#! /usr/local/bin/sage ### -*- mode: python; coding: utf-8 -*- import hashlib as H ###-------------------------------------------------------------------------- ### Some general utilities. def hash(*m): h = H.sha512() for i in m: h.update(i) return h.digest() def ld(v): return 0 + sum(ord(v[i]) << 8*i for i in xrange(len(v))) def st(x, n): return ''.join(chr((x >> 8*i)&0xff) for i in xrange(n)) def piece_widths_offsets(wd, n): o = [ceil(wd*i/n) for i in xrange(n + 1)] w = [o[i + 1] - o[i] for i in xrange(n)] return w, o def pieces(x, wd, n, bias = 0): ## Figure out widths and offsets. w, o = piece_widths_offsets(wd, n) ## First, normalize |n| < bias/2. if bias and n >= bias/2: n -= bias ## First, collect the bits. nn = [] for i in xrange(n - 1): m = (1 << w[i]) - 1 nn.append(x&m) x >>= w[i] nn.append(x) ## Now normalize them to the appropriate interval. c = 0 for i in xrange(n - 1): b = 1 << (w[i] - 1) if nn[i] >= b: nn[i] -= 2*b nn[i + 1] += 1 ## And we're done. return nn def combine(v, wd, n): w, o = piece_widths_offsets(wd, n) return sum(v[i] << o[i] for i in xrange(n)) ###-------------------------------------------------------------------------- ### Define the curve. p = 2^255 - 19; k = GF(p) A = k(486662); A0 = (A - 2)/4 E = EllipticCurve(k, [0, A, 0, 1, 0]); P = E.lift_x(9) l = 2^252 + 27742317777372353535851937790883648493 assert is_prime(l) assert (l*P).is_zero() assert (p + 1 - 8*l)^2 <= 4*p ###-------------------------------------------------------------------------- ### Example points from `Cryptography in NaCl'. x = ld(map(chr, [0x70,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d ,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45 ,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a ,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x6a])) y = ld(map(chr, [0x58,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b ,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6 ,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd ,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0x6b])) X = x*P Y = y*P Z = x*Y assert Z == y*X ###-------------------------------------------------------------------------- ### Arithmetic implementation. def sqrn(x, n): for i in xrange(n): x = x*x return x sqrtm1 = sqrt(k(-1)) def inv(x): t2 = sqrn(x, 1) # 1 | 2 u = sqrn(t2, 2) # 3 | 8 t = u*x # 4 | 9 t11 = t*t2 # 5 | 11 u = sqrn(t11, 1) # 6 | 22 t = u*t # 7 | 2^5 - 1 = 31 u = sqrn(t, 5) # 12 | 2^10 - 2^5 t2p10m1 = u*t # 13 | 2^10 - 1 u = sqrn(t2p10m1, 10) # 23 | 2^20 - 2^10 t = u*t2p10m1 # 24 | 2^20 - 1 u = sqrn(t, 20) # 44 | 2^40 - 2^20 t = u*t # 45 | 2^40 - 1 u = sqrn(t, 10) # 55 | 2^50 - 2^10 t2p50m1 = u*t2p10m1 # 56 | 2^50 - 1 u = sqrn(t2p50m1, 50) # 106 | 2^100 - 2^50 t = u*t2p50m1 # 107 | 2^100 - 1 u = sqrn(t, 100) # 207 | 2^200 - 2^100 t = u*t # 208 | 2^200 - 1 u = sqrn(t, 50) # 258 | 2^250 - 2^50 t = u*t2p50m1 # 259 | 2^250 - 1 u = sqrn(t, 5) # 264 | 2^255 - 2^5 t = u*t11 # 265 | 2^255 - 21 return t def quosqrt_djb(x, y): ## First, some preliminary values. y2 = sqrn(y, 1) # 1 | 0, 2 y3 = y2*y # 2 | 0, 3 xy3 = x*y3 # 3 | 1, 3 y4 = sqrn(y2, 1) # 4 | 0, 4 w = xy3*y4 # 5 | 1, 7 ## Now calculate w^(p - 5)/8. Notice that (p - 5)/8 = ## (2^255 - 24)/8 = 2^252 - 3. u = sqrn(w, 1) # 6 | 2 t = u*w # 7 | 3 u = sqrn(t, 1) # 8 | 6 t = u*w # 9 | 7 u = sqrn(t, 3) # 12 | 56 t = u*t # 13 | 63 = 2^6 - 1 u = sqrn(t, 6) # 19 | 2^12 - 2^6 t = u*t # 20 | 2^12 - 1 u = sqrn(t, 12) # 32 | 2^24 - 2^12 t = u*t # 33 | 2^24 - 1 u = sqrn(t, 1) # 34 | 2^25 - 2 t = u*w # 35 | 2^25 - 1 u = sqrn(t, 25) # 60 | 2^50 - 2^25 t2p50m1 = u*t # 61 | 2^50 - 1 u = sqrn(t2p50m1, 50) # 111 | 2^100 - 2^50 t = u*t2p50m1 # 112 | 2^100 - 1 u = sqrn(t, 100) # 212 | 2^200 - 2^100 t = u*t # 213 | 2^200 - 1 u = sqrn(t, 50) # 263 | 2^250 - 2^50 t = u*t2p50m1 # 264 | 2^250 - 1 u = sqrn(t, 2) # 266 | 2^252 - 4 t = u*w # 267 | 2^252 - 3 beta = t*xy3 # 268 | ## Now we have beta = (x y^3) (x y^7)^((p - 5)/8) = ## x^((p + 3)/8) y^((7 p - 11)/8) = (x/y)^((p + 3)/8). ## Suppose alpha^2 = x/y. Then beta^4 = (x/y)^((p + 3)/2) = ## alpha^(p + 3) = alpha^4 = (x/y)^2, so beta^2 = ±x/y. If ## y beta^2 = x then alpha = beta and we're done; if ## y beta^2 = -x, then alpha = beta sqrt(-1); otherwise x/y ## wasn't actually a square after all. t = y*beta^2 if t == x: return beta elif t == -x: return beta*sqrtm1 else: raise ValueError, 'not a square' def quosqrt_mdw(x, y): v = x*y ## Now we calculate w = v^{3*2^252 - 8}. This will be explained later. u = sqrn(v, 1) # 1 | 2 t = u*v # 2 | 3 u = sqrn(t, 2) # 4 | 12 t15 = u*t # 5 | 15 u = sqrn(t15, 1) # 6 | 30 t = u*v # 7 | 31 = 2^5 - 1 u = sqrn(t, 5) # 12 | 2^10 - 2^5 t = u*t # 13 | 2^10 - 1 u = sqrn(t, 10) # 23 | 2^20 - 2^10 u = u*t # 24 | 2^20 - 1 u = sqrn(u, 10) # 34 | 2^30 - 2^10 t = u*t # 35 | 2^30 - 1 u = sqrn(t, 1) # 36 | 2^31 - 2 t = u*v # 37 | 2^31 - 1 u = sqrn(t, 31) # 68 | 2^62 - 2^31 t = u*t # 69 | 2^62 - 1 u = sqrn(t, 62) # 131 | 2^124 - 2^62 t = u*t # 132 | 2^124 - 1 u = sqrn(t, 124) # 256 | 2^248 - 2^124 t = u*t # 257 | 2^248 - 1 u = sqrn(t, 1) # 258 | 2^249 - 2 t = u*v # 259 | 2^249 - 1 t = sqrn(t, 3) # 262 | 2^252 - 8 u = sqrn(t, 1) # 263 | 2^253 - 16 t = u*t # 264 | 3*2^252 - 24 t = t*t15 # 265 | 3*2^252 - 9 w = t*v # 266 | 3*2^252 - 8 ## Awesome. Now let me explain. Let v be a square in GF(p), and let w = ## v^(3*2^252 - 8). In particular, let's consider ## ## v^2 w^4 = v^2 v^{3*2^254 - 32} = (v^{2^254 - 10})^3 ## ## But 2^254 - 10 = ((2^255 - 19) - 1)/2 = (p - 1)/2. Since v is a square, ## it has order dividing (p - 1)/2, and therefore v^2 w^4 = 1 and ## ## w^4 = 1/v^2 ## ## That in turn implies that w^2 = ±1/v. Now, recall that v = x y, and let ## w' = w x. Then w'^2 = ±x^2/v = ±x/y. If y w'^2 = x then we set ## z = w', since we have z^2 = x/y; otherwise let z = i w', where i^2 = -1, ## so z^2 = -w^2 = x/y, and we're done. t = w*x u = y*t^2 if u == x: return t elif u == -x: return t*sqrtm1 else: raise ValueError, 'not a square' quosqrt = quosqrt_mdw assert inv(k(9))*9 == 1 assert 5*quosqrt(k(4), k(5))^2 == 4 ###-------------------------------------------------------------------------- ### The Montgomery ladder. def x25519(n, x1): ## Let Q = (x_1 : y_1 : 1) be an input point. We calculate ## n Q = (x_n : y_n : z_n), returning x_n/z_n (unless z_n = 0, ## in which case we return zero). ## ## We're given that n = 2^254 + n'_254, where 0 <= n'_254 < 2^254. bb = n.bits() x, z = 1, 0 u, w = x1, 1 ## Initially, let i = 255. for i in xrange(len(bb) - 1, -1, -1): ## Split n = n_i 2^i + n'_i, where 0 <= n'_i < 2^i, so n_0 = n. ## We have x, z = x_{n_{i+1}}, z_{n_{i+1}}, and ## u, w = x_{n_{i+1}+1}, z_{n_{i+1}+1}. ## Now either n_i = 2 n_{i+1} or n_i = 2 n_{i+1} + 1, depending ## on bit i of n. ## Swap (x : z) and (u : w) if bit i of n is set. if bb[i]: x, z, u, w = u, w, x, z ## Do the ladder step. xmz, xpz = x - z, x + z umw, upw = u - w, u + w xmz2, xpz2 = xmz^2, xpz^2 xpz2mxmz2 = xpz2 - xmz2 xmzupw, xpzumw = xmz*upw, xpz*umw x, z = xmz2*xpz2, xpz2mxmz2*(xpz2 + A0*xpz2mxmz2) u, w = (xmzupw + xpzumw)^2, x1*(xmzupw - xpzumw)^2 ## Finally, unswap. if bb[i]: x, z, u, w = u, w, x, z ## Almost done. return x*inv(z) assert x25519(y, k(9)) == Y[0] assert x25519(x, Y[0]) == x25519(y, X[0]) == Z[0] ###-------------------------------------------------------------------------- ### Edwards curve parameters and conversion. a = k(-1) d = -A0/(A0 + 1) def mont_to_ed(u, v): return sqrt(-A - 2)*u/v, (u - 1)/(u + 1) def ed_to_mont(x, y): u = (1 + y)/(1 - y) v = sqrt(-A - 2)*u/x return u, v Bx, By = mont_to_ed(P[0], P[1]) if Bx.lift()%2: Bx = -Bx B = (Bx, By, 1) u, v = ed_to_mont(Bx, By) assert By == k(4/5) assert -Bx^2 + By^2 == 1 + d*Bx^2*By^2 assert u == k(9) assert v == P[1] or v == -P[1] ###-------------------------------------------------------------------------- ### Edwards point addition and doubling. def ed_add((X1, Y1, Z1), (X2, Y2, Z2)): A = Z1*Z2 B = A^2 C = X1*X2 D = Y1*Y2 E = d*C*D F = B - E G = B + E X3 = A*F*((X1 + Y1)*(X2 + Y2) - C - D) Y3 = A*G*(D - a*C) Z3 = F*G return X3, Y3, Z3 def ed_dbl((X1, Y1, Z1)): B = (X1 + Y1)^2 C = X1^2 D = Y1^2 E = a*C F = E + D H = Z1^2 J = F - 2*H X3 = (B - C - D)*J Y3 = F*(E - D) Z3 = F*J return X3, Y3, Z3 Q = E.random_point() R = E.random_point() n = ZZ(randint(0, 2^255 - 1)) m = ZZ(randint(0, 2^255 - 1)) Qx, Qy = mont_to_ed(Q[0], Q[1]) Rx, Ry = mont_to_ed(R[0], R[1]) S = Q + R; T = 2*Q Sx, Sy, Sz = ed_add((Qx, Qy, 1), (Rx, Ry, 1)) Tx, Ty, Tz = ed_dbl((Qx, Qy, 1)) assert (Sx/Sz, Sy/Sz) == mont_to_ed(S[0], S[1]) assert (Tx/Tz, Ty/Tz) == mont_to_ed(T[0], T[1]) ###-------------------------------------------------------------------------- ### Scalar multiplication. def ed_mul(n, Q): winwd = 4 winlim = 1 << winwd winmask = winlim - 1 tabsz = winlim/2 + 1 ## Recode the scalar to roughly-balanced form. nn = [(n >> i)&winmask for i in xrange(0, n.nbits() + winwd, winwd)] for i in xrange(len(nn) - 2, -1, -1): if nn[i] >= winlim/2: nn[i] -= winlim nn[i + 1] += 1 ## Build the table of small multiples. V = tabsz*[None] V[0] = (0, 1, 1) V[1] = Q V[2] = ed_dbl(V[1]) for i in xrange(3, tabsz, 2): V[i] = ed_add(V[i - 1], Q) V[i + 1] = ed_dbl(V[(i + 1)/2]) ## Do the multiplication. T = V[0] for i in xrange(len(nn) - 1, -1, -1): w = nn[i] for j in xrange(winwd): T = ed_dbl(T) if w >= 0: T = ed_add(T, V[w]) else: x, y, z = V[-w]; T = ed_add(T, (-x, y, z)) ## Done. return T def ed_simmul(n0, Q0, n1, Q1): winwd = 2 winlim = 1 << winwd winmask = winlim - 1 tabsz = 1 << 2*winwd ## Extract the scalar pieces. nn = [(n0 >> i)&winmask | (((n1 >> i)&winmask) << winwd) for i in xrange(0, max(n0.nbits(), n1.nbits()), winwd)] ## Build the table of small linear combinations. V = tabsz*[None] V[0] = (0, 1, 1) V[1] = Q0; V[winlim] = Q1 i = 2 while i < winlim: V[i] = ed_dbl(V[i/2]) V[i*winlim] = ed_dbl(V[i*winlim/2]) i <<= 1 i = 2 while i < tabsz: for j in xrange(1, i): V[i + j] = ed_add(V[i], V[j]) i <<= 1 ## Do the multiplication. T = V[0] for i in xrange(len(nn) - 1, -1, -1): w = nn[i] for j in xrange(winwd): T = ed_dbl(T) T = ed_add(T, V[w]) ## Done. return T U = n*Q; V = n*Q + m*R Ux, Uy, Uz = ed_mul(n, (Qx, Qy, 1)) Vx, Vy, Vz = ed_simmul(n, (Qx, Qy, 1), m, (Rx, Ry, 1)) assert (Ux/Uz, Uy/Uz) == mont_to_ed(U[0], U[1]) assert (Vx/Vz, Vy/Vz) == mont_to_ed(V[0], V[1]) ###-------------------------------------------------------------------------- ### Point encoding. def ed_encode((X, Y, Z)): x, y = X/Z, Y/Z xx, yy = x.lift(), y.lift() if xx%2: yy += 1 << 255 return st(yy, 32) def ed_decode(s): n = ld(s) bit = (n >> 255)&1 y = n&((1 << 255) - 1) y2 = y^2 x = quosqrt(y2 - 1, d*y2 + 1) if x.lift()%2 != bit: x = -x return (x, y, 1) ###-------------------------------------------------------------------------- ### EdDSA implementation. def eddsa_splitkey(k): h = hash(k) a = 2^254 + (ld(h[0:32])&((1 << 254) - 8)) h1 = h[32:64] return a, h1 def eddsa_pubkey(k): a, h1 = eddsa_splitkey(k) A = ed_mul(a, B) return ed_encode(A) def eddsa_sign(k, m): K = eddsa_pubkey(k) a, h1 = eddsa_splitkey(k) r = ld(hash(h1, m))%l A = ed_decode(K) R = ed_mul(r, B) RR = ed_encode(R) S = (r + a*ld(hash(RR, K, m)))%l return RR + st(S, 32) def eddsa_verify(K, m, sig): A = ed_decode(K) R, S = sig[0:32], ld(sig[32:64]) h = ld(hash(R, K, m))%l V = ed_simmul(S, B, h, (-A[0], A[1], A[2])) return ed_encode(V) == R priv = '1acdbb793b0384934627470d795c3d1dd4d79cea59ef983f295b9b59179cbb28'.decode('hex') msg = '7cf34f75c3dac9a804d0fcd09eba9b29c9484e8a018fa9e073042df88e3c56'.decode('hex') pub = '3f60c7541afa76c019cf5aa82dcdb088ed9e4ed9780514aefb379dabc844f31a'.decode('hex') sig = 'be71ef4806cb041d885effd9e6b0fbb73d65d7cdec47a89c8a994892f4e55a568c4cc78d61f901e80dbb628b86a23ccd594e712b57fa94c2d67ec26634878507'.decode('hex') assert pub == eddsa_pubkey(priv) assert sig == eddsa_sign(priv, msg) assert eddsa_verify(pub, msg, sig) ###----- That's all, folks --------------------------------------------------