)) {
1185 cs = i;
1186 break;
1187 }
1188 } else {
1189 if ((mode->enable_mask & (1 << CDU)) &&
1190 write_utf8(NULL, input_chr, NULL, write_to_pointer, &p)) {
1191 cs = -1;
1192 break;
1193 }
1194 }
1195 }
1196
1197 if (cs != -2) {
1198 docs_char(state, emit, emitctx, cs, data, p - data);
1199 return TRUE;
1200 }
1201 }
1202
04c24cbb 1203 return FALSE;
1204}
1205
8536171f 1206/*
1207 * Full ISO 2022 output with all options on. Not entirely sure what
1208 * if anything this is useful for, but here it is anyway. All
1209 * output character sets and DOCS variants are permitted; all
1210 * containers start out with ASCII in them.
1211 */
1212static const struct iso2022_mode iso2022_all = {
1213 (1<<CCS) | (1<<COS) | (1<<CPU) | (1<<CDC) | (1<<CDU),
1214 S4, 0, 'B', S4, 0, 'B',
1215};
1216
b97e5427 1217const charset_spec charset_CS_ISO2022 = {
8536171f 1218 CS_ISO2022, read_iso2022, write_iso2022, &iso2022_all
1219};
1220
1221/*
1222 * X11 compound text. A subset of output charsets is permitted, and
1223 * G1/GR starts off in ISO8859-1.
1224 */
1225static const struct iso2022_mode iso2022_ctext = {
1226 (1<<CCS) | (1<<CDC),
1227 S4, 0, 'B', S6, 0, 'A',
1228};
1229
1230const charset_spec charset_CS_CTEXT = {
1231 CS_CTEXT, read_iso2022, write_iso2022, &iso2022_ctext
b97e5427 1232};
1233
1234#ifdef TESTMODE
1235
1236#include <stdio.h>
1237#include <stdarg.h>
1238#include <string.h>
1239
1240int total_errs = 0;
1241
1242void iso2022_emit(void *ctx, long output)
1243{
1244 wchar_t **p = (wchar_t **)ctx;
1245 *(*p)++ = output;
1246}
1247
1248void iso2022_read_test(int line, char *input, int inlen, ...)
1249{
1250 va_list ap;
1251 wchar_t *p, str[512];
1252 int i;
1253 charset_state state;
1254 unsigned long l;
1255
1256 state.s0 = state.s1 = 0;
1257 p = str;
1258
1259 for (i = 0; i < inlen; i++)
1260 read_iso2022(NULL, input[i] & 0xFF, &state, iso2022_emit, &p);
1261
1262 va_start(ap, inlen);
1263 l = 0;
1264 for (i = 0; i < p - str; i++) {
1265 l = va_arg(ap, long int);
1266 if (l == -1) {
1267 printf("%d: correct string shorter than output\n", line);
1268 total_errs++;
1269 break;
1270 }
1271 if (l != str[i]) {
1272 printf("%d: char %d came out as %08x, should be %08lx\n",
1273 line, i, str[i], l);
1274 total_errs++;
1275 }
1276 }
1277 if (l != -1) {
1278 l = va_arg(ap, long int);
1279 if (l != -1) {
1280 printf("%d: correct string longer than output\n", line);
1281 total_errs++;
1282 }
1283 }
1284 va_end(ap);
1285}
1286
1287/* Macro to concoct the first three parameters of iso2022_read_test. */
1288#define TESTSTR(x) __LINE__, x, lenof(x)
1289
1290int main(void)
1291{
1292 printf("read tests beginning\n");
1293 /* Simple test (Emacs sample text for Japanese, in ISO-2022-JP) */
1294 iso2022_read_test(TESTSTR("Japanese (\x1b$BF|K\\8l\x1b(B)\t"
1295 "\x1b$B$3$s$K$A$O\x1b(B, "
1296 "\x1b$B%3%s%K%A%O\x1b(B\n"),
1297 'J','a','p','a','n','e','s','e',' ','(',
1298 0x65E5, 0x672C, 0x8A9E, ')', '\t',
1299 0x3053, 0x3093, 0x306b, 0x3061, 0x306f, ',', ' ',
1300 0x30b3, 0x30f3, 0x30cb, 0x30c1, 0x30cf, '\n', 0, -1);
1301 /* Same thing in EUC-JP (with designations, and half-width katakana) */
1302 iso2022_read_test(TESTSTR("\x1b$)B\x1b*I\x1b$+D"
1303 "Japanese (\xc6\xfc\xcb\xdc\xb8\xec)\t"
1304 "\xa4\xb3\xa4\xf3\xa4\xcb\xa4\xc1\xa4\xcf, "
1305 "\x8e\xba\x8e\xdd\x8e\xc6\x8e\xc1\x8e\xca\n"),
1306 'J','a','p','a','n','e','s','e',' ','(',
1307 0x65E5, 0x672C, 0x8A9E, ')', '\t',
1308 0x3053, 0x3093, 0x306b, 0x3061, 0x306f, ',', ' ',
1309 0xff7a, 0xff9d, 0xff86, 0xff81, 0xff8a, '\n', 0, -1);
1310 /* Multibyte single-shift */
1311 iso2022_read_test(TESTSTR("\x1b$)B\x1b*I\x1b$+D\x8f\"/!"),
1312 0x02D8, '!', 0, -1);
1313 /* Non-existent SBCS */
1314 iso2022_read_test(TESTSTR("\x1b(!Zfnord\n"),
1315 ERROR, ERROR, ERROR, ERROR, ERROR, '\n', 0, -1);
1316 /* Pass-through of ordinary escape sequences, including a long one */
1317 iso2022_read_test(TESTSTR("\x1b""b\x1b#5\x1b#!!!5"),
1318 0x1B, 'b', 0x1B, '#', '5',
1319 0x1B, '#', '!', '!', '!', '5', 0, -1);
1320 /* Non-existent DBCS (also 5-byte escape sequence) */
1321 iso2022_read_test(TESTSTR("\x1b$(!Bfnord!"),
1322 ERROR, ERROR, ERROR, 0, -1);
1323 /* Incomplete DB characters */
1324 iso2022_read_test(TESTSTR("\x1b$B(,(\x1b(BHi\x1b$B(,(\n"),
1325 0x2501, ERROR, 'H', 'i', 0x2501, ERROR, '\n', 0, -1);
1326 iso2022_read_test(TESTSTR("\x1b$)B\x1b*I\x1b$+D\xa4""B"),
1327 ERROR, 'B', 0, -1);
1328 iso2022_read_test(TESTSTR("\x1b$)B\x1b*I\x1b$+D\x0e\x1b|$\xa2\xaf"),
1329 ERROR, 0x02D8, 0, -1);
1330 /* Incomplete escape sequence */
1331 iso2022_read_test(TESTSTR("\x1b\n"), ERROR, '\n', 0, -1);
1332 iso2022_read_test(TESTSTR("\x1b-A\x1b~\x1b\xa1"), ERROR, 0xa1, 0, -1);
1333 /* Incomplete single-shift */
1334 iso2022_read_test(TESTSTR("\x8e\n"), ERROR, '\n', 0, -1);
1335 iso2022_read_test(TESTSTR("\x1b$*B\x8e(\n"), ERROR, '\n', 0, -1);
1336 /* Corner cases (02/00 and 07/15) */
1337 iso2022_read_test(TESTSTR("\x1b(B\x20\x7f"), 0x20, 0x7f, 0, -1);
1338 iso2022_read_test(TESTSTR("\x1b(I\x20\x7f"), 0x20, 0x7f, 0, -1);
1339 iso2022_read_test(TESTSTR("\x1b$B\x20\x7f"), 0x20, 0x7f, 0, -1);
1340 iso2022_read_test(TESTSTR("\x1b-A\x0e\x20\x7f"), 0xa0, 0xff, 0, -1);
1341 iso2022_read_test(TESTSTR("\x1b$-~\x0e\x20\x7f"), ERROR, 0, -1);
1342 iso2022_read_test(TESTSTR("\x1b)B\xa0\xff"), ERROR, ERROR, 0, -1);
1343 iso2022_read_test(TESTSTR("\x1b)I\xa0\xff"), ERROR, ERROR, 0, -1);
1344 iso2022_read_test(TESTSTR("\x1b$)B\xa0\xff"), ERROR, ERROR, 0, -1);
1345 iso2022_read_test(TESTSTR("\x1b-A\x1b~\xa0\xff"), 0xa0, 0xff, 0, -1);
1346 iso2022_read_test(TESTSTR("\x1b$-~\x1b~\xa0\xff"), ERROR, 0, -1);
1347 /* Designate control sets */
1348 iso2022_read_test(TESTSTR("\x1b!@"), 0x1b, '!', '@', 0, -1);
c6cef4fa 1349 /* Designate other coding system (UTF-8) */
a89fe3cf 1350 iso2022_read_test(TESTSTR("\x1b%G"
1351 "\xCE\xBA\xE1\xBD\xB9\xCF\x83\xCE\xBC\xCE\xB5"),
1352 0x03BA, 0x1F79, 0x03C3, 0x03BC, 0x03B5, 0, -1);
1353 iso2022_read_test(TESTSTR("\x1b-A\x1b%G\xCE\xBA\x1b%@\xa0"),
1354 0x03BA, 0xA0, 0, -1);
1355 iso2022_read_test(TESTSTR("\x1b%G\xCE\x1b%@"), ERROR, 0, -1);
1356 iso2022_read_test(TESTSTR("\x1b%G\xCE\xBA\x1b%\x1b%@"),
1357 0x03BA, 0x1B, '%', 0, -1);
c6cef4fa 1358 /* DOCS (COMPOUND_TEXT extended segment) */
1359 iso2022_read_test(TESTSTR("\x1b%/1\x80\x80"), 0, -1);
1360 iso2022_read_test(TESTSTR("\x1b%/1\x80\x8fiso-8859-15\2xyz\x1b(B"),
1361 ERROR, ERROR, ERROR, 0, -1);
1362 iso2022_read_test(TESTSTR("\x1b%/1\x80\x8eiso8859-15\2xyz\x1b(B"),
1363 'x', 'y', 'z', 0, -1);
1364 iso2022_read_test(TESTSTR("\x1b-A\x1b%/2\x80\x89"
1365 "big5-0\2\xa1\x40\xa1\x40"),
1366 0x3000, 0xa1, 0x40, 0, -1);
28b8e668 1367 /* Emacs Big5-in-ISO-2022 mapping */
1368 iso2022_read_test(TESTSTR("\x1b$(0&x86\x1b(B \x1b$(0DeBv"),
1369 0x5143, 0x6c23, ' ', ' ', 0x958b, 0x767c, 0, -1);
113375ca 1370 /* Test from RFC 1922 (ISO-2022-CN) */
1371 iso2022_read_test(TESTSTR("\x1b$)A\x0e=;;;\x1b$)GG(_P\x0f"),
1372 0x4EA4, 0x6362, 0x4EA4, 0x63db, 0, -1);
1373
b97e5427 1374 printf("read tests completed\n");
1375 printf("total: %d errors\n", total_errs);
1376 return (total_errs != 0);
1377}
1378
1379#endif /* TESTMODE */
1380
1381#else /* ENUM_CHARSETS */
1382
1383ENUM_CHARSET(CS_ISO2022)
1384
1385#endif