# Test vectors for prime number finder pgen { 2 2; 3 3; 245 251; 4294967295 4294967311; # --- These can take a little while --- 498459898455435345676576789 498459898455435345676576793; 40831929843180254171317254073271577309351168965431122042755102715326515941762786951037109689522493525769 40831929843180254171317254073271577309351168965431122042755102715326515941762786951037109689522493526197; 166359567317705838255275971708060308423814413741683015010175247351623188739655446196925981468626681882384215574706593049022467680136399439302347043107836749816290369600677730213469006507173065402294688841278559283358390567733443050775707749725690534182003442070447739085348456478911335969765393755383551520173 166359567317705838255275971708060308423814413741683015010175247351623188739655446196925981468626681882384215574706593049022467680136399439302347043107836749816290369600677730213469006507173065402294688841278559283358390567733443050775707749725690534182003442070447739085348456478911335969765393755383551520257; } pgen-granfrob { 5 0 0 -1; 7 0 0 4; 15 0 0 3; 5777 1 -1 4; # pseudoprime 40301809 0 0 4; 86059163416987297647409667483582114939806237974424324409828198660056356336227 1 5 4; 102508420970861015999300753620309481186457893679971500520427161277511389396803 1 5 4; 72291866454056552194087337607224612505157525245486245416393486917859196707519 1 5 4; 72291866454056552194087337607224612505157525245486265416393486917859196707519 1 5 3; ## A large Frobenius pseudoprime: call the first number p_1; then p_2 = 31 ## (p_1 + 1) - 1 and p_3 = 43 (p_1 + 1) - 1. These three are all prime. ## Their product is a strong Lucas, and Frobenius, pseudoprime. ## ## See `Prime and Prejudice' by Martin R. Albrecht, Jake Massimo, Kenneth ## G. Paterson, and Juraj Somorovsky. 3690125385954346893658786222051913500627130245213169388019826598097107079718295481926241398412699320815932808015860263240282855670239765686869973444864115322609857375876438922226372746215468824202413623127 0 0 4; 114393886964584753703422372883609318519441037601608251028614624541010319471267159939713483350793678945293917048491668160448768525777432736292969176790787575000905578652169606589017555132679533550274822316967 0 0 4; 158675391596036916427327807548232280526966600544166283684852543718175604427886705722828380131746070795085110744681991319332162793820309924535408858129156958872223867162686873655734028087265159440703785794503 0 0 4; 66981291792500223036804182765508448534715465524671325885174850970812009004775815201151227900130153990294748113034471984909912807896550069799856170439734910206802409847773026240559371480115711600866989845251707737806461503879250232804362190067578216069266197879151809743235261582813331022213587929425243163096486125825510076936556242805690400001899138503900919499414951069309064408305196756524628693684938044145785145327821174180933033293089394794328963673467918652042794300291355500468079109432376296868174257674548727592142782202898031102246775544402811199608266683925072825828225074019194302318324623049819212337927 0 0 4; } primep { -5 0; -1 0; 0 0; 1 0; 2 1; 3 1; 4 0; 40301809 1; 40301811 0; ## A small Lucas pseudoprime: 5777 = 53*109. 5777 0; ## A large strong pseudoprime: this is the product of ## ## p_1 = 142445387161415482404826365418175962266689133006163 ## p_2 = 5840260873618034778597880982145214452934254453252643 ## p_3 = 14386984103302963722887462907235772188935602433622363 ## ## See `Prime and Prejudice' by Martin R. Albrecht, Jake Massimo, Kenneth ## G. Paterson, and Juraj Somorovsky. 142445387161415482404826365418175962266689133006163 1; 5840260873618034778597880982145214452934254453252643 1; 14386984103302963722887462907235772188935602433622363 1; 11968794224604718293549908104759518204343930652759288592987578098131927050572705181539873293848476235393230314654912729920657864630317971562727057595285667 0; ## A large Lucas pseudoprime: call the first number p_1; then p_2 = 31 (p_1 ## + 1) - 1 and p_3 = 43 (p_1 + 1) - 1. These three are all prime. Their ## product is a strong Lucas pseudoprime. 3690125385954346893658786222051913500627130245213169388019826598097107079718295481926241398412699320815932808015860263240282855670239765686869973444864115322609857375876438922226372746215468824202413623127 1; 114393886964584753703422372883609318519441037601608251028614624541010319471267159939713483350793678945293917048491668160448768525777432736292969176790787575000905578652169606589017555132679533550274822316967 1; 158675391596036916427327807548232280526966600544166283684852543718175604427886705722828380131746070795085110744681991319332162793820309924535408858129156958872223867162686873655734028087265159440703785794503 1; 66981291792500223036804182765508448534715465524671325885174850970812009004775815201151227900130153990294748113034471984909912807896550069799856170439734910206802409847773026240559371480115711600866989845251707737806461503879250232804362190067578216069266197879151809743235261582813331022213587929425243163096486125825510076936556242805690400001899138503900919499414951069309064408305196756524628693684938044145785145327821174180933033293089394794328963673467918652042794300291355500468079109432376296868174257674548727592142782202898031102246775544402811199608266683925072825828225074019194302318324623049819212337927 0; } primeiter { 0 2 3 5 7 11; 2 2 3 5 7 11; 3 3 5 7 11 13; 4 5 7 11 13 17; 2309 2309 2311 2333 2339 2341; 7878 7879 7883 7901 7907 7919; 7879 7879 7883 7901 7907 7919; }