@@@ tvec wip
[mLib] / struct / buf-float.c
CommitLineData
e63124bc
MW
1/* -*-c-*-
2 *
3 * Encoding and decoding floating-point values
4 *
5 * (c) 2023 Straylight/Edgeware
6 */
7
8/*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of the mLib utilities library.
11 *
12 * mLib is free software: you can redistribute it and/or modify it under
13 * the terms of the GNU Library General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or (at
15 * your option) any later version.
16 *
17 * mLib is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
20 * License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with mLib. If not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25 * USA.
26 */
27
28/*----- Header files ------------------------------------------------------*/
29
30#include <float.h>
31#include <math.h>
32
33#include "bits.h"
34#include "buf.h"
35
36/*----- Formatting primitives ---------------------------------------------*/
37
38/* We use the IEEE 754 `binary64' format. Briefly:
39 *
40 * * The top bit is the sign %$s$%: 0 encodes %$s = +1$%, and 1 encodes
41 * %$s = -1$%.. The format is signed-magnitude, so everything else is
42 * the same for positive and negative numbers.
43 *
44 * * The next eleven bits are the biased exponent %$e$%.
45 *
46 * * The remaining 52 bits are the significand %$m$%.
47 *
48 * If %$0 < e < 2047$% then the encoding represents the normal number
49 * %$s \cdot (1 + m/2^{52}) \cdot 2^{e-1023}$%.
50 *
51 * If %$e = 0$% and %$m = 0$% then the encoding represents positive or
52 * negative zero.
53 *
54 * If %$e = 0$% and %$m \ne 0$% then the encoding represents a subnormal
55 * number %$s \cdot m/2^{52} \cdot 2^{-1022}$%.
56 *
57 * If %$e = 2047$% and %$m = 0$% then the encoding represents positive or
58 * negative infinity.
59 *
60 * If %$e = 2047$% and %$m \ne 0$% then the encoding represents a NaN. If
61 * the most significant bit of %$m$% is set then this is a quiet NaN;
62 * otherwise it's a signalling NaN.
63 */
64
65/* --- @f64_to_k64@ --- *
66 *
67 * Arguments: @double x@ = a floating-point number
68 *
69 * Returns: A 64-bit encoding of @x@.
70 *
71 * Use: Encodes @x@ as a `binary64' value. See `buf_putf64' for the
72 * caveats.
73 */
74
75static kludge64 f64_to_k64(double x)
76{
77 kludge64 k;
78 uint32 lo, hi, t;
79 int e; double m;
80
81 /* Some machinery before we start. */
82
83#ifdef isnan
84# define NANP(x) isnan(x)
85#else
86# define NANP(x) (!((x) == (x)))
87#endif
88
89#ifdef isinf
90# define INFP(x) isinf(x)
91#else
92# define INFP(x) ((x) > DBL_MAX || (x) < -DBL_MAX)
93#endif
94
95#ifdef signbit
96# define NEGP(x) signbit(x)
97#else
98# define NEGP(x) ((x) < 0) /* incorrect for negative zero! */
99#endif
100
101 if (NANP(x)) {
102 /* A NaN. */
103 hi = 0x7ff80000; lo = 0;
104 } else if (INFP(x)) {
105 /* Positive or negative infinity. */
106 hi = NEGP(x) ? 0xfff00000 : 0x7ff00000; lo = 0;
107 } else if (x == 0) {
108 /* Positive or negative zero. */
109 hi = NEGP(x) ? 0x80000000 : 0; lo = 0;
110 } else {
111 /* A normal or subnormal number. Now we have to do some actual work. */
112
113 /* Let's get the sign dealt with so we don't have to worry about it any
114 * more.
115 */
116 if (!NEGP(x)) hi = 0;
117 else { x = -x; hi = 0x80000000; }
118
119 /* Now we start on the value. The first thing to do is to split off the
120 * exponent. Our number will be %$m \cdot 2^e$%, with %$1/2 \le m < 1$%.
121 */
122 m = frexp(x, &e);
123
124 /* If our number is too big, we'll round it to infinity. This will
125 * happen if %$x \ge 2^{1024}$%, i.e., if %$e > 1024$%.
126 */
127 if (e > 1024)
128 { hi |= 0x7ff00000; lo = 0; }
129 else {
130 /* Our number is sufficiently small that we can represent it at least
131 * approximately (though maybe we'll have to flush it to zero). The
132 * next step, then, is to pull the significand bits out.
133 */
134
135 /* Determine the correct exponent to store. We're not going to bias it
136 * yet, but this is where we deal with subnormal numbers. Our number
137 * is normal if %$x \ge 2^{-1022}$%, i.e., %$e > -1022$%. In this
138 * case, there's an implicit bit which we'll clear. Otherwise, if it's
139 * subnormal, we'll scale our floating-point number so that the
140 * significand will look right when we extract it, and adjust the
141 * exponent so that, when we're finally done, it will have the correct
142 * sentinel value.
143 */
144 if (e > -1022) m -= 0.5;
145 else { m = ldexp(m, 1021 + e); e = -1022; }
146
147 /* Now we pull out the 53 bits of the significand. This will, in
148 * general, leave a tail which we address through rounding. Scale it
149 * up so that we end up with %$0 \le m' < 2$%; then we round up if
150 * %$m > 1$%, or if %$m = 1$% and the low bit of the significand is
151 * set.
152 */
153 t = ldexp(m, 21); m -= ldexp(t, -21);
154 lo = ldexp(m, 53); m -= ldexp(lo, -53);
155 m = ldexp(m, 54);
156
157 /* Round the number if necessary. */
158 if (lo&1 ? m >= 1.0 : m > 1)
159 { lo = U32(lo + 1); if (!lo) t++; }
160
161 /* Now we just put the pieces together. Note that our %$e$% is one
162 * greater than it should be, because our implicit bit should have
163 * been the unit bit not the 1/2 bit.
164 */
165 hi |= ((uint32)(e + 1022) << 20) | t;
166 }
167 }
168
169 /* Convert to external format and go home. */
170 SET64(k, hi, lo); return (k);
171
172#undef NANP
173#undef INFP
174#undef NEGP
175}
176
177/* --- @k64_to_f64@ --- *
178 *
179 * Arguments: @double *x_out@ = where to put the result
180 * @kludge64 k@ = a 64-bit encoding of a floating-point value
181 *
182 * Returns: Zero on success, @-1@ on failure.
183 *
184 * Use: Decodes @k@ as a `binary64' value. See `buf_getf64' for the
185 * caveats.
186 */
187
188static int k64_to_f64(double *x_out, kludge64 k)
189{
190 uint32 lo, hi, t;
191 int s, e; double x;
192
193 /* We're using the IEEE 754 `binary64' format: see `float_to_k64' above. */
194
195 /* Pick the encoded number apart. */
196 hi = HI64(k); lo = LO64(k);
197 s = (hi >> 31)&1; e = (hi >> 20)&0x07ff; t = hi&0x000fffff;
198
199 /* Deal with various special cases. */
200 if (e == 2047) {
201 /* Maximum exponent indicates (positive or negative) infinity or NaN. */
202
203 if (t || lo) {
204 /* It's a NaN. We're not going to be picky about which one. If we
205 * can't represent it then we'll just have to fail.
206 */
207
208#ifdef NAN
209 x = NAN;
210#else
211 return (-1);
212#endif
213 } else {
214 /* It's an infinity. If we don't have one of those to hand, then pick
215 * something really big.
216 */
217
218#ifdef INFINITY
219 x = s ? -INFINITY : INFINITY;
220#else
221 x = s ? -DBL_MAX : DBL_MAX;
222#endif
223 }
224 } else {
225 /* It's a finite number, though maybe it's weird in some way. */
226
227 if (e == 0) {
228 /* Minimum exponent indicates zero or a subnormal number. The
229 * subnormal exponent is a sentinel value that shouldn't be taken
230 * literally, so we should fix that. If the number is actually zero
231 * then the exponent won't matter much so don't bother checking.
232 */
233
234 e = 1;
235 } else {
236 /* It's a normal number. In which case there's an implicit bit which
237 * we can now set.
238 */
239
240 t |= 0x00100000;
241 }
242
243 /* All that remains is to stuff the significant and exponent into a
244 * floating point number. We'll have to do this in pieces, and we'll
245 * lean on the floating-point machinery to do rounding correctly.
246 */
247 x = ldexp(t, e - 1043) + ldexp(lo, e - 1075);
248 if (s) x = -x;
249 }
250
251 /* And we're done. */
252 *x_out = x; return (0);
253}
254
255/*----- External functions ------------------------------------------------*/
256
257/* --- @buf_putf64{,b,l} --- *
258 *
259 * Arguments: @buf *b@ = a buffer to write to
260 * @double x@ = a number to write
261 *
262 * Returns: Zero on success, @-1@ on failure (and the buffer is broken).
263 *
264 * On C89, this function can't detect negative zero so these
265 * will be silently written as positive zero.
266 *
267 * This function doesn't distinguish NaNs. Any NaN is written
268 * as a quiet NaN with all payload bits zero.
269 *
270 * A finite value with too large a magnitude to be represented
271 * is rounded to the appropriate infinity. Other finite values
272 * are rounded as necessary, in the usual IEEE 754 round-to-
273 * nearest-or-even way.
274 */
275
276int buf_putf64(buf *b, double x)
277 { return (buf_putk64(b, f64_to_k64(x))); }
278int buf_putf64b(buf *b, double x)
279 { return (buf_putk64b(b, f64_to_k64(x))); }
280int buf_putf64l(buf *b, double x)
281 { return (buf_putk64l(b, f64_to_k64(x))); }
282
283/* --- @buf_getf64{,b,l} --- *
284 *
285 * Arguments: @buf *b@ = a buffer to read from
286 * @double *x_out@ = where to put the result
287 *
288 * Returns: Zero on success, @-1@ on failure (and the buffer is broken).
289 *
290 * If the system supports NaNs, then any encoded NaN is returned
291 * as the value of @NAN@ in @<math.h>@; otherwise, this function
292 * reports failure.
293 *
294 * In general, values are rounded to the nearest available
295 * value, in the way that the system usually rounds. If the
296 * system doesn't support infinities, then any encoded infinity
297 * is reported as the largest-possible-magnitude finite value
298 * instead.
299 */
300
301int buf_getf64(buf *b, double *x_out)
302{
303 kludge64 k;
304
305 if (buf_getk64(b, &k)) return (-1);
306 if (k64_to_f64(x_out, k)) { b->f |= BF_BROKEN; return (-1); }
307 return (0);
308}
309int buf_getf64b(buf *b, double *x_out)
310{
311 kludge64 k;
312
313 if (buf_getk64b(b, &k)) return (-1);
314 if (k64_to_f64(x_out, k)) { b->f |= BF_BROKEN; return (-1); }
315 return (0);
316}
317int buf_getf64l(buf *b, double *x_out)
318{
319 kludge64 k;
320
321 if (buf_getk64l(b, &k)) return (-1);
322 if (k64_to_f64(x_out, k)) { b->f |= BF_BROKEN; return (-1); }
323 return (0);
324}
325
326/*----- That's all, folks -------------------------------------------------*/