make-secnet-sites: Introduce a notion of listish types.
[secnet] / fgoldi.c
CommitLineData
0bcb8184
MW
1/*
2 * fgoldi.c: arithmetic modulo 2^448 - 2^224 - 1
3 */
4/*
5 * This file is Free Software. It has been modified to as part of its
6 * incorporation into secnet.
7 *
8 * Copyright 2017 Mark Wooding
9 *
10 * You may redistribute this file and/or modify it under the terms of
11 * the permissive licence shown below.
12 *
13 * You may redistribute secnet as a whole and/or modify it under the
14 * terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 3, or (at your option) any
16 * later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, see
25 * https://www.gnu.org/licenses/gpl.html.
26 */
27/*
28 * Imported from Catacomb, and modified for Secnet (2017-04-30):
29 *
30 * * Use `fake-mLib-bits.h' in place of the real <mLib/bits.h>.
31 *
32 * * Remove the 16/32-bit implementation, since C99 always has 64-bit
33 * arithmetic.
34 *
35 * * Remove the test rig code: a replacement is in a separate source file.
36 *
37 * The file's original comment headers are preserved below.
38 */
b7a5ecfc
MW
39/* -*-c-*-
40 *
41 * Arithmetic in the Goldilocks field GF(2^448 - 2^224 - 1)
42 *
43 * (c) 2017 Straylight/Edgeware
44 */
45
46/*----- Licensing notice --------------------------------------------------*
47 *
48 * This file is part of Catacomb.
49 *
50 * Catacomb is free software; you can redistribute it and/or modify
51 * it under the terms of the GNU Library General Public License as
52 * published by the Free Software Foundation; either version 2 of the
53 * License, or (at your option) any later version.
54 *
55 * Catacomb is distributed in the hope that it will be useful,
56 * but WITHOUT ANY WARRANTY; without even the implied warranty of
57 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
58 * GNU Library General Public License for more details.
59 *
60 * You should have received a copy of the GNU Library General Public
61 * License along with Catacomb; if not, write to the Free
62 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
63 * MA 02111-1307, USA.
64 */
65
66/*----- Header files ------------------------------------------------------*/
67
b7a5ecfc
MW
68#include "fgoldi.h"
69
70/*----- Basic setup -------------------------------------------------------*
71 *
72 * Let φ = 2^224; then p = φ^2 - φ - 1, and, in GF(p), we have φ^2 = φ + 1
73 * (hence the name).
74 */
75
b7a5ecfc
MW
76/* We represent an element of GF(p) as 16 28-bit signed integer pieces x_i:
77 * x = SUM_{0<=i<16} x_i 2^(28i).
78 */
79
80typedef int32 piece; typedef int64 dblpiece;
81typedef uint32 upiece; typedef uint64 udblpiece;
82#define PIECEWD(i) 28
83#define NPIECE 16
84#define P p28
85
86#define B28 0x10000000u
87#define B27 0x08000000u
88#define M28 0x0fffffffu
89#define M27 0x07ffffffu
90#define M32 0xffffffffu
91
b7a5ecfc
MW
92/*----- Debugging machinery -----------------------------------------------*/
93
0bcb8184 94#if defined(FGOLDI_DEBUG)
b7a5ecfc
MW
95
96#include <stdio.h>
97
98#include "mp.h"
99#include "mptext.h"
100
101static mp *get_pgoldi(void)
102{
103 mp *p = MP_NEW, *t = MP_NEW;
104
105 p = mp_setbit(p, MP_ZERO, 448);
106 t = mp_setbit(t, MP_ZERO, 224);
107 p = mp_sub(p, p, t);
108 p = mp_sub(p, p, MP_ONE);
109 mp_drop(t);
110 return (p);
111}
112
113DEF_FDUMP(fdump, piece, PIECEWD, NPIECE, 56, get_pgoldi())
114
115#endif
116
117/*----- Loading and storing -----------------------------------------------*/
118
119/* --- @fgoldi_load@ --- *
120 *
121 * Arguments: @fgoldi *z@ = where to store the result
122 * @const octet xv[56]@ = source to read
123 *
124 * Returns: ---
125 *
126 * Use: Reads an element of %$\gf{2^{448} - 2^{224} - 19}$% in
127 * external representation from @xv@ and stores it in @z@.
128 *
129 * External representation is little-endian base-256. Some
130 * elements have multiple encodings, which are not produced by
131 * correct software; use of noncanonical encodings is not an
132 * error, and toleration of them is considered a performance
133 * feature.
134 */
135
136void fgoldi_load(fgoldi *z, const octet xv[56])
137{
b7a5ecfc
MW
138 unsigned i;
139 uint32 xw[14];
140 piece b, c;
141
142 /* First, read the input value as words. */
143 for (i = 0; i < 14; i++) xw[i] = LOAD32_L(xv + 4*i);
144
145 /* Extract unsigned 28-bit pieces from the words. */
146 z->P[ 0] = (xw[ 0] >> 0)&M28;
147 z->P[ 7] = (xw[ 6] >> 4)&M28;
148 z->P[ 8] = (xw[ 7] >> 0)&M28;
149 z->P[15] = (xw[13] >> 4)&M28;
150 for (i = 1; i < 7; i++) {
151 z->P[i + 0] = ((xw[i + 0] << (4*i)) | (xw[i - 1] >> (32 - 4*i)))&M28;
152 z->P[i + 8] = ((xw[i + 7] << (4*i)) | (xw[i + 6] >> (32 - 4*i)))&M28;
153 }
154
155 /* Convert the nonnegative pieces into a balanced signed representation, so
156 * each piece ends up in the interval |z_i| <= 2^27. For each piece, if
157 * its top bit is set, lend a bit leftwards; in the case of z_15, reduce
158 * this bit by adding it onto z_0 and z_8, since this is the φ^2 bit, and
159 * φ^2 = φ + 1. We delay this carry until after all of the pieces have
160 * been balanced. If we don't do this, then we have to do a more expensive
161 * test for nonzeroness to decide whether to lend a bit leftwards rather
162 * than just testing a single bit.
163 *
164 * Note that we don't try for a canonical representation here: both upper
165 * and lower bounds are achievable.
166 */
167 b = z->P[15]&B27; z->P[15] -= b << 1; c = b >> 27;
168 for (i = NPIECE - 1; i--; )
169 { b = z->P[i]&B27; z->P[i] -= b << 1; z->P[i + 1] += b >> 27; }
170 z->P[0] += c; z->P[8] += c;
b7a5ecfc
MW
171}
172
173/* --- @fgoldi_store@ --- *
174 *
175 * Arguments: @octet zv[56]@ = where to write the result
176 * @const fgoldi *x@ = the field element to write
177 *
178 * Returns: ---
179 *
180 * Use: Stores a field element in the given octet vector in external
181 * representation. A canonical encoding is always stored.
182 */
183
184void fgoldi_store(octet zv[56], const fgoldi *x)
185{
b7a5ecfc
MW
186 piece y[NPIECE], yy[NPIECE], c, d;
187 uint32 u, v;
188 mask32 m;
189 unsigned i;
190
191 for (i = 0; i < NPIECE; i++) y[i] = x->P[i];
192
193 /* First, propagate the carries. By the end of this, we'll have all of the
194 * the pieces canonically sized and positive, and maybe there'll be
195 * (signed) carry out. The carry c is in { -1, 0, +1 }, and the remaining
196 * value will be in the half-open interval [0, φ^2). The whole represented
197 * value is then y + φ^2 c.
198 *
199 * Assume that we start out with |y_i| <= 2^30. We start off by cutting
200 * off and reducing the carry c_15 from the topmost piece, y_15. This
201 * leaves 0 <= y_15 < 2^28; and we'll have |c_15| <= 4. We'll add this
202 * onto y_0 and y_8, and propagate the carries. It's very clear that we'll
203 * end up with |y + (φ + 1) c_15 - φ^2/2| << φ^2.
204 *
205 * Here, the y_i are signed, so we must be cautious about bithacking them.
206 */
207 c = ASR(piece, y[15], 28); y[15] = (upiece)y[15]&M28; y[8] += c;
208 for (i = 0; i < NPIECE; i++)
209 { y[i] += c; c = ASR(piece, y[i], 28); y[i] = (upiece)y[i]&M28; }
210
211 /* Now we have a slightly fiddly job to do. If c = +1, or if c = 0 and
212 * y >= p, then we should subtract p from the whole value; if c = -1 then
213 * we should add p; and otherwise we should do nothing.
214 *
215 * But conditional behaviour is bad, m'kay. So here's what we do instead.
216 *
217 * The first job is to sort out what we wanted to do. If c = -1 then we
218 * want to (a) invert the constant addend and (b) feed in a carry-in;
219 * otherwise, we don't.
220 */
221 m = SIGN(c)&M28;
222 d = m&1;
223
224 /* Now do the addition/subtraction. Remember that all of the y_i are
225 * nonnegative, so shifting and masking are safe and easy.
226 */
227 d += y[0] + (1 ^ m); yy[0] = d&M28; d >>= 28;
228 for (i = 1; i < 8; i++)
229 { d += y[i] + m; yy[i] = d&M28; d >>= 28; }
230 d += y[8] + (1 ^ m); yy[8] = d&M28; d >>= 28;
231 for (i = 9; i < 16; i++)
232 { d += y[i] + m; yy[i] = d&M28; d >>= 28; }
233
234 /* The final carry-out is in d; since we only did addition, and the y_i are
235 * nonnegative, then d is in { 0, 1 }. We want to keep y', rather than y,
236 * if (a) c /= 0 (in which case we know that the old value was
237 * unsatisfactory), or (b) if d = 1 (in which case, if c = 0, we know that
238 * the subtraction didn't cause a borrow, so we must be in the case where
239 * p <= y < φ^2.
240 */
241 m = NONZEROP(c) | ~NONZEROP(d - 1);
242 for (i = 0; i < NPIECE; i++) y[i] = (yy[i]&m) | (y[i]&~m);
243
244 /* Extract 32-bit words from the value. */
245 for (i = 0; i < 7; i++) {
246 u = ((y[i + 0] >> (4*i)) | ((uint32)y[i + 1] << (28 - 4*i)))&M32;
247 v = ((y[i + 8] >> (4*i)) | ((uint32)y[i + 9] << (28 - 4*i)))&M32;
248 STORE32_L(zv + 4*i, u);
249 STORE32_L(zv + 4*i + 28, v);
250 }
b7a5ecfc
MW
251}
252
253/* --- @fgoldi_set@ --- *
254 *
255 * Arguments: @fgoldi *z@ = where to write the result
256 * @int a@ = a small-ish constant
257 *
258 * Returns: ---
259 *
260 * Use: Sets @z@ to equal @a@.
261 */
262
263void fgoldi_set(fgoldi *x, int a)
264{
265 unsigned i;
266
267 x->P[0] = a;
268 for (i = 1; i < NPIECE; i++) x->P[i] = 0;
269}
270
271/*----- Basic arithmetic --------------------------------------------------*/
272
273/* --- @fgoldi_add@ --- *
274 *
275 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
276 * @const fgoldi *x, *y@ = two operands
277 *
278 * Returns: ---
279 *
280 * Use: Set @z@ to the sum %$x + y$%.
281 */
282
283void fgoldi_add(fgoldi *z, const fgoldi *x, const fgoldi *y)
284{
285 unsigned i;
286 for (i = 0; i < NPIECE; i++) z->P[i] = x->P[i] + y->P[i];
287}
288
289/* --- @fgoldi_sub@ --- *
290 *
291 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
292 * @const fgoldi *x, *y@ = two operands
293 *
294 * Returns: ---
295 *
296 * Use: Set @z@ to the difference %$x - y$%.
297 */
298
299void fgoldi_sub(fgoldi *z, const fgoldi *x, const fgoldi *y)
300{
301 unsigned i;
302 for (i = 0; i < NPIECE; i++) z->P[i] = x->P[i] - y->P[i];
303}
304
305/*----- Constant-time utilities -------------------------------------------*/
306
307/* --- @fgoldi_condswap@ --- *
308 *
309 * Arguments: @fgoldi *x, *y@ = two operands
310 * @uint32 m@ = a mask
311 *
312 * Returns: ---
313 *
314 * Use: If @m@ is zero, do nothing; if @m@ is all-bits-set, then
315 * exchange @x@ and @y@. If @m@ has some other value, then
316 * scramble @x@ and @y@ in an unhelpful way.
317 */
318
319void fgoldi_condswap(fgoldi *x, fgoldi *y, uint32 m)
320{
321 unsigned i;
322 mask32 mm = FIX_MASK32(m);
323
324 for (i = 0; i < NPIECE; i++) CONDSWAP(x->P[i], y->P[i], mm);
325}
326
327/*----- Multiplication ----------------------------------------------------*/
328
b7a5ecfc
MW
329/* Let B = 2^63 - 1 be the largest value such that +B and -B can be
330 * represented in a double-precision piece. On entry, it must be the case
331 * that |X_i| <= M <= B - 2^27 for some M. If this is the case, then, on
332 * exit, we will have |Z_i| <= 2^27 + M/2^27.
333 */
334#define CARRY_REDUCE(z, x) do { \
335 dblpiece _t[NPIECE], _c; \
336 unsigned _i; \
337 \
338 /* Bias the input pieces. This keeps the carries and so on centred \
339 * around zero rather than biased positive. \
340 */ \
341 for (_i = 0; _i < NPIECE; _i++) _t[_i] = (x)[_i] + B27; \
342 \
343 /* Calculate the reduced pieces. Careful with the bithacking. */ \
344 _c = ASR(dblpiece, _t[15], 28); \
345 (z)[0] = (dblpiece)((udblpiece)_t[0]&M28) - B27 + _c; \
346 for (_i = 1; _i < NPIECE; _i++) { \
347 (z)[_i] = (dblpiece)((udblpiece)_t[_i]&M28) - B27 + \
348 ASR(dblpiece, _t[_i - 1], 28); \
349 } \
350 (z)[8] += _c; \
351} while (0)
352
b7a5ecfc
MW
353/* --- @fgoldi_mulconst@ --- *
354 *
355 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@)
356 * @const fgoldi *x@ = an operand
357 * @long a@ = a small-ish constant; %$|a| < 2^{20}$%.
358 *
359 * Returns: ---
360 *
361 * Use: Set @z@ to the product %$a x$%.
362 */
363
364void fgoldi_mulconst(fgoldi *z, const fgoldi *x, long a)
365{
366 unsigned i;
367 dblpiece zz[NPIECE], aa = a;
368
369 for (i = 0; i < NPIECE; i++) zz[i] = aa*x->P[i];
b7a5ecfc 370 CARRY_REDUCE(z->P, zz);
b7a5ecfc
MW
371}
372
373/* --- @fgoldi_mul@ --- *
374 *
375 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
376 * @const fgoldi *x, *y@ = two operands
377 *
378 * Returns: ---
379 *
380 * Use: Set @z@ to the product %$x y$%.
381 */
382
383void fgoldi_mul(fgoldi *z, const fgoldi *x, const fgoldi *y)
384{
385 dblpiece zz[NPIECE], u[NPIECE];
386 piece ab[NPIECE/2], cd[NPIECE/2];
387 const piece
388 *a = x->P + NPIECE/2, *b = x->P,
389 *c = y->P + NPIECE/2, *d = y->P;
390 unsigned i, j;
391
b7a5ecfc
MW
392# define M(x,i, y,j) ((dblpiece)(x)[i]*(y)[j])
393
b7a5ecfc
MW
394 /* Behold the magic.
395 *
396 * Write x = a φ + b, and y = c φ + d. Then x y = a c φ^2 +
397 * (a d + b c) φ + b d. Karatsuba and Ofman observed that a d + b c =
398 * (a + b) (c + d) - a c - b d, saving a multiplication, and Hamburg chose
399 * the prime p so that φ^2 = φ + 1. So
400 *
401 * x y = ((a + b) (c + d) - b d) φ + a c + b d
402 */
403
404 for (i = 0; i < NPIECE; i++) zz[i] = 0;
405
406 /* Our first job will be to calculate (1 - φ) b d, and write the result
407 * into z. As we do this, an interesting thing will happen. Write
408 * b d = u φ + v; then (1 - φ) b d = u φ + v - u φ^2 - v φ = (1 - φ) v - u.
409 * So, what we do is to write the product end-swapped and negated, and then
410 * we'll subtract the (negated, remember) high half from the low half.
411 */
412 for (i = 0; i < NPIECE/2; i++) {
413 for (j = 0; j < NPIECE/2 - i; j++)
414 zz[i + j + NPIECE/2] -= M(b,i, d,j);
415 for (; j < NPIECE/2; j++)
416 zz[i + j - NPIECE/2] -= M(b,i, d,j);
417 }
418 for (i = 0; i < NPIECE/2; i++)
419 zz[i] -= zz[i + NPIECE/2];
420
421 /* Next, we add on a c. There are no surprises here. */
422 for (i = 0; i < NPIECE/2; i++)
423 for (j = 0; j < NPIECE/2; j++)
424 zz[i + j] += M(a,i, c,j);
425
426 /* Now, calculate a + b and c + d. */
427 for (i = 0; i < NPIECE/2; i++)
428 { ab[i] = a[i] + b[i]; cd[i] = c[i] + d[i]; }
429
430 /* Finally (for the multiplication) we must add on (a + b) (c + d) φ.
431 * Write (a + b) (c + d) as u φ + v; then we actually want u φ^2 + v φ =
432 * v φ + (1 + φ) u. We'll store u in a temporary place and add it on
433 * twice.
434 */
435 for (i = 0; i < NPIECE; i++) u[i] = 0;
436 for (i = 0; i < NPIECE/2; i++) {
437 for (j = 0; j < NPIECE/2 - i; j++)
438 zz[i + j + NPIECE/2] += M(ab,i, cd,j);
439 for (; j < NPIECE/2; j++)
440 u[i + j - NPIECE/2] += M(ab,i, cd,j);
441 }
442 for (i = 0; i < NPIECE/2; i++)
443 { zz[i] += u[i]; zz[i + NPIECE/2] += u[i]; }
444
445#undef M
446
b7a5ecfc
MW
447 /* That wraps it up for the multiplication. Let's figure out some bounds.
448 * Fortunately, Karatsuba is a polynomial identity, so all of the pieces
449 * end up the way they'd be if we'd done the thing the easy way, which
450 * simplifies the analysis. Suppose we started with |x_i|, |y_i| <= 9/5
451 * 2^28. The overheads in the result are given by the coefficients of
452 *
453 * ((u^16 - 1)/(u - 1))^2 mod u^16 - u^8 - 1
454 *
455 * the greatest of which is 38. So |z_i| <= 38*81/25*2^56 < 2^63.
456 *
457 * Anyway, a round of `CARRY_REDUCE' will leave us with |z_i| < 2^27 +
458 * 2^36; and a second round will leave us with |z_i| < 2^27 + 512.
459 */
460 for (i = 0; i < 2; i++) CARRY_REDUCE(zz, zz);
461 for (i = 0; i < NPIECE; i++) z->P[i] = zz[i];
b7a5ecfc
MW
462}
463
464/* --- @fgoldi_sqr@ --- *
465 *
466 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
467 * @const fgoldi *x@ = an operand
468 *
469 * Returns: ---
470 *
471 * Use: Set @z@ to the square %$x^2$%.
472 */
473
474void fgoldi_sqr(fgoldi *z, const fgoldi *x)
475{
b7a5ecfc
MW
476 dblpiece zz[NPIECE], u[NPIECE];
477 piece ab[NPIECE];
478 const piece *a = x->P + NPIECE/2, *b = x->P;
479 unsigned i, j;
480
481# define M(x,i, y,j) ((dblpiece)(x)[i]*(y)[j])
482
483 /* The magic is basically the same as `fgoldi_mul' above. We write
484 * x = a φ + b and use Karatsuba and the special prime shape. This time,
485 * we have
486 *
487 * x^2 = ((a + b)^2 - b^2) φ + a^2 + b^2
488 */
489
490 for (i = 0; i < NPIECE; i++) zz[i] = 0;
491
492 /* Our first job will be to calculate (1 - φ) b^2, and write the result
493 * into z. Again, this interacts pleasantly with the prime shape.
494 */
495 for (i = 0; i < NPIECE/4; i++) {
496 zz[2*i + NPIECE/2] -= M(b,i, b,i);
497 for (j = i + 1; j < NPIECE/2 - i; j++)
498 zz[i + j + NPIECE/2] -= 2*M(b,i, b,j);
499 for (; j < NPIECE/2; j++)
500 zz[i + j - NPIECE/2] -= 2*M(b,i, b,j);
501 }
502 for (; i < NPIECE/2; i++) {
503 zz[2*i - NPIECE/2] -= M(b,i, b,i);
504 for (j = i + 1; j < NPIECE/2; j++)
505 zz[i + j - NPIECE/2] -= 2*M(b,i, b,j);
506 }
507 for (i = 0; i < NPIECE/2; i++)
508 zz[i] -= zz[i + NPIECE/2];
509
510 /* Next, we add on a^2. There are no surprises here. */
511 for (i = 0; i < NPIECE/2; i++) {
512 zz[2*i] += M(a,i, a,i);
513 for (j = i + 1; j < NPIECE/2; j++)
514 zz[i + j] += 2*M(a,i, a,j);
515 }
516
517 /* Now, calculate a + b. */
518 for (i = 0; i < NPIECE/2; i++)
519 ab[i] = a[i] + b[i];
520
521 /* Finally (for the multiplication) we must add on (a + b)^2 φ.
522 * Write (a + b)^2 as u φ + v; then we actually want (u + v) φ + u. We'll
523 * store u in a temporary place and add it on twice.
524 */
525 for (i = 0; i < NPIECE; i++) u[i] = 0;
526 for (i = 0; i < NPIECE/4; i++) {
527 zz[2*i + NPIECE/2] += M(ab,i, ab,i);
528 for (j = i + 1; j < NPIECE/2 - i; j++)
529 zz[i + j + NPIECE/2] += 2*M(ab,i, ab,j);
530 for (; j < NPIECE/2; j++)
531 u[i + j - NPIECE/2] += 2*M(ab,i, ab,j);
532 }
533 for (; i < NPIECE/2; i++) {
534 u[2*i - NPIECE/2] += M(ab,i, ab,i);
535 for (j = i + 1; j < NPIECE/2; j++)
536 u[i + j - NPIECE/2] += 2*M(ab,i, ab,j);
537 }
538 for (i = 0; i < NPIECE/2; i++)
539 { zz[i] += u[i]; zz[i + NPIECE/2] += u[i]; }
540
541#undef M
542
543 /* Finally, carrying. */
544 for (i = 0; i < 2; i++) CARRY_REDUCE(zz, zz);
545 for (i = 0; i < NPIECE; i++) z->P[i] = zz[i];
546
b7a5ecfc
MW
547}
548
549/*----- More advanced operations ------------------------------------------*/
550
551/* --- @fgoldi_inv@ --- *
552 *
553 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@)
554 * @const fgoldi *x@ = an operand
555 *
556 * Returns: ---
557 *
558 * Use: Stores in @z@ the multiplicative inverse %$x^{-1}$%. If
559 * %$x = 0$% then @z@ is set to zero. This is considered a
560 * feature.
561 */
562
563void fgoldi_inv(fgoldi *z, const fgoldi *x)
564{
565 fgoldi t, u;
566 unsigned i;
567
568#define SQRN(z, x, n) do { \
569 fgoldi_sqr((z), (x)); \
570 for (i = 1; i < (n); i++) fgoldi_sqr((z), (z)); \
571} while (0)
572
573 /* Calculate x^-1 = x^(p - 2) = x^(2^448 - 2^224 - 3), which also handles
574 * x = 0 as intended. The addition chain is home-made.
575 */ /* step | value */
576 fgoldi_sqr(&u, x); /* 1 | 2 */
577 fgoldi_mul(&t, &u, x); /* 2 | 3 */
578 SQRN(&u, &t, 2); /* 4 | 12 */
579 fgoldi_mul(&t, &u, &t); /* 5 | 15 */
580 SQRN(&u, &t, 4); /* 9 | 240 */
581 fgoldi_mul(&u, &u, &t); /* 10 | 255 = 2^8 - 1 */
582 SQRN(&u, &u, 4); /* 14 | 2^12 - 16 */
583 fgoldi_mul(&t, &u, &t); /* 15 | 2^12 - 1 */
584 SQRN(&u, &t, 12); /* 27 | 2^24 - 2^12 */
585 fgoldi_mul(&u, &u, &t); /* 28 | 2^24 - 1 */
586 SQRN(&u, &u, 12); /* 40 | 2^36 - 2^12 */
587 fgoldi_mul(&t, &u, &t); /* 41 | 2^36 - 1 */
588 fgoldi_sqr(&t, &t); /* 42 | 2^37 - 2 */
589 fgoldi_mul(&t, &t, x); /* 43 | 2^37 - 1 */
590 SQRN(&u, &t, 37); /* 80 | 2^74 - 2^37 */
591 fgoldi_mul(&u, &u, &t); /* 81 | 2^74 - 1 */
592 SQRN(&u, &u, 37); /* 118 | 2^111 - 2^37 */
593 fgoldi_mul(&t, &u, &t); /* 119 | 2^111 - 1 */
594 SQRN(&u, &t, 111); /* 230 | 2^222 - 2^111 */
595 fgoldi_mul(&t, &u, &t); /* 231 | 2^222 - 1 */
596 fgoldi_sqr(&u, &t); /* 232 | 2^223 - 2 */
597 fgoldi_mul(&u, &u, x); /* 233 | 2^223 - 1 */
598 SQRN(&u, &u, 223); /* 456 | 2^446 - 2^223 */
599 fgoldi_mul(&t, &u, &t); /* 457 | 2^446 - 2^222 - 1 */
600 SQRN(&t, &t, 2); /* 459 | 2^448 - 2^224 - 4 */
601 fgoldi_mul(z, &t, x); /* 460 | 2^448 - 2^224 - 3 */
602
603#undef SQRN
604}
605
b7a5ecfc 606/*----- That's all, folks -------------------------------------------------*/