;;; -*-lisp-*- ;;; ;;; Basic definitions ;;; ;;; (c) 2005 Mark Wooding ;;; ;;;----- Licensing notice --------------------------------------------------- ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software Foundation, ;;; Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;;-------------------------------------------------------------------------- ;;; Package things. (defpackage #:mdw.base (:use #:common-lisp) #+cmu (:import-from #:extensions #:fixnump)) (in-package #:mdw.base) ;;;-------------------------------------------------------------------------- ;;; Useful types. (export 'unsigned-fixnum) (deftype unsigned-fixnum () "Unsigned fixnums; useful as array indices and suchlike." `(mod ,most-positive-fixnum)) ;;;-------------------------------------------------------------------------- ;;; Some simple macros to get things going. (export 'compile-time-defun) (defmacro compile-time-defun (name args &body body) "Define a function which can be used by macros during the compilation process." `(eval-when (:compile-toplevel :load-toplevel :execute) (defun ,name ,args ,@body))) (export 'show) (defmacro show (x) "Debugging tool: print the expression X and its values." (let ((tmp (gensym))) `(let ((,tmp (multiple-value-list ,x))) (fresh-line) (pprint-logical-block (*standard-output* nil :per-line-prefix ";; ") (format t "~S = ~@_~:I~:[#~;~:*~{~S~^ ~_~}~]" ',x ,tmp)) (terpri) (values-list ,tmp)))) (export 'stringify) (defun stringify (str) "Return a string representation of STR. Strings are returned unchanged; symbols are converted to their names (unqualified!). Other objects are converted to their print representations." (typecase str (string str) (symbol (symbol-name str)) (t (princ-to-string str)))) (export 'functionify) (defun functionify (func) "Convert the function-designator FUNC to a function." (declare (type (or function symbol) func)) (etypecase func (function func) (symbol (symbol-function func)))) (export 'mappend) (defun mappend (function list &rest more-lists) "Apply FUNCTION to corresponding elements of LIST and MORE-LISTS, yielding a list. Return the concatenation of all the resulting lists. Like mapcan, but nondestructive." (apply #'append (apply #'mapcar function list more-lists))) (export 'listify) (compile-time-defun listify (x) "If X is a (possibly empty) list, return X; otherwise return (list X)." (if (listp x) x (list x))) (compile-time-defun do-fix-pair (x y defaultp) "Helper function for fix-pair and pairify." (flet ((singleton (x) (values x (if defaultp y x)))) (cond ((atom x) (singleton x)) ((null (cdr x)) (singleton (car x))) ((atom (cdr x)) (values (car x) (cdr x))) ((cddr x) (error "Too many elements for a pair.")) (t (values (car x) (cadr x)))))) (export 'fix-pair) (compile-time-defun fix-pair (x &optional (y nil defaultp)) "Return two values extracted from X. It works as follows: (A) -> A, Y (A B) -> A, B (A B . C) -> error (A . B) -> A, B A -> A, Y where Y defaults to A if not specified." (do-fix-pair x y defaultp)) (export 'pairify) (compile-time-defun pairify (x &optional (y nil defaultp)) "As for fix-pair, but returns a list instead of two values." (multiple-value-call #'list (do-fix-pair x y defaultp))) (export 'whitespace-char-p) (defun whitespace-char-p (ch) "Return whether CH is a whitespace character or not." (case ch (#.(loop for i below char-code-limit for ch = (code-char i) unless (with-input-from-string (in (string ch)) (peek-char t in nil)) collect ch) t) (t nil))) (export 'defconstant*) (defmacro defconstant* (name value &key doc test) "Define a constant, like `defconstant'. The TEST is an equality test used to decide whether to override the current definition, if any." (let ((temp (gensym))) `(eval-when (:compile-toplevel :load-toplevel :execute) (let ((,temp ,value)) (unless (and (boundp ',name) (funcall ,(or test ''eql) (symbol-value ',name) ,temp)) (defconstant ,name ,value ,@(and doc (list doc)))) ',name)))) (export 'slot-uninitialized) (declaim (ftype (function nil ()) slot-unitialized)) (defun slot-uninitialized () "A function which signals an error. Can be used as an initializer form in structure definitions without doom ensuing." (error "No initializer for slot.")) (export 'parse-body) (compile-time-defun parse-body (body &key (allow-docstring-p t)) "Given a BODY (a list of forms), parses it into three sections: a docstring, a list of declarations (forms beginning with the symbol `declare') and the body forms. The result is returned as three lists (even the docstring), suitable for interpolation into a backquoted list using `@,'. If ALLOW-DOCSTRING-P is nil, docstrings aren't allowed at all." (let ((doc nil) (decls nil)) (do ((forms body (cdr forms))) (nil) (let ((form (and forms (car forms)))) (cond ((and allow-docstring-p (not doc) (stringp form) (cdr forms)) (setf doc form)) ((and (consp form) (eq (car form) 'declare)) (setf decls (append decls (cdr form)))) (t (return (values (and doc (list doc)) (and decls (list (cons 'declare decls))) forms)))))))) (export 'with-parsed-body) (defmacro with-parsed-body ((bodyvar declvar &optional (docvar (gensym) docp)) form &body body) "Parse FORM into a body, declarations and (maybe) a docstring; bind BODYVAR to the body, DECLVAR to the declarations, and DOCVAR to (a list containing) the docstring, and evaluate BODY." `(multiple-value-bind (,docvar ,declvar ,bodyvar) (parse-body ,form :allow-docstring-p ,docp) ,@(if docp nil `((declare (ignore ,docvar)))) ,@body)) (export 'fixnump) #-cmu (progn (declaim (inline fixnump)) (defun fixnump (object) "Answer non-nil if OBJECT is a fixnum, or nil if it isn't." (typep object 'fixnum))) ;;;-------------------------------------------------------------------------- ;;; Generating symbols. (export 'symbolicate) (defun symbolicate (&rest names) "Return a symbol constructued by concatenating the NAMES. The NAMES are coerced to strings, using the `string' function, so they may be strings, characters, or symbols. The resulting symbol is interned in the current `*package*'." (intern (apply #'concatenate 'string (mapcar #'string names)))) (export 'with-gensyms) (defmacro with-gensyms (syms &body body) "Everyone's favourite macro helper." `(let (,@(mapcar (lambda (sym) `(,sym (gensym ,(symbol-name sym)))) (listify syms))) ,@body)) (export 'let*/gensyms) (defmacro let*/gensyms (binds &body body) "A macro helper. BINDS is a list of binding pairs (VAR VALUE), where VALUE defaults to VAR. The result is that BODY is evaluated in a context where each VAR is bound to a gensym, and in the final expansion, each of those gensyms will be bound to the corresponding VALUE." (labels ((more (binds) (let ((tmp (gensym "TMP")) (bind (car binds))) `((let ((,tmp ,(cadr bind)) (,(car bind) (gensym ,(symbol-name (car bind))))) `(let ((,,(car bind) ,,tmp)) ,,@(if (cdr binds) (more (cdr binds)) body))))))) (if (null binds) `(progn ,@body) (car (more (mapcar #'pairify (listify binds))))))) ;;;-------------------------------------------------------------------------- ;;; Capturing places as symbols. (defmacro %place-ref (getform setform newtmp) "Grim helper macro for with-places." (declare (ignore setform newtmp)) getform) (define-setf-expander %place-ref (getform setform newtmp) "Grim helper macro for with-places." (values nil nil newtmp setform getform)) (export 'with-places) (defmacro with-places (clauses &body body &environment env) "Define symbols which refer to `setf'-able places. The syntax is similar to `let'. The CLAUSES are a list of (NAME PLACE) pairs. Each NAME is defined as a symbol-macro referring to the corresponding PLACE: a mention of the NAME within the BODY forms extracts the current value(s) of the PLACE, while a `setf' (or `setq', because symbol macros are strange like that) of a NAME updates the value(s) in the PLACE. The returned values are those of the BODY, evaluated as an implicit `progn'." (let ((temp-binds nil) (macro-binds nil)) (dolist (clause clauses) (destructuring-bind (name place) clause (multiple-value-bind (valtmps valforms newtmps setform getform) (get-setf-expansion place env) (setf temp-binds (nconc (nreverse (mapcar #'list valtmps valforms)) temp-binds)) (push `(,name (%place-ref ,getform ,setform ,newtmps)) macro-binds)))) `(let (,@(nreverse temp-binds)) (symbol-macrolet (,@(nreverse macro-binds)) ,@body)))) (export 'with-places/gensyms) (defmacro with-places/gensyms (clauses &body body) "A kind of a cross between `with-places' and `let*/gensyms'. This is a hairy helper for writing `setf'-like macros. The CLAUSES are a list of (NAME [PLACE]) pairs, where the PLACE defaults to NAME, and a bare NAME may be written in place of the singleton list (NAME). The PLACEs are evaluated. The BODY forms are evaluated as an implicit `progn', with each NAME bound to a gensym, to produce a Lisp form, called the `kernel'. The result of the `with-places/gensyms' macro is then itself a Lisp form, called the `result'. The effect of evaluating the `result' form is to evaluate the `kernel' form with each of the gensyms stands for the value(s) stored in the corresponding PLACE; a `setf' (or `setq') of one of the gensyms updates the value(s) in the corresponding PLACE. The values returned by the `result' form are the values returned by the `kernel'." (let* ((clauses (mapcar #'pairify clauses)) (names (mapcar #'car clauses)) (places (mapcar #'cadr clauses)) (gensyms (mapcar (lambda (name) (gensym (symbol-name name))) names))) ``(with-places (,,@(mapcar (lambda (gensym place) ``(,',gensym ,,place)) gensyms places)) ,(let (,@(mapcar (lambda (name gensym) `(,name ',gensym)) names gensyms)) ,@body)))) ;;;-------------------------------------------------------------------------- ;;; Some simple yet useful control structures. (export 'nlet) (defmacro nlet (name binds &body body) "Scheme's named let." (multiple-value-bind (vars vals) (loop for bind in binds for (var val) = (pairify bind nil) collect var into vars collect val into vals finally (return (values vars vals))) `(labels ((,name ,vars ,@body)) (,name ,@vals)))) (export 'while) (defmacro while (cond &body body) "If COND is false, evaluate to nil; otherwise evaluate BODY and try again." `(loop (unless ,cond (return)) (progn ,@body))) (export 'until) (defmacro until (cond &body body) "If COND is true, evaluate to nil; otherwise evaluate BODY and try again." `(loop (when ,cond (return)) (progn ,@body))) (compile-time-defun do-case2-like (kind vform clauses) "Helper function for `case2' and `ecase2'." (with-gensyms (scrutinee argument) `(multiple-value-bind (,scrutinee ,argument) ,vform (declare (ignorable ,argument)) (,kind ,scrutinee ,@(mapcar (lambda (clause) (destructuring-bind (cases (&optional varx vary) &rest forms) clause `(,cases ,@(if varx (list `(let ((,(or vary varx) ,argument) ,@(and vary `((,varx ,scrutinee)))) ,@forms)) forms)))) clauses))))) (export 'case2) (defmacro case2 (vform &body clauses) "VFORM is a form which evaluates to two values, SCRUTINEE and ARGUMENT. The CLAUSES have the form (CASES ([[SCRUVAR] ARGVAR]) FORMS...), where a standard `case' clause has the form (CASES FORMS...). The `case2' form evaluates the VFORM, and compares the SCRUTINEE to the various CASES, in order, just like `case'. If there is a match, then the corresponding FORMs are evaluated with ARGVAR bound to the ARGUMENT and SCRUVAR bound to the SCRUTINEE (where specified). Note the bizarre defaulting behaviour: ARGVAR is less optional than SCRUVAR." (do-case2-like 'case vform clauses)) (export 'ecase2) (defmacro ecase2 (vform &body clauses) "Like `case2', but signals an error if no clause matches the SCRUTINEE." (do-case2-like 'ecase vform clauses)) (export 'setf-default) (defmacro setf-default (&rest specs) "Like setf, but only sets places which are currently nil. The arguments are an alternating list of PLACEs and DEFAULTs. If a PLACE is nil, the DEFAULT is evaluated and stored in the PLACE; otherwise the default is /not/ stored. The result is the (new) value of the last PLACE." `(progn ,@(do ((list nil) (specs specs (cddr specs))) ((endp specs) (nreverse list)) (unless (cdr specs) (error "Odd number of arguments for `setf-default'.")) (push (with-places/gensyms ((place (car specs))) `(or ,place (setf ,place ,(cadr specs)))) list)))) ;;;-------------------------------------------------------------------------- ;;; Update-in-place macros built using with-places. (export 'update-place) (defmacro update-place (op place &rest args) "Update PLACE with (OP PLACE . ARGS), returning the new value." (with-places/gensyms (place) `(setf ,place (,op ,place ,@args)))) (export 'update-place-after) (defmacro update-place-after (op place &rest args) "Update PLACE with (OP PLACE . ARGS), returning the old value." (with-places/gensyms (place) (with-gensyms (x) `(let ((,x ,place)) (setf ,place (,op ,x ,@args)) ,x)))) (export 'incf-after) (defmacro incf-after (place &optional (by 1)) "Increment PLACE by BY, returning the old value." `(update-place-after + ,place ,by)) (export 'decf-after) (defmacro decf-after (place &optional (by 1)) "Decrement PLACE by BY, returning the old value." `(update-place-after - ,place ,by)) ;;;-------------------------------------------------------------------------- ;;; Locatives. (export 'locp) (defstruct (loc (:predicate locp) (:constructor make-loc (reader writer))) "Locative data type. See `locf' and `ref'." (reader (slot-uninitialized) :type function :read-only t) (writer (slot-uninitialized) :type function :read-only t)) (export 'locf) (defmacro locf (place &environment env) "Slightly cheesy locatives. (locf PLACE) returns an object which, using the `ref' function, can be used to read or set the value of PLACE. It's cheesy because it uses closures rather than actually taking the address of something. Also, unlike Zetalisp, we don't overload `car' to do our dirty work." (multiple-value-bind (valtmps valforms newtmps setform getform) (get-setf-expansion place env) `(let* (,@(mapcar #'list valtmps valforms)) (make-loc (lambda () ,getform) (lambda (,@newtmps) ,setform))))) (export 'ref) (declaim (inline ref (setf ref))) (defun ref (loc) "Fetch the value referred to by a locative." (funcall (loc-reader loc))) (defun (setf ref) (new loc) "Store a new value in the place referred to by a locative." (funcall (loc-writer loc) new)) (export 'with-locatives) (defmacro with-locatives (locs &body body) "LOCS is a list of items of the form (SYM [LOC-EXPR]), where SYM is a symbol and LOC-EXPR evaluates to a locative. If LOC-EXPR is omitted, it defaults to SYM. As an abbreviation for a common case, LOCS may be a symbol instead of a list. The BODY is evaluated in an environment where each SYM is a symbol macro which expands to (ref LOC-EXPR) -- or, in fact, something similar which doesn't break if LOC-EXPR has side-effects. Thus, references, including `setf' forms, fetch or modify the thing referred to by the LOC-EXPR. Useful for covering over where something uses a locative." (setf locs (mapcar #'pairify (listify locs))) (let ((tt (mapcar (lambda (l) (declare (ignore l)) (gensym)) locs)) (ll (mapcar #'cadr locs)) (ss (mapcar #'car locs))) `(let (,@(mapcar (lambda (tmp loc) `(,tmp ,loc)) tt ll)) (symbol-macrolet (,@(mapcar (lambda (sym tmp) `(,sym (ref ,tmp))) ss tt)) ,@body)))) ;;;----- That's all, folks --------------------------------------------------